metaboulie commited on
Commit
6b8214a
·
1 Parent(s): 7339b50

Add notebook 05_functors (version 0.1.0) for the functional programming course

Browse files
functional_programming/05_functors.py CHANGED
@@ -5,112 +5,113 @@ app = marimo.App(app_title="Category Theory and Functors", css_file="")
5
 
6
 
7
  @app.cell(hide_code=True)
8
- def _(md):
9
- md("""
10
- # Category Theory and Functors
 
11
 
12
- In this notebook, you will learn:
13
 
14
- * Why `length` is a *functor* from the category of `list concatenation` to the category of `integer addition`
15
- * How to *lift* an ordinary function into a specific *computational context*
16
- * How to write an *adapter* between two categories
17
 
18
- In short, a mathematical functor is a **mapping** between two categories in category theory. In practice, a functor represents a type that can be mapped over.
19
 
20
- /// admonition | Intuitions
21
 
22
- - A simple intuition is that a `Functor` represents a **container** of values, along with the ability to apply a function uniformly to every element in the container.
23
- - Another intuition is that a `Functor` represents some sort of **computational context**.
24
- - Mathematically, `Functors` generalize the idea of a container or a computational context.
25
- ///
26
 
27
- We will start with intuition, introduce the basics of category theory, and then examine functors from a categorical perspective.
28
- """)
29
- return
30
 
 
 
31
 
32
- @app.cell(hide_code=True)
33
- def _(md):
34
- md("""
35
- # Functor as a Computational Context
36
 
37
- A [**Functor**](https://wiki.haskell.org/Functor) is an abstraction that represents a computational context with the ability to apply a function to every value inside it without altering the structure of the context itself. This enables transformations while preserving the shape of the data.
 
 
 
38
 
39
- To understand this, let's look at a simple example.
40
 
41
- ## [The One-Way Wrapper Design Pattern](http://blog.sigfpe.com/2007/04/trivial-monad.html)
 
 
 
 
42
 
43
- Often, we need to wrap data in some kind of context. However, when performing operations on wrapped data, we typically have to:
44
 
45
- 1. Unwrap the data.
46
- 2. Modify the unwrapped data.
47
- 3. Rewrap the modified data.
48
 
49
- This process is tedious and inefficient. Instead, we want to wrap data **once** and apply functions directly to the wrapped data without unwrapping it.
50
 
51
- /// admonition | Rules for a One-Way Wrapper
52
 
53
- 1. We can wrap values, but we cannot unwrap them.
54
- 2. We should still be able to apply transformations to the wrapped data.
55
- 3. Any operation that depends on wrapped data should itself return a wrapped result.
56
- ///
57
 
58
- Let's define such a `Wrapper` class:
59
 
60
- ```python
61
- from dataclasses import dataclass
62
- from typing import Callable, Generic, TypeVar
63
 
64
- a = TypeVar("a")
65
- b = TypeVar("b")
 
 
66
 
67
- @dataclass
68
- class Wrapper(Generic[a]):
69
- value: a
70
- ```
71
 
72
- Now, we can create an instance of wrapped data:
 
 
73
 
74
- ```python
75
- wrapped = Wrapper(1)
76
- ```
77
 
78
- ### Mapping Functions Over Wrapped Data
 
 
 
79
 
80
- To modify wrapped data while keeping it wrapped, we define an `fmap` method:
81
 
82
- ```python
83
- @dataclass
84
- class Wrapper(Generic[a]):
85
- value: a
86
 
87
- def fmap(self, func: Callable[[a], b]) -> "Wrapper[b]":
88
- return Wrapper(func(self.value))
89
- ```
90
 
91
- Now, we can apply transformations without unwrapping:
92
 
93
- ```python
94
- >>> wrapped.fmap(lambda x: x + 1)
95
- Wrapper(value=2)
 
96
 
97
- >>> wrapped.fmap(lambda x: [x])
98
- Wrapper(value=[1])
99
- ```
100
 
101
- > Try using the `Wrapper` in the cell below.
102
- """)
103
- return
104
 
 
 
 
105
 
106
- @app.cell
107
- def _():
108
- from dataclasses import dataclass
109
- from typing import Callable, Generic, TypeVar
110
 
111
- a = TypeVar("a")
112
- b = TypeVar("b")
113
- return Callable, Generic, TypeVar, a, b, dataclass
 
114
 
115
 
116
  @app.cell
@@ -131,38 +132,42 @@ def _(Callable, Functor, Generic, a, b, dataclass):
131
 
132
 
133
  @app.cell(hide_code=True)
134
- def _(md):
135
- md("""
136
- We can analyze the type signature of `fmap` for `Wrapper`:
 
137
 
138
- * `self` is of type `Wrapper[a]`
139
- * `func` is of type `Callable[[a], b]`
140
- * The return value is of type `Wrapper[b]`
141
 
142
- Thus, in Python's type system, we can express the type signature of `fmap` as:
143
 
144
- ```python
145
- def fmap(self: Wrapper[a], func: Callable[[a], b]) -> Wrapper[b]:
146
- ```
147
 
148
- Essentially, `fmap`:
149
 
150
- 1. Takes a `Wrapper[a]` instance and a function `Callable[[a], b]` as input.
151
- 2. Applies the function to the value inside the wrapper.
152
- 3. Returns a new `Wrapper[b]` instance with the transformed value, leaving the original wrapper and its internal data unmodified.
153
 
154
- Now, let's examine `list` as a similar kind of wrapper.
155
- """)
 
156
  return
157
 
158
 
159
  @app.cell(hide_code=True)
160
- def _(md):
161
- md("""
162
- ## The List Wrapper
 
163
 
164
- We can define a `ListWrapper` class to represent a wrapped list that supports `fmap`:
165
- """)
 
166
  return
167
 
168
 
@@ -192,131 +197,137 @@ def _(ListWrapper, mo):
192
 
193
 
194
  @app.cell(hide_code=True)
195
- def _(md):
196
- md("""
197
- ### Extracting the Type of `fmap`
 
198
 
199
- The type signature of `fmap` for `ListWrapper` is:
200
 
201
- ```python
202
- def fmap(self: ListWrapper[a], func: Callable[[a], b]) -> ListWrapper[b]
203
- ```
204
 
205
- Similarly, for `Wrapper`:
206
 
207
- ```python
208
- def fmap(self: Wrapper[a], func: Callable[[a], b]) -> Wrapper[b]
209
- ```
210
 
211
- Both follow the same pattern, which we can generalize as:
212
 
213
- ```python
214
- def fmap(self: Functor[a], func: Callable[[a], b]) -> Functor[b]
215
- ```
216
 
217
- where `Functor` can be `Wrapper`, `ListWrapper`, or any other wrapper type that follows the same structure.
218
 
219
- ### Functors in Haskell (optional)
220
 
221
- In Haskell, the type of `fmap` is:
222
 
223
- ```haskell
224
- fmap :: Functor f => (a -> b) -> f a -> f b
225
- ```
226
 
227
- or equivalently:
228
 
229
- ```haskell
230
- fmap :: Functor f => (a -> b) -> (f a -> f b)
231
- ```
232
 
233
- This means that `fmap` **lifts** an ordinary function into the **functor world**, allowing it to operate within a computational context.
234
 
235
- Now, let's define an abstract class for `Functor`.
236
- """)
 
237
  return
238
 
239
 
240
  @app.cell(hide_code=True)
241
- def _(md):
242
- md("""
243
- ## Defining Functor
 
244
 
245
- Recall that, a **Functor** is an abstraction that allows us to apply a function to values inside a computational context while preserving its structure.
246
 
247
- To define `Functor` in Python, we use an abstract base class:
248
 
249
- ```python
250
- from dataclasses import dataclass
251
- from typing import Callable, Generic, TypeVar
252
- from abc import ABC, abstractmethod
253
 
254
- a = TypeVar("a")
255
- b = TypeVar("b")
256
 
257
- @dataclass
258
- class Functor(ABC, Generic[a]):
259
- @abstractmethod
260
- def fmap(self, func: Callable[[a], b]) -> "Functor[b]":
261
- raise NotImplementedError
262
- ```
263
 
264
- We can now extend custom wrappers, containers, or computation contexts with this `Functor` base class, implement the `fmap` method, and apply any function.
265
 
266
- Next, let's implement a more complex data structure: [RoseTree](https://en.wikipedia.org/wiki/Rose_tree).
267
- """)
 
268
  return
269
 
270
 
271
  @app.cell(hide_code=True)
272
- def _(md):
273
- md("""
274
- ## Case Study: RoseTree
 
275
 
276
- A **RoseTree** is a tree where:
277
 
278
- - Each node holds a **value**.
279
- - Each node has a **list of child nodes** (which are also RoseTrees).
280
 
281
- This structure is useful for representing hierarchical data, such as:
282
- - Abstract Syntax Trees (ASTs)
283
- - File system directories
284
- - Recursive computations
285
 
286
- We can implement `RoseTree` by extending the `Functor` class:
287
 
288
- ```python
289
- from dataclasses import dataclass
290
- from typing import Callable, Generic, TypeVar
291
 
292
- a = TypeVar("a")
293
- b = TypeVar("b")
294
 
295
- @dataclass
296
- class RoseTree(Functor, Generic[a]):
297
- value: a
298
- children: list["RoseTree[a]"]
299
 
300
- def fmap(self, func: Callable[[a], b]) -> "RoseTree[b]":
301
- return RoseTree(
302
- func(self.value), [child.fmap(func) for child in self.children]
303
- )
304
 
305
- def __repr__(self) -> str:
306
- return f"RoseNode({self.value}, {self.children})"
307
- ```
308
 
309
- - The function is applied **recursively** to each node's value.
310
- - The tree structure **remains unchanged**.
311
- - Only the values inside the tree are modified.
312
 
313
- > Try using `RoseTree` in the cell below.
314
- """)
 
315
  return
316
 
317
 
318
  @app.cell(hide_code=True)
319
- def _(Callable, Functor, Generic, a, b, dataclass, md):
320
  @dataclass
321
  class RoseTree(Functor, Generic[a]):
322
  """
@@ -358,7 +369,7 @@ def _(Callable, Functor, Generic, a, b, dataclass, md):
358
  return f"RoseNode({self.value}, {self.children})"
359
 
360
 
361
- md(RoseTree.__doc__)
362
  return (RoseTree,)
363
 
364
 
@@ -374,66 +385,68 @@ def _(RoseTree, mo):
374
 
375
 
376
  @app.cell(hide_code=True)
377
- def _(md):
378
- md("""
379
- ## Generic Functions that can be Used with Any Functor
 
380
 
381
- One of the powerful features of functors is that we can write **generic functions** that can work with any functor.
382
 
383
- Remember that in Haskell, the type of `fmap` can be written as:
384
 
385
- ```haskell
386
- fmap :: Functor f => (a -> b) -> (f a -> f b)
387
- ```
388
 
389
- Translating to Python, we get:
390
 
391
- ```python
392
- def fmap(func: Callable[[a], b]) -> Callable[[Functor[a]], Functor[b]]
393
- ```
394
 
395
- This means that `fmap`:
396
 
397
- - Takes an **ordinary function** `Callable[[a], b]` as input.
398
- - Outputs a function that:
399
- - Takes a **functor** of type `Functor[a]` as input.
400
- - Outputs a **functor** of type `Functor[b]`.
401
 
402
- We can implement a similar idea in Python:
403
 
404
- ```python
405
- # fmap(func: Callable[[a], b]) -> Callable[[Functor[a]], Functor[b]]
406
- fmap = lambda func: lambda f: f.fmap(lambda x: func(x))
407
 
408
- # inc([Functor[a]) -> Functor[b]
409
- inc = fmap(lambda x: x + 1)
410
- ```
411
 
412
- - **`fmap`**: Lifts an ordinary function (`lambda x: func(x)`) to the functor world, allowing the function to operate on the wrapped value inside the functor.
413
- - **`inc`**: A specific instance of `fmap` that operates on any functor. It takes a functor, applies the function `lambda x: x + 1` to every value inside it, and returns a new functor with the updated values.
414
 
415
- Thus, **`fmap`** transforms an ordinary function into a **function that operates on functors**, and **`inc`** is a specific case where it increments the value inside the functor.
416
 
417
- ### Applying the `inc` Function to Various Functors
418
 
419
- You can now apply `inc` to any functor like `Wrapper`, `ListWrapper`, or `RoseTree`:
420
 
421
- ```python
422
- # Applying `inc` to a Wrapper
423
- wrapper = Wrapper(5)
424
- inc(wrapper) # Wrapper(value=6)
425
 
426
- # Applying `inc` to a ListWrapper
427
- list_wrapper = ListWrapper([1, 2, 3])
428
- inc(list_wrapper) # ListWrapper(value=[2, 3, 4])
429
 
430
- # Applying `inc` to a RoseTree
431
- tree = RoseTree(1, [RoseTree(2, []), RoseTree(3, [])])
432
- inc(tree) # RoseTree(value=2, children=[RoseTree(value=3, children=[]), RoseTree(value=4, children=[])])
433
- ```
434
 
435
- > Try using `fmap` in the cell below.
436
- """)
 
437
  return
438
 
439
 
@@ -449,47 +462,49 @@ def _(ftree, list_wrapper, mo, wrapper):
449
 
450
 
451
  @app.cell(hide_code=True)
452
- def _(md):
453
- md("""
454
- ## Functor laws
 
455
 
456
- In addition to providing a function `fmap` of the specified type, functors are also required to satisfy two equational laws:
457
 
458
- ```haskell
459
- fmap id = id -- fmap preserves identity
460
- fmap (g . h) = fmap g . fmap h -- fmap distributes over composition
461
- ```
462
 
463
- 1. `fmap` should preserve the **identity function**, in the sense that applying `fmap` to this function returns the same function as the result.
464
- 2. `fmap` should also preserve **function composition**. Applying two composed functions `g` and `h` to a functor via `fmap` should give the same result as first applying `fmap` to `g` and then applying `fmap` to `h`.
465
 
466
- /// admonition |
467
- - Any `Functor` instance satisfying the first law `(fmap id = id)` will automatically satisfy the [second law](https://github.com/quchen/articles/blob/master/second_functor_law.md) as well.
468
- ///
469
 
470
- ### Functor Law Verification
471
 
472
- We can add a helper function `check_functor_law` in the `Functor` class to verify that an instance satisfies the functor laws.
473
 
474
- ```Python
475
- id = lambda x: x
476
 
477
- @dataclass
478
- class Functor(ABC, Generic[a]):
479
- @abstractmethod
480
- def fmap(self, func: Callable[[a], b]) -> "Functor[b]":
481
- return NotImplementedError
482
 
483
- def check_functor_law(self):
484
- return repr(self.fmap(id)) == repr(self)
485
 
486
- @abstractmethod
487
- def __repr__(self):
488
- return NotImplementedError
489
- ```
490
 
491
- We can verify the functor we've defined.
492
- """)
 
493
  return
494
 
495
 
@@ -510,10 +525,8 @@ def _(ftree, list_wrapper, mo, wrapper):
510
 
511
 
512
  @app.cell(hide_code=True)
513
- def _(md):
514
- md("""
515
- And here is an `EvilFunctor`. We can verify it's not a valid `Functor`.
516
- """)
517
  return
518
 
519
 
@@ -542,38 +555,40 @@ def _(EvilFunctor):
542
 
543
 
544
  @app.cell(hide_code=True)
545
- def _(md):
546
- md("""
547
- ## Final defination of Functor
 
548
 
549
- We can now draft the final defination of `Functor` with some utility functions.
550
 
551
- ```Python
552
- @dataclass
553
- class Functor(ABC, Generic[a]):
554
- @abstractmethod
555
- def fmap(self, func: Callable[[a], b]) -> "Functor[b]":
556
- return NotImplementedError
557
 
558
- def check_functor_law(self) -> bool:
559
- return repr(self.fmap(id)) == repr(self)
560
 
561
- def const_fmap(self, b) -> "Functor[b]":
562
- return self.fmap(lambda _: b)
563
 
564
- def void(self) -> "Functor[None]":
565
- return self.const_fmap(None)
566
 
567
- @abstractmethod
568
- def __repr__(self):
569
- return NotImplementedError
570
- ```
571
- """)
 
572
  return
573
 
574
 
575
  @app.cell(hide_code=True)
576
- def _(ABC, Callable, Generic, a, abstractmethod, b, dataclass, id, md):
577
  @dataclass
578
  class Functor(ABC, Generic[a]):
579
  """
@@ -624,15 +639,13 @@ def _(ABC, Callable, Generic, a, abstractmethod, b, dataclass, id, md):
624
  return NotImplementedError
625
 
626
 
627
- md(Functor.__doc__)
628
  return (Functor,)
629
 
630
 
631
  @app.cell(hide_code=True)
632
- def _(md):
633
- md("""
634
- > Try with utility functions in the cell below
635
- """)
636
  return
637
 
638
 
@@ -647,20 +660,22 @@ def _(ftree, list_wrapper, mo):
647
 
648
 
649
  @app.cell(hide_code=True)
650
- def _(md):
651
- md("""
652
- ## Functors for Non-Iterable Types
 
653
 
654
- In the previous examples, we implemented functors for **iterables**, like `ListWrapper` and `RoseTree`, which are inherently **iterable types**. This is a natural fit for functors, as iterables can be mapped over.
655
 
656
- However, **functors are not limited to iterables**. There are cases where we want to apply the concept of functors to types that are not inherently iterable, such as types that represent optional values, computations, or other data structures.
657
 
658
- ### The Maybe Functor
659
 
660
- One example is the **`Maybe`** type from Haskell, which is used to represent computations that can either result in a value (`Just a`) or no value (`Nothing`).
661
 
662
- We can define the `Maybe` functor as below:
663
- """)
 
664
  return
665
 
666
 
@@ -694,15 +709,17 @@ def _(Callable, Functor, Generic, a, b, dataclass):
694
 
695
 
696
  @app.cell(hide_code=True)
697
- def _(md):
698
- md("""
699
- - **`Just`** is a wrapper that holds a value. We use it to represent the presence of a value.
700
- - **`Maybe`** is a functor that can either hold a `Just` value or be `Nothing` (equivalent to `None` in Python). The `fmap` method applies a function to the value inside the `Just` wrapper, if it exists. If the value is `None` (representing `Nothing`), `fmap` simply returns `Nothing`.
 
701
 
702
- By using `Maybe` as a functor, we gain the ability to apply transformations (`fmap`) to potentially absent values, without having to explicitly handle the `None` case every time.
703
 
704
- > Try using `Maybe` in the cell below.
705
- """)
 
706
  return
707
 
708
 
@@ -722,274 +739,290 @@ def _(Just, Maybe, ftree, inc, mo):
722
 
723
 
724
  @app.cell(hide_code=True)
725
- def _(md):
726
- md("""
727
- ## Limitations of Functor
 
728
 
729
- Functors abstract the idea of mapping a function over each element of a structure. Suppose now that we wish to generalise this idea to allow functions with any number of arguments to be mapped, rather than being restricted to functions with a single argument. More precisely, suppose that we wish to define a hierarchy of `fmap` functions with the following types:
730
 
731
- ```haskell
732
- fmap0 :: a -> f a
733
 
734
- fmap1 :: (a -> b) -> f a -> f b
735
 
736
- fmap2 :: (a -> b -> c) -> f a -> f b -> f c
737
 
738
- fmap3 :: (a -> b -> c -> d) -> f a -> f b -> f c -> f d
739
- ```
740
 
741
- And we have to declare a special version of the functor class for each case.
742
 
743
- We will learn how to resolve this problem in the next notebook on `Applicatives`.
744
- """)
 
745
  return
746
 
747
 
748
  @app.cell(hide_code=True)
749
- def _(md):
750
- md("""
751
- # Introduction to Categories
 
752
 
753
- A [category](https://en.wikibooks.org/wiki/Haskell/Category_theory#Introduction_to_categories) is, in essence, a simple collection. It has three components:
754
 
755
- - A collection of **objects**.
756
- - A collection of **morphisms**, each of which ties two objects (a _source object_ and a _target object_) together. If $f$ is a morphism with source object $C$ and target object $B$, we write $f : C → B$.
757
- - A notion of **composition** of these morphisms. If $g : A → B$ and $f : B → C$ are two morphisms, they can be composed, resulting in a morphism $f ∘ g : A → C$.
758
 
759
- ## Category laws
760
 
761
- There are three laws that categories need to follow.
762
 
763
- 1. The composition of morphisms needs to be **associative**. Symbolically, $f ∘ (g ∘ h) = (f ∘ g) ∘ h$
764
 
765
- - Morphisms are applied right to left, so with $f ∘ g$ first $g$ is applied, then $f$.
766
 
767
- 2. The category needs to be **closed** under the composition operation. So if $f : B → C$ and $g : A → B$, then there must be some morphism $h : A → C$ in the category such that $h = f ∘ g$.
768
 
769
- 3. Given a category $C$ there needs to be for every object $A$ an **identity** morphism, $id_A : A → A$ that is an identity of composition with other morphisms. Put precisely, for every morphism $g : A → B$: $g ∘ id_A = id_B ∘ g = g$
770
 
771
- /// attention | The definition of a category does not define:
772
 
773
- - what `∘` is,
774
- - what `id` is, or
775
- - what `f`, `g`, and `h` might be.
776
 
777
- Instead, category theory leaves it up to us to discover what they might be.
778
- ///
779
- """)
 
780
  return
781
 
782
 
783
  @app.cell(hide_code=True)
784
- def _(md):
785
- md("""
786
- ## The Python category
787
-
788
- The main category we'll be concerning ourselves with in this part is the Python category, or we can give it a shorter name: `Py`. `Py` treats Python types as objects and Python functions as morphisms. A function `def f(a: A) -> B` for types A and B is a morphism in Python.
789
-
790
- Remember that we defined the `id` and `compose` function above as:
791
-
792
- ```Python
793
- def id(x: Generic[a]) -> Generic[a]:
794
- return x
795
-
796
- def compose(f: Callable[[b], c], g: Callable[[a], b]) -> Callable[[a], c]:
797
- return lambda x: f(g(x))
798
- ```
799
-
800
- We can check second law easily.
801
-
802
- For the first law, we have:
803
-
804
- ```python
805
- # compose(f, g) = lambda x: f(g(x))
806
- f ∘ (g ∘ h)
807
- = compose(f, compose(g, h))
808
- = lambda x: f(compose(g, h)(x))
809
- = lambda x: f(lambda y: g(h(y))(x))
810
- = lambda x: f(g(h(x)))
811
-
812
- (f ∘ g) ∘ h
813
- = compose(compose(f, g), h)
814
- = lambda x: compose(f, g)(h(x))
815
- = lambda x: lambda y: f(g(y))(h(x))
816
- = lambda x: f(g(h(x)))
817
- ```
818
-
819
- For the third law, we have:
820
-
821
- ```python
822
- g ∘ id_A
823
- = compose(g: Callable[[a], b], id: Callable[[a], a]) -> Callable[[a], b]
824
- = lambda x: g(id(x))
825
- = lambda x: g(x) # id(x) = x
826
- = g
827
- ```
828
- the similar proof can be applied to $id_B ∘ g =g$.
829
-
830
- Thus `Py` is a valid category.
831
- """)
832
- return
833
 
 
834
 
835
- @app.cell(hide_code=True)
836
- def _(md):
837
- md("""
838
- # Functors, again
839
 
840
- A functor is essentially a transformation between categories, so given categories $C$ and $D$, a functor $F : C → D$:
 
 
841
 
842
- - Maps any object $A$ in $C$ to $F ( A )$, in $D$.
843
- - Maps morphisms $f : A → B$ in $C$ to $F ( f ) : F ( A ) → F ( B )$ in $D$.
 
844
 
845
- > Endofunctors are functors from a category to itself.
846
- """)
847
- return
848
 
 
849
 
850
- @app.cell(hide_code=True)
851
- def _(md):
852
- md("""
853
- ## Functors on the category of Python
 
 
 
854
 
855
- Remember that a functor has two parts: it maps objects in one category to objects in another and morphisms in the first category to morphisms in the second.
 
 
 
 
 
856
 
857
- Functors in Python are from `Py` to `func`, where `func` is the subcategory of `Py` defined on just that functor's types. E.g. the RoseTree functor goes from `Py` to `RoseTree`, where `RoseTree` is the category containing only RoseTree types, that is, `RoseTree[T]` for any type `T`. The morphisms in `RoseTree` are functions defined on RoseTree types, that is, functions `RoseTree[T] -> RoseTree[U]` for types `T`, `U`.
858
 
859
- Recall the definition of `Functor`:
 
 
 
 
 
 
 
860
 
861
- ```Python
862
- @dataclass
863
- class Functor(ABC, Generic[a])
864
- ```
865
-
866
- And RoseTree:
867
 
868
- ```Python
869
- @dataclass
870
- class RoseTree(Functor, Generic[a])
871
- ```
872
 
873
- **Here's the key part:** the _type constructor_ `RoseTree` takes any type `T` to a new type, `RoseTree[T]`. Also, `fmap` restricted to `RoseTree` types takes a function `a -> b` to a function `RoseTree[a] -> RoseTree[b]`.
 
 
 
 
874
 
875
- But that's it. We've defined two parts, something that takes objects in `Py` to objects in another category (that of `RoseTree` types and functions defined on `RoseTree` types), and something that takes morphisms in `Py` to morphisms in this category. So `RoseTree` is a functor.
876
 
877
- To sum up:
 
878
 
879
- - We work in the category **Py** and its subcategories.
880
- - **Objects** are types (e.g., `int`, `str`, `list`).
881
- - **Morphisms** are functions (`Callable[[A], B]`).
882
- - **Things that take a type and return another type** are type constructors (`RoseTree[T]`).
883
- - **Things that take a function and return another function** are higher-order functions (`Callable[[Callable[[A], B]], Callable[[C], D]]`).
884
- - **Abstract base classes (ABC)** and duck typing provide a way to express polymorphism, capturing the idea that in category theory, structures are often defined over multiple objects at once.
885
- """)
886
  return
887
 
888
 
889
  @app.cell(hide_code=True)
890
- def _(md):
891
- md("""
892
- ## Functor laws, again
 
893
 
894
- Once again there are a few axioms that functors have to obey.
895
 
896
- 1. Given an identity morphism $id_A$ on an object $A$, $F ( id_A )$ must be the identity morphism on $F ( A )$, i.e.: ${\displaystyle F(\operatorname {id} _{A})=\operatorname {id} _{F(A)}}$
897
- 2. Functors must distribute over morphism composition, i.e. ${\displaystyle F(f\circ g)=F(f)\circ F(g)}$
898
- """)
899
- return
900
 
 
901
 
902
- @app.cell(hide_code=True)
903
- def _(md):
904
- md("""
905
- Remember that we defined the `fmap` (not the `fmap` in `Functor` class) and `id` as
906
- ```python
907
- # fmap :: Callable[[a], b] -> Callable[[Functor[a]], Functor[b]]
908
- fmap = lambda func: lambda f: f.fmap(func)
909
- id = lambda x: x
910
- compose = lambda f, g: lambda x: f(g(x))
911
- ```
912
 
913
- Let's prove that `fmap` is a functor.
914
 
915
- First, let's define a `Category` for a specific `Functor`. We choose to define the `Category` for the `Wrapper` as `WrapperCategory` here for simplicity, but remember that `Wrapper` can be any `Functor`(i.e. `ListWrapper`, `RoseTree`, `Maybe` and more):
 
 
 
916
 
917
- **Notice that** in this case, we can actually view `fmap` as:
918
- ```python
919
- # fmap :: Callable[[a], b] -> Callable[[Wrapper[a]], Wrapper[b]]
920
- fmap = lambda func: lambda wrapper: wrapper.fmap(func)
921
- ```
922
 
923
- We define `WrapperCategory` as:
924
 
925
- ```python
926
- @dataclass
927
- class WrapperCategory():
928
- @staticmethod
929
- def id() -> Callable[[Wrapper[a]], Wrapper[a]]:
930
- return lambda wrapper: Wrapper(wrapper.value)
931
 
932
- @staticmethod
933
- def compose(
934
- f: Callable[[Wrapper[b]], Wrapper[c]],
935
- g: Callable[[Wrapper[a]], Wrapper[b]],
936
- ) -> Callable[[Wrapper[a]], Wrapper[c]]:
937
- return lambda wrapper: f(g(Wrapper(wrapper.value)))
938
- ```
 
 
939
 
940
- And `Wrapper` is:
941
 
942
- ```Python
943
- @dataclass
944
- class Wrapper(Generic[a]):
945
- value: a
 
946
 
947
- def fmap(self, func: Callable[[a], b]) -> "Wrapper[b]":
948
- return Wrapper(func(self.value))
949
- ```
950
- """)
 
 
951
  return
952
 
953
 
954
  @app.cell(hide_code=True)
955
- def _(md):
956
- md("""
957
- notice that
958
-
959
- ```python
960
- fmap(f)(wrapper) = wrapper.fmap(f)
961
- ```
962
-
963
- We can get:
964
-
965
- ```python
966
- fmap(id)
967
- = lambda wrapper: wrapper.fmap(id)
968
- = lambda wrapper: Wrapper(id(wrapper.value))
969
- = lambda wrapper: Wrapper(wrapper.value)
970
- = WrapperCategory.id()
971
- ```
972
- And:
973
- ```python
974
- fmap(compose(f, g))
975
- = lambda wrapper: wrapper.fmap(compose(f, g))
976
- = lambda wrapper: Wrapper(compose(f, g)(wrapper.value))
977
- = lambda wrapper: Wrapper(f(g(wrapper.value)))
978
-
979
- WrapperCategory.compose(fmap(f), fmap(g))
980
- = lambda wrapper: fmap(f)(fmap(g)(wrapper))
981
- = lambda wrapper: fmap(f)(wrapper.fmap(g))
982
- = lambda wrapper: fmap(f)(Wrapper(g(wrapper.value)))
983
- = lambda wrapper: Wrapper(g(wrapper.value)).fmap(f)
984
- = lambda wrapper: Wrapper(f(Wrapper(g(wrapper.value)).value))
985
- = lambda wrapper: Wrapper(f(g(wrapper.value)))
986
- = fmap(compose(f, g))
987
- ```
988
-
989
- So our `Wrapper` is a valid `Functor`.
990
-
991
- > Try validating functor laws for `Wrapper` below.
992
- """)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
993
  return
994
 
995
 
@@ -1024,18 +1057,20 @@ def _(WrapperCategory, compose, fmap, id, mo, wrapper):
1024
 
1025
 
1026
  @app.cell(hide_code=True)
1027
- def _(md):
1028
- md("""
1029
- ## Length as a Functor
 
1030
 
1031
- Remember that a functor is a transformation between two categories. It is not only limited to a functor from `Py` to `func`, but also includes transformations between other mathematical structures.
1032
 
1033
- Let’s prove that **`length`** can be viewed as a functor. Specifically, we will demonstrate that `length` is a functor from the **category of list concatenation** to the **category of integer addition**.
1034
 
1035
- ### Category of List Concatenation
1036
 
1037
- First, let’s define the category of list concatenation:
1038
- """)
 
1039
  return
1040
 
1041
 
@@ -1058,21 +1093,25 @@ def _(Generic, a, dataclass):
1058
 
1059
 
1060
  @app.cell(hide_code=True)
1061
- def _(md):
1062
- md("""
1063
- - **Identity**: The identity element is an empty list (`ListConcatenation([])`).
1064
- - **Composition**: The composition of two lists is their concatenation (`this.value + other.value`).
1065
- """)
 
 
1066
  return
1067
 
1068
 
1069
  @app.cell(hide_code=True)
1070
- def _(md):
1071
- md("""
1072
- ### Category of Integer Addition
 
1073
 
1074
- Now, let's define the category of integer addition:
1075
- """)
 
1076
  return
1077
 
1078
 
@@ -1093,21 +1132,25 @@ def _(dataclass):
1093
 
1094
 
1095
  @app.cell(hide_code=True)
1096
- def _(md):
1097
- md("""
1098
- - **Identity**: The identity element is `IntAddition(0)` (the additive identity).
1099
- - **Composition**: The composition of two integers is their sum (`this.value + other.value`).
1100
- """)
 
 
1101
  return
1102
 
1103
 
1104
  @app.cell(hide_code=True)
1105
- def _(md):
1106
- md("""
1107
- ### Defining the Length Functor
 
1108
 
1109
- We now define the `length` function as a functor, mapping from the category of list concatenation to the category of integer addition:
1110
- """)
 
1111
  return
1112
 
1113
 
@@ -1118,23 +1161,23 @@ def _(IntAddition):
1118
 
1119
 
1120
  @app.cell(hide_code=True)
1121
- def _(md):
1122
- md("""
1123
- This function takes an instance of `ListConcatenation`, computes its length, and returns an `IntAddition` instance with the computed length.
1124
- """)
1125
  return
1126
 
1127
 
1128
  @app.cell(hide_code=True)
1129
- def _(md):
1130
- md("""
1131
- ### Verifying Functor Laws
 
1132
 
1133
- Now, let’s verify that `length` satisfies the two functor laws.
1134
 
1135
- #### 1. **Identity Law**:
1136
- The identity law states that applying the functor to the identity element of one category should give the identity element of the other category.
1137
- """)
 
1138
  return
1139
 
1140
 
@@ -1145,19 +1188,19 @@ def _(IntAddition, ListConcatentation, length):
1145
 
1146
 
1147
  @app.cell(hide_code=True)
1148
- def _(md):
1149
- md("""
1150
- This ensures that the length of an empty list (identity in the `ListConcatenation` category) is `0` (identity in the `IntAddition` category).
1151
- """)
1152
  return
1153
 
1154
 
1155
  @app.cell(hide_code=True)
1156
- def _(md):
1157
- md("""
1158
- #### 2. **Composition Law**:
1159
- The composition law states that the functor should preserve composition. Applying the functor to a composed element should be the same as composing the functor applied to the individual elements.
1160
- """)
 
 
1161
  return
1162
 
1163
 
@@ -1174,41 +1217,31 @@ def _(IntAddition, ListConcatentation, length):
1174
 
1175
 
1176
  @app.cell(hide_code=True)
1177
- def _(md):
1178
- md("""
1179
- This ensures that the length of the concatenation of two lists is the same as the sum of the lengths of the individual lists.
1180
- """)
1181
  return
1182
 
1183
 
1184
  @app.cell(hide_code=True)
1185
- def _(md):
1186
- md("""
1187
- # Exercises
1188
-
1189
- todo
1190
- """)
1191
- return
1192
-
1193
-
1194
- @app.cell(hide_code=True)
1195
- def _(md):
1196
- md("""
1197
- # Further reading
1198
 
1199
- - [The Trivial Monad](http://blog.sigfpe.com/2007/04/trivial-monad.html)
1200
- - [Haskellwiki. Category Theory](https://en.wikibooks.org/wiki/Haskell/Category_theory)
1201
- - [Haskellforall. The Category Design Pattern](https://www.haskellforall.com/2012/08/the-category-design-pattern.html)
1202
- - [Haskellforall. The Functor Design Pattern](https://www.haskellforall.com/2012/09/the-functor-design-pattern.html)
1203
 
1204
- /// attention | ATTENTION
1205
- The functor design pattern doesn't work at all if you aren't using categories in the first place. This is why you should structure your tools using the compositional category design pattern so that you can take advantage of functors to easily mix your tools together.
1206
- ///
1207
 
1208
- - [Haskellwiki. Functor](https://wiki.haskell.org/index.php?title=Functor)
1209
- - [Haskellwiki. Typeclassopedia#Functor](https://wiki.haskell.org/index.php?title=Typeclassopedia#Functor)
1210
- - [Haskellwiki. Typeclassopedia#Category](https://wiki.haskell.org/index.php?title=Typeclassopedia#Category)
1211
- """)
 
1212
  return
1213
 
1214
 
@@ -1227,9 +1260,14 @@ def _():
1227
 
1228
 
1229
  @app.cell(hide_code=True)
1230
- def _(TypeVar):
 
 
 
 
 
1231
  c = TypeVar("c")
1232
- return (c,)
1233
 
1234
 
1235
  if __name__ == "__main__":
 
5
 
6
 
7
  @app.cell(hide_code=True)
8
+ def _(mo):
9
+ mo.md(
10
+ """
11
+ # Category Theory and Functors
12
 
13
+ In this notebook, you will learn:
14
 
15
+ * Why `length` is a *functor* from the category of `list concatenation` to the category of `integer addition`
16
+ * How to *lift* an ordinary function into a specific *computational context*
17
+ * How to write an *adapter* between two categories
18
 
19
+ In short, a mathematical functor is a **mapping** between two categories in category theory. In practice, a functor represents a type that can be mapped over.
20
 
21
+ /// admonition | Intuitions
22
 
23
+ - A simple intuition is that a `Functor` represents a **container** of values, along with the ability to apply a function uniformly to every element in the container.
24
+ - Another intuition is that a `Functor` represents some sort of **computational context**.
25
+ - Mathematically, `Functors` generalize the idea of a container or a computational context.
26
+ ///
27
 
28
+ We will start with intuition, introduce the basics of category theory, and then examine functors from a categorical perspective.
 
 
29
 
30
+ /// details | Notebook metadata
31
+ type: info
32
 
33
+ version: 0.1.0 | last modified: 2025-03-13 | author: [métaboulie](https://github.com/metaboulie)
 
 
 
34
 
35
+ ///
36
+ """
37
+ )
38
+ return
39
 
 
40
 
41
+ @app.cell(hide_code=True)
42
+ def _(mo):
43
+ mo.md(
44
+ """
45
+ # Functor as a Computational Context
46
 
47
+ A [**Functor**](https://wiki.haskell.org/Functor) is an abstraction that represents a computational context with the ability to apply a function to every value inside it without altering the structure of the context itself. This enables transformations while preserving the shape of the data.
48
 
49
+ To understand this, let's look at a simple example.
 
 
50
 
51
+ ## [The One-Way Wrapper Design Pattern](http://blog.sigfpe.com/2007/04/trivial-monad.html)
52
 
53
+ Often, we need to wrap data in some kind of context. However, when performing operations on wrapped data, we typically have to:
54
 
55
+ 1. Unwrap the data.
56
+ 2. Modify the unwrapped data.
57
+ 3. Rewrap the modified data.
 
58
 
59
+ This process is tedious and inefficient. Instead, we want to wrap data **once** and apply functions directly to the wrapped data without unwrapping it.
60
 
61
+ /// admonition | Rules for a One-Way Wrapper
 
 
62
 
63
+ 1. We can wrap values, but we cannot unwrap them.
64
+ 2. We should still be able to apply transformations to the wrapped data.
65
+ 3. Any operation that depends on wrapped data should itself return a wrapped result.
66
+ ///
67
 
68
+ Let's define such a `Wrapper` class:
 
 
 
69
 
70
+ ```python
71
+ from dataclasses import dataclass
72
+ from typing import Callable, Generic, TypeVar
73
 
74
+ a = TypeVar("a")
75
+ b = TypeVar("b")
 
76
 
77
+ @dataclass
78
+ class Wrapper(Generic[a]):
79
+ value: a
80
+ ```
81
 
82
+ Now, we can create an instance of wrapped data:
83
 
84
+ ```python
85
+ wrapped = Wrapper(1)
86
+ ```
 
87
 
88
+ ### Mapping Functions Over Wrapped Data
 
 
89
 
90
+ To modify wrapped data while keeping it wrapped, we define an `fmap` method:
91
 
92
+ ```python
93
+ @dataclass
94
+ class Wrapper(Generic[a]):
95
+ value: a
96
 
97
+ def fmap(self, func: Callable[[a], b]) -> "Wrapper[b]":
98
+ return Wrapper(func(self.value))
99
+ ```
100
 
101
+ Now, we can apply transformations without unwrapping:
 
 
102
 
103
+ ```python
104
+ >>> wrapped.fmap(lambda x: x + 1)
105
+ Wrapper(value=2)
106
 
107
+ >>> wrapped.fmap(lambda x: [x])
108
+ Wrapper(value=[1])
109
+ ```
 
110
 
111
+ > Try using the `Wrapper` in the cell below.
112
+ """
113
+ )
114
+ return
115
 
116
 
117
  @app.cell
 
132
 
133
 
134
  @app.cell(hide_code=True)
135
+ def _(mo):
136
+ mo.md(
137
+ """
138
+ We can analyze the type signature of `fmap` for `Wrapper`:
139
 
140
+ * `self` is of type `Wrapper[a]`
141
+ * `func` is of type `Callable[[a], b]`
142
+ * The return value is of type `Wrapper[b]`
143
 
144
+ Thus, in Python's type system, we can express the type signature of `fmap` as:
145
 
146
+ ```python
147
+ def fmap(self: Wrapper[a], func: Callable[[a], b]) -> Wrapper[b]:
148
+ ```
149
 
150
+ Essentially, `fmap`:
151
 
152
+ 1. Takes a `Wrapper[a]` instance and a function `Callable[[a], b]` as input.
153
+ 2. Applies the function to the value inside the wrapper.
154
+ 3. Returns a new `Wrapper[b]` instance with the transformed value, leaving the original wrapper and its internal data unmodified.
155
 
156
+ Now, let's examine `list` as a similar kind of wrapper.
157
+ """
158
+ )
159
  return
160
 
161
 
162
  @app.cell(hide_code=True)
163
+ def _(mo):
164
+ mo.md(
165
+ """
166
+ ## The List Wrapper
167
 
168
+ We can define a `ListWrapper` class to represent a wrapped list that supports `fmap`:
169
+ """
170
+ )
171
  return
172
 
173
 
 
197
 
198
 
199
  @app.cell(hide_code=True)
200
+ def _(mo):
201
+ mo.md(
202
+ """
203
+ ### Extracting the Type of `fmap`
204
 
205
+ The type signature of `fmap` for `ListWrapper` is:
206
 
207
+ ```python
208
+ def fmap(self: ListWrapper[a], func: Callable[[a], b]) -> ListWrapper[b]
209
+ ```
210
 
211
+ Similarly, for `Wrapper`:
212
 
213
+ ```python
214
+ def fmap(self: Wrapper[a], func: Callable[[a], b]) -> Wrapper[b]
215
+ ```
216
 
217
+ Both follow the same pattern, which we can generalize as:
218
 
219
+ ```python
220
+ def fmap(self: Functor[a], func: Callable[[a], b]) -> Functor[b]
221
+ ```
222
 
223
+ where `Functor` can be `Wrapper`, `ListWrapper`, or any other wrapper type that follows the same structure.
224
 
225
+ ### Functors in Haskell (optional)
226
 
227
+ In Haskell, the type of `fmap` is:
228
 
229
+ ```haskell
230
+ fmap :: Functor f => (a -> b) -> f a -> f b
231
+ ```
232
 
233
+ or equivalently:
234
 
235
+ ```haskell
236
+ fmap :: Functor f => (a -> b) -> (f a -> f b)
237
+ ```
238
 
239
+ This means that `fmap` **lifts** an ordinary function into the **functor world**, allowing it to operate within a computational context.
240
 
241
+ Now, let's define an abstract class for `Functor`.
242
+ """
243
+ )
244
  return
245
 
246
 
247
  @app.cell(hide_code=True)
248
+ def _(mo):
249
+ mo.md(
250
+ """
251
+ ## Defining Functor
252
 
253
+ Recall that, a **Functor** is an abstraction that allows us to apply a function to values inside a computational context while preserving its structure.
254
 
255
+ To define `Functor` in Python, we use an abstract base class:
256
 
257
+ ```python
258
+ from dataclasses import dataclass
259
+ from typing import Callable, Generic, TypeVar
260
+ from abc import ABC, abstractmethod
261
 
262
+ a = TypeVar("a")
263
+ b = TypeVar("b")
264
 
265
+ @dataclass
266
+ class Functor(ABC, Generic[a]):
267
+ @abstractmethod
268
+ def fmap(self, func: Callable[[a], b]) -> "Functor[b]":
269
+ raise NotImplementedError
270
+ ```
271
 
272
+ We can now extend custom wrappers, containers, or computation contexts with this `Functor` base class, implement the `fmap` method, and apply any function.
273
 
274
+ Next, let's implement a more complex data structure: [RoseTree](https://en.wikipedia.org/wiki/Rose_tree).
275
+ """
276
+ )
277
  return
278
 
279
 
280
  @app.cell(hide_code=True)
281
+ def _(mo):
282
+ mo.md(
283
+ """
284
+ ## Case Study: RoseTree
285
 
286
+ A **RoseTree** is a tree where:
287
 
288
+ - Each node holds a **value**.
289
+ - Each node has a **list of child nodes** (which are also RoseTrees).
290
 
291
+ This structure is useful for representing hierarchical data, such as:
292
+ - Abstract Syntax Trees (ASTs)
293
+ - File system directories
294
+ - Recursive computations
295
 
296
+ We can implement `RoseTree` by extending the `Functor` class:
297
 
298
+ ```python
299
+ from dataclasses import dataclass
300
+ from typing import Callable, Generic, TypeVar
301
 
302
+ a = TypeVar("a")
303
+ b = TypeVar("b")
304
 
305
+ @dataclass
306
+ class RoseTree(Functor, Generic[a]):
307
+ value: a
308
+ children: list["RoseTree[a]"]
309
 
310
+ def fmap(self, func: Callable[[a], b]) -> "RoseTree[b]":
311
+ return RoseTree(
312
+ func(self.value), [child.fmap(func) for child in self.children]
313
+ )
314
 
315
+ def __repr__(self) -> str:
316
+ return f"RoseNode({self.value}, {self.children})"
317
+ ```
318
 
319
+ - The function is applied **recursively** to each node's value.
320
+ - The tree structure **remains unchanged**.
321
+ - Only the values inside the tree are modified.
322
 
323
+ > Try using `RoseTree` in the cell below.
324
+ """
325
+ )
326
  return
327
 
328
 
329
  @app.cell(hide_code=True)
330
+ def _(Callable, Functor, Generic, a, b, dataclass, mo):
331
  @dataclass
332
  class RoseTree(Functor, Generic[a]):
333
  """
 
369
  return f"RoseNode({self.value}, {self.children})"
370
 
371
 
372
+ mo.md(RoseTree.__doc__)
373
  return (RoseTree,)
374
 
375
 
 
385
 
386
 
387
  @app.cell(hide_code=True)
388
+ def _(mo):
389
+ mo.md(
390
+ """
391
+ ## Generic Functions that can be Used with Any Functor
392
 
393
+ One of the powerful features of functors is that we can write **generic functions** that can work with any functor.
394
 
395
+ Remember that in Haskell, the type of `fmap` can be written as:
396
 
397
+ ```haskell
398
+ fmap :: Functor f => (a -> b) -> (f a -> f b)
399
+ ```
400
 
401
+ Translating to Python, we get:
402
 
403
+ ```python
404
+ def fmap(func: Callable[[a], b]) -> Callable[[Functor[a]], Functor[b]]
405
+ ```
406
 
407
+ This means that `fmap`:
408
 
409
+ - Takes an **ordinary function** `Callable[[a], b]` as input.
410
+ - Outputs a function that:
411
+ - Takes a **functor** of type `Functor[a]` as input.
412
+ - Outputs a **functor** of type `Functor[b]`.
413
 
414
+ We can implement a similar idea in Python:
415
 
416
+ ```python
417
+ # fmap(func: Callable[[a], b]) -> Callable[[Functor[a]], Functor[b]]
418
+ fmap = lambda func: lambda f: f.fmap(lambda x: func(x))
419
 
420
+ # inc([Functor[a]) -> Functor[b]
421
+ inc = fmap(lambda x: x + 1)
422
+ ```
423
 
424
+ - **`fmap`**: Lifts an ordinary function (`lambda x: func(x)`) to the functor world, allowing the function to operate on the wrapped value inside the functor.
425
+ - **`inc`**: A specific instance of `fmap` that operates on any functor. It takes a functor, applies the function `lambda x: x + 1` to every value inside it, and returns a new functor with the updated values.
426
 
427
+ Thus, **`fmap`** transforms an ordinary function into a **function that operates on functors**, and **`inc`** is a specific case where it increments the value inside the functor.
428
 
429
+ ### Applying the `inc` Function to Various Functors
430
 
431
+ You can now apply `inc` to any functor like `Wrapper`, `ListWrapper`, or `RoseTree`:
432
 
433
+ ```python
434
+ # Applying `inc` to a Wrapper
435
+ wrapper = Wrapper(5)
436
+ inc(wrapper) # Wrapper(value=6)
437
 
438
+ # Applying `inc` to a ListWrapper
439
+ list_wrapper = ListWrapper([1, 2, 3])
440
+ inc(list_wrapper) # ListWrapper(value=[2, 3, 4])
441
 
442
+ # Applying `inc` to a RoseTree
443
+ tree = RoseTree(1, [RoseTree(2, []), RoseTree(3, [])])
444
+ inc(tree) # RoseTree(value=2, children=[RoseTree(value=3, children=[]), RoseTree(value=4, children=[])])
445
+ ```
446
 
447
+ > Try using `fmap` in the cell below.
448
+ """
449
+ )
450
  return
451
 
452
 
 
462
 
463
 
464
  @app.cell(hide_code=True)
465
+ def _(mo):
466
+ mo.md(
467
+ """
468
+ ## Functor laws
469
 
470
+ In addition to providing a function `fmap` of the specified type, functors are also required to satisfy two equational laws:
471
 
472
+ ```haskell
473
+ fmap id = id -- fmap preserves identity
474
+ fmap (g . h) = fmap g . fmap h -- fmap distributes over composition
475
+ ```
476
 
477
+ 1. `fmap` should preserve the **identity function**, in the sense that applying `fmap` to this function returns the same function as the result.
478
+ 2. `fmap` should also preserve **function composition**. Applying two composed functions `g` and `h` to a functor via `fmap` should give the same result as first applying `fmap` to `g` and then applying `fmap` to `h`.
479
 
480
+ /// admonition |
481
+ - Any `Functor` instance satisfying the first law `(fmap id = id)` will automatically satisfy the [second law](https://github.com/quchen/articles/blob/master/second_functor_law.mo) as well.
482
+ ///
483
 
484
+ ### Functor Law Verification
485
 
486
+ We can add a helper function `check_functor_law` in the `Functor` class to verify that an instance satisfies the functor laws.
487
 
488
+ ```Python
489
+ id = lambda x: x
490
 
491
+ @dataclass
492
+ class Functor(ABC, Generic[a]):
493
+ @abstractmethod
494
+ def fmap(self, func: Callable[[a], b]) -> "Functor[b]":
495
+ return NotImplementedError
496
 
497
+ def check_functor_law(self):
498
+ return repr(self.fmap(id)) == repr(self)
499
 
500
+ @abstractmethod
501
+ def __repr__(self):
502
+ return NotImplementedError
503
+ ```
504
 
505
+ We can verify the functor we've defined.
506
+ """
507
+ )
508
  return
509
 
510
 
 
525
 
526
 
527
  @app.cell(hide_code=True)
528
+ def _(mo):
529
+ mo.md("""And here is an `EvilFunctor`. We can verify it's not a valid `Functor`.""")
 
 
530
  return
531
 
532
 
 
555
 
556
 
557
  @app.cell(hide_code=True)
558
+ def _(mo):
559
+ mo.md(
560
+ """
561
+ ## Final defination of Functor
562
 
563
+ We can now draft the final defination of `Functor` with some utility functions.
564
 
565
+ ```Python
566
+ @dataclass
567
+ class Functor(ABC, Generic[a]):
568
+ @abstractmethod
569
+ def fmap(self, func: Callable[[a], b]) -> "Functor[b]":
570
+ return NotImplementedError
571
 
572
+ def check_functor_law(self) -> bool:
573
+ return repr(self.fmap(id)) == repr(self)
574
 
575
+ def const_fmap(self, b) -> "Functor[b]":
576
+ return self.fmap(lambda _: b)
577
 
578
+ def void(self) -> "Functor[None]":
579
+ return self.const_fmap(None)
580
 
581
+ @abstractmethod
582
+ def __repr__(self):
583
+ return NotImplementedError
584
+ ```
585
+ """
586
+ )
587
  return
588
 
589
 
590
  @app.cell(hide_code=True)
591
+ def _(ABC, Callable, Generic, a, abstractmethod, b, dataclass, id, mo):
592
  @dataclass
593
  class Functor(ABC, Generic[a]):
594
  """
 
639
  return NotImplementedError
640
 
641
 
642
+ mo.md(Functor.__doc__)
643
  return (Functor,)
644
 
645
 
646
  @app.cell(hide_code=True)
647
+ def _(mo):
648
+ mo.md("""> Try with utility functions in the cell below""")
 
 
649
  return
650
 
651
 
 
660
 
661
 
662
  @app.cell(hide_code=True)
663
+ def _(mo):
664
+ mo.md(
665
+ """
666
+ ## Functors for Non-Iterable Types
667
 
668
+ In the previous examples, we implemented functors for **iterables**, like `ListWrapper` and `RoseTree`, which are inherently **iterable types**. This is a natural fit for functors, as iterables can be mapped over.
669
 
670
+ However, **functors are not limited to iterables**. There are cases where we want to apply the concept of functors to types that are not inherently iterable, such as types that represent optional values, computations, or other data structures.
671
 
672
+ ### The Maybe Functor
673
 
674
+ One example is the **`Maybe`** type from Haskell, which is used to represent computations that can either result in a value (`Just a`) or no value (`Nothing`).
675
 
676
+ We can define the `Maybe` functor as below:
677
+ """
678
+ )
679
  return
680
 
681
 
 
709
 
710
 
711
  @app.cell(hide_code=True)
712
+ def _(mo):
713
+ mo.md(
714
+ """
715
+ - **`Just`** is a wrapper that holds a value. We use it to represent the presence of a value.
716
+ - **`Maybe`** is a functor that can either hold a `Just` value or be `Nothing` (equivalent to `None` in Python). The `fmap` method applies a function to the value inside the `Just` wrapper, if it exists. If the value is `None` (representing `Nothing`), `fmap` simply returns `Nothing`.
717
 
718
+ By using `Maybe` as a functor, we gain the ability to apply transformations (`fmap`) to potentially absent values, without having to explicitly handle the `None` case every time.
719
 
720
+ > Try using `Maybe` in the cell below.
721
+ """
722
+ )
723
  return
724
 
725
 
 
739
 
740
 
741
  @app.cell(hide_code=True)
742
+ def _(mo):
743
+ mo.md(
744
+ """
745
+ ## Limitations of Functor
746
 
747
+ Functors abstract the idea of mapping a function over each element of a structure. Suppose now that we wish to generalise this idea to allow functions with any number of arguments to be mapped, rather than being restricted to functions with a single argument. More precisely, suppose that we wish to define a hierarchy of `fmap` functions with the following types:
748
 
749
+ ```haskell
750
+ fmap0 :: a -> f a
751
 
752
+ fmap1 :: (a -> b) -> f a -> f b
753
 
754
+ fmap2 :: (a -> b -> c) -> f a -> f b -> f c
755
 
756
+ fmap3 :: (a -> b -> c -> d) -> f a -> f b -> f c -> f d
757
+ ```
758
 
759
+ And we have to declare a special version of the functor class for each case.
760
 
761
+ We will learn how to resolve this problem in the next notebook on `Applicatives`.
762
+ """
763
+ )
764
  return
765
 
766
 
767
  @app.cell(hide_code=True)
768
+ def _(mo):
769
+ mo.md(
770
+ """
771
+ # Introduction to Categories
772
 
773
+ A [category](https://en.wikibooks.org/wiki/Haskell/Category_theory#Introduction_to_categories) is, in essence, a simple collection. It has three components:
774
 
775
+ - A collection of **objects**.
776
+ - A collection of **morphisms**, each of which ties two objects (a _source object_ and a _target object_) together. If $f$ is a morphism with source object $C$ and target object $B$, we write $f : C → B$.
777
+ - A notion of **composition** of these morphisms. If $g : A → B$ and $f : B → C$ are two morphisms, they can be composed, resulting in a morphism $f ∘ g : A → C$.
778
 
779
+ ## Category laws
780
 
781
+ There are three laws that categories need to follow.
782
 
783
+ 1. The composition of morphisms needs to be **associative**. Symbolically, $f ∘ (g ∘ h) = (f ∘ g) ∘ h$
784
 
785
+ - Morphisms are applied right to left, so with $f ∘ g$ first $g$ is applied, then $f$.
786
 
787
+ 2. The category needs to be **closed** under the composition operation. So if $f : B → C$ and $g : A → B$, then there must be some morphism $h : A → C$ in the category such that $h = f ∘ g$.
788
 
789
+ 3. Given a category $C$ there needs to be for every object $A$ an **identity** morphism, $id_A : A → A$ that is an identity of composition with other morphisms. Put precisely, for every morphism $g : A → B$: $g ∘ id_A = id_B ∘ g = g$
790
 
791
+ /// attention | The definition of a category does not define:
792
 
793
+ - what `∘` is,
794
+ - what `id` is, or
795
+ - what `f`, `g`, and `h` might be.
796
 
797
+ Instead, category theory leaves it up to us to discover what they might be.
798
+ ///
799
+ """
800
+ )
801
  return
802
 
803
 
804
  @app.cell(hide_code=True)
805
+ def _(mo):
806
+ mo.md(
807
+ """
808
+ ## The Python category
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
809
 
810
+ The main category we'll be concerning ourselves with in this part is the Python category, or we can give it a shorter name: `Py`. `Py` treats Python types as objects and Python functions as morphisms. A function `def f(a: A) -> B` for types A and B is a morphism in Python.
811
 
812
+ Remember that we defined the `id` and `compose` function above as:
 
 
 
813
 
814
+ ```Python
815
+ def id(x: Generic[a]) -> Generic[a]:
816
+ return x
817
 
818
+ def compose(f: Callable[[b], c], g: Callable[[a], b]) -> Callable[[a], c]:
819
+ return lambda x: f(g(x))
820
+ ```
821
 
822
+ We can check second law easily.
 
 
823
 
824
+ For the first law, we have:
825
 
826
+ ```python
827
+ # compose(f, g) = lambda x: f(g(x))
828
+ f ∘ (g ∘ h)
829
+ = compose(f, compose(g, h))
830
+ = lambda x: f(compose(g, h)(x))
831
+ = lambda x: f(lambda y: g(h(y))(x))
832
+ = lambda x: f(g(h(x)))
833
 
834
+ (f g) h
835
+ = compose(compose(f, g), h)
836
+ = lambda x: compose(f, g)(h(x))
837
+ = lambda x: lambda y: f(g(y))(h(x))
838
+ = lambda x: f(g(h(x)))
839
+ ```
840
 
841
+ For the third law, we have:
842
 
843
+ ```python
844
+ g ∘ id_A
845
+ = compose(g: Callable[[a], b], id: Callable[[a], a]) -> Callable[[a], b]
846
+ = lambda x: g(id(x))
847
+ = lambda x: g(x) # id(x) = x
848
+ = g
849
+ ```
850
+ the similar proof can be applied to $id_B ∘ g =g$.
851
 
852
+ Thus `Py` is a valid category.
853
+ """
854
+ )
855
+ return
 
 
856
 
 
 
 
 
857
 
858
+ @app.cell(hide_code=True)
859
+ def _(mo):
860
+ mo.md(
861
+ """
862
+ # Functors, again
863
 
864
+ A functor is essentially a transformation between categories, so given categories $C$ and $D$, a functor $F : C D$:
865
 
866
+ - Maps any object $A$ in $C$ to $F ( A )$, in $D$.
867
+ - Maps morphisms $f : A → B$ in $C$ to $F ( f ) : F ( A ) → F ( B )$ in $D$.
868
 
869
+ > Endofunctors are functors from a category to itself.
870
+ """
871
+ )
 
 
 
 
872
  return
873
 
874
 
875
  @app.cell(hide_code=True)
876
+ def _(mo):
877
+ mo.md(
878
+ """
879
+ ## Functors on the category of Python
880
 
881
+ Remember that a functor has two parts: it maps objects in one category to objects in another and morphisms in the first category to morphisms in the second.
882
 
883
+ Functors in Python are from `Py` to `func`, where `func` is the subcategory of `Py` defined on just that functor's types. E.g. the RoseTree functor goes from `Py` to `RoseTree`, where `RoseTree` is the category containing only RoseTree types, that is, `RoseTree[T]` for any type `T`. The morphisms in `RoseTree` are functions defined on RoseTree types, that is, functions `RoseTree[T] -> RoseTree[U]` for types `T`, `U`.
 
 
 
884
 
885
+ Recall the definition of `Functor`:
886
 
887
+ ```Python
888
+ @dataclass
889
+ class Functor(ABC, Generic[a])
890
+ ```
 
 
 
 
 
 
891
 
892
+ And RoseTree:
893
 
894
+ ```Python
895
+ @dataclass
896
+ class RoseTree(Functor, Generic[a])
897
+ ```
898
 
899
+ **Here's the key part:** the _type constructor_ `RoseTree` takes any type `T` to a new type, `RoseTree[T]`. Also, `fmap` restricted to `RoseTree` types takes a function `a -> b` to a function `RoseTree[a] -> RoseTree[b]`.
 
 
 
 
900
 
901
+ But that's it. We've defined two parts, something that takes objects in `Py` to objects in another category (that of `RoseTree` types and functions defined on `RoseTree` types), and something that takes morphisms in `Py` to morphisms in this category. So `RoseTree` is a functor.
902
 
903
+ To sum up:
 
 
 
 
 
904
 
905
+ - We work in the category **Py** and its subcategories.
906
+ - **Objects** are types (e.g., `int`, `str`, `list`).
907
+ - **Morphisms** are functions (`Callable[[A], B]`).
908
+ - **Things that take a type and return another type** are type constructors (`RoseTree[T]`).
909
+ - **Things that take a function and return another function** are higher-order functions (`Callable[[Callable[[A], B]], Callable[[C], D]]`).
910
+ - **Abstract base classes (ABC)** and duck typing provide a way to express polymorphism, capturing the idea that in category theory, structures are often defined over multiple objects at once.
911
+ """
912
+ )
913
+ return
914
 
 
915
 
916
+ @app.cell(hide_code=True)
917
+ def _(mo):
918
+ mo.md(
919
+ """
920
+ ## Functor laws, again
921
 
922
+ Once again there are a few axioms that functors have to obey.
923
+
924
+ 1. Given an identity morphism $id_A$ on an object $A$, $F ( id_A )$ must be the identity morphism on $F ( A )$, i.e.: ${\displaystyle F(\operatorname {id} _{A})=\operatorname {id} _{F(A)}}$
925
+ 2. Functors must distribute over morphism composition, i.e. ${\displaystyle F(f\circ g)=F(f)\circ F(g)}$
926
+ """
927
+ )
928
  return
929
 
930
 
931
  @app.cell(hide_code=True)
932
+ def _(mo):
933
+ mo.md(
934
+ """
935
+ Remember that we defined the `fmap` (not the `fmap` in `Functor` class) and `id` as
936
+ ```python
937
+ # fmap :: Callable[[a], b] -> Callable[[Functor[a]], Functor[b]]
938
+ fmap = lambda func: lambda f: f.fmap(func)
939
+ id = lambda x: x
940
+ compose = lambda f, g: lambda x: f(g(x))
941
+ ```
942
+
943
+ Let's prove that `fmap` is a functor.
944
+
945
+ First, let's define a `Category` for a specific `Functor`. We choose to define the `Category` for the `Wrapper` as `WrapperCategory` here for simplicity, but remember that `Wrapper` can be any `Functor`(i.e. `ListWrapper`, `RoseTree`, `Maybe` and more):
946
+
947
+ **Notice that** in this case, we can actually view `fmap` as:
948
+ ```python
949
+ # fmap :: Callable[[a], b] -> Callable[[Wrapper[a]], Wrapper[b]]
950
+ fmap = lambda func: lambda wrapper: wrapper.fmap(func)
951
+ ```
952
+
953
+ We define `WrapperCategory` as:
954
+
955
+ ```python
956
+ @dataclass
957
+ class WrapperCategory():
958
+ @staticmethod
959
+ def id() -> Callable[[Wrapper[a]], Wrapper[a]]:
960
+ return lambda wrapper: Wrapper(wrapper.value)
961
+
962
+ @staticmethod
963
+ def compose(
964
+ f: Callable[[Wrapper[b]], Wrapper[c]],
965
+ g: Callable[[Wrapper[a]], Wrapper[b]],
966
+ ) -> Callable[[Wrapper[a]], Wrapper[c]]:
967
+ return lambda wrapper: f(g(Wrapper(wrapper.value)))
968
+ ```
969
+
970
+ And `Wrapper` is:
971
+
972
+ ```Python
973
+ @dataclass
974
+ class Wrapper(Generic[a]):
975
+ value: a
976
+
977
+ def fmap(self, func: Callable[[a], b]) -> "Wrapper[b]":
978
+ return Wrapper(func(self.value))
979
+ ```
980
+ """
981
+ )
982
+ return
983
+
984
+
985
+ @app.cell(hide_code=True)
986
+ def _(mo):
987
+ mo.md(
988
+ """
989
+ notice that
990
+
991
+ ```python
992
+ fmap(f)(wrapper) = wrapper.fmap(f)
993
+ ```
994
+
995
+ We can get:
996
+
997
+ ```python
998
+ fmap(id)
999
+ = lambda wrapper: wrapper.fmap(id)
1000
+ = lambda wrapper: Wrapper(id(wrapper.value))
1001
+ = lambda wrapper: Wrapper(wrapper.value)
1002
+ = WrapperCategory.id()
1003
+ ```
1004
+ And:
1005
+ ```python
1006
+ fmap(compose(f, g))
1007
+ = lambda wrapper: wrapper.fmap(compose(f, g))
1008
+ = lambda wrapper: Wrapper(compose(f, g)(wrapper.value))
1009
+ = lambda wrapper: Wrapper(f(g(wrapper.value)))
1010
+
1011
+ WrapperCategory.compose(fmap(f), fmap(g))
1012
+ = lambda wrapper: fmap(f)(fmap(g)(wrapper))
1013
+ = lambda wrapper: fmap(f)(wrapper.fmap(g))
1014
+ = lambda wrapper: fmap(f)(Wrapper(g(wrapper.value)))
1015
+ = lambda wrapper: Wrapper(g(wrapper.value)).fmap(f)
1016
+ = lambda wrapper: Wrapper(f(Wrapper(g(wrapper.value)).value))
1017
+ = lambda wrapper: Wrapper(f(g(wrapper.value)))
1018
+ = fmap(compose(f, g))
1019
+ ```
1020
+
1021
+ So our `Wrapper` is a valid `Functor`.
1022
+
1023
+ > Try validating functor laws for `Wrapper` below.
1024
+ """
1025
+ )
1026
  return
1027
 
1028
 
 
1057
 
1058
 
1059
  @app.cell(hide_code=True)
1060
+ def _(mo):
1061
+ mo.md(
1062
+ """
1063
+ ## Length as a Functor
1064
 
1065
+ Remember that a functor is a transformation between two categories. It is not only limited to a functor from `Py` to `func`, but also includes transformations between other mathematical structures.
1066
 
1067
+ Let’s prove that **`length`** can be viewed as a functor. Specifically, we will demonstrate that `length` is a functor from the **category of list concatenation** to the **category of integer addition**.
1068
 
1069
+ ### Category of List Concatenation
1070
 
1071
+ First, let’s define the category of list concatenation:
1072
+ """
1073
+ )
1074
  return
1075
 
1076
 
 
1093
 
1094
 
1095
  @app.cell(hide_code=True)
1096
+ def _(mo):
1097
+ mo.md(
1098
+ """
1099
+ - **Identity**: The identity element is an empty list (`ListConcatenation([])`).
1100
+ - **Composition**: The composition of two lists is their concatenation (`this.value + other.value`).
1101
+ """
1102
+ )
1103
  return
1104
 
1105
 
1106
  @app.cell(hide_code=True)
1107
+ def _(mo):
1108
+ mo.md(
1109
+ """
1110
+ ### Category of Integer Addition
1111
 
1112
+ Now, let's define the category of integer addition:
1113
+ """
1114
+ )
1115
  return
1116
 
1117
 
 
1132
 
1133
 
1134
  @app.cell(hide_code=True)
1135
+ def _(mo):
1136
+ mo.md(
1137
+ """
1138
+ - **Identity**: The identity element is `IntAddition(0)` (the additive identity).
1139
+ - **Composition**: The composition of two integers is their sum (`this.value + other.value`).
1140
+ """
1141
+ )
1142
  return
1143
 
1144
 
1145
  @app.cell(hide_code=True)
1146
+ def _(mo):
1147
+ mo.md(
1148
+ """
1149
+ ### Defining the Length Functor
1150
 
1151
+ We now define the `length` function as a functor, mapping from the category of list concatenation to the category of integer addition:
1152
+ """
1153
+ )
1154
  return
1155
 
1156
 
 
1161
 
1162
 
1163
  @app.cell(hide_code=True)
1164
+ def _(mo):
1165
+ mo.md("""This function takes an instance of `ListConcatenation`, computes its length, and returns an `IntAddition` instance with the computed length.""")
 
 
1166
  return
1167
 
1168
 
1169
  @app.cell(hide_code=True)
1170
+ def _(mo):
1171
+ mo.md(
1172
+ """
1173
+ ### Verifying Functor Laws
1174
 
1175
+ Now, let’s verify that `length` satisfies the two functor laws.
1176
 
1177
+ #### 1. **Identity Law**:
1178
+ The identity law states that applying the functor to the identity element of one category should give the identity element of the other category.
1179
+ """
1180
+ )
1181
  return
1182
 
1183
 
 
1188
 
1189
 
1190
  @app.cell(hide_code=True)
1191
+ def _(mo):
1192
+ mo.md("""This ensures that the length of an empty list (identity in the `ListConcatenation` category) is `0` (identity in the `IntAddition` category).""")
 
 
1193
  return
1194
 
1195
 
1196
  @app.cell(hide_code=True)
1197
+ def _(mo):
1198
+ mo.md(
1199
+ """
1200
+ #### 2. **Composition Law**:
1201
+ The composition law states that the functor should preserve composition. Applying the functor to a composed element should be the same as composing the functor applied to the individual elements.
1202
+ """
1203
+ )
1204
  return
1205
 
1206
 
 
1217
 
1218
 
1219
  @app.cell(hide_code=True)
1220
+ def _(mo):
1221
+ mo.md("""This ensures that the length of the concatenation of two lists is the same as the sum of the lengths of the individual lists.""")
 
 
1222
  return
1223
 
1224
 
1225
  @app.cell(hide_code=True)
1226
+ def _(mo):
1227
+ mo.md(
1228
+ """
1229
+ # Further reading
 
 
 
 
 
 
 
 
 
1230
 
1231
+ - [The Trivial Monad](http://blog.sigfpe.com/2007/04/trivial-monad.html)
1232
+ - [Haskellwiki. Category Theory](https://en.wikibooks.org/wiki/Haskell/Category_theory)
1233
+ - [Haskellforall. The Category Design Pattern](https://www.haskellforall.com/2012/08/the-category-design-pattern.html)
1234
+ - [Haskellforall. The Functor Design Pattern](https://www.haskellforall.com/2012/09/the-functor-design-pattern.html)
1235
 
1236
+ /// attention | ATTENTION
1237
+ The functor design pattern doesn't work at all if you aren't using categories in the first place. This is why you should structure your tools using the compositional category design pattern so that you can take advantage of functors to easily mix your tools together.
1238
+ ///
1239
 
1240
+ - [Haskellwiki. Functor](https://wiki.haskell.org/index.php?title=Functor)
1241
+ - [Haskellwiki. Typeclassopedia#Functor](https://wiki.haskell.org/index.php?title=Typeclassopedia#Functor)
1242
+ - [Haskellwiki. Typeclassopedia#Category](https://wiki.haskell.org/index.php?title=Typeclassopedia#Category)
1243
+ """
1244
+ )
1245
  return
1246
 
1247
 
 
1260
 
1261
 
1262
  @app.cell(hide_code=True)
1263
+ def _():
1264
+ from dataclasses import dataclass
1265
+ from typing import Callable, Generic, TypeVar
1266
+
1267
+ a = TypeVar("a")
1268
+ b = TypeVar("b")
1269
  c = TypeVar("c")
1270
+ return Callable, Generic, TypeVar, a, b, c, dataclass
1271
 
1272
 
1273
  if __name__ == "__main__":
functional_programming/CHANGELOG.md CHANGED
@@ -3,3 +3,7 @@
3
  ## 2025-03-11
4
 
5
  * Demo version of notebook `05_functors.py`
 
 
 
 
 
3
  ## 2025-03-11
4
 
5
  * Demo version of notebook `05_functors.py`
6
+
7
+ ## 2025-03-13
8
+
9
+ * `0.1.0` version of notebook `05_functors`