Haleshot commited on
Commit
751d19f
·
unverified ·
1 Parent(s): 7dbab16

Add `law of total probability` notebook

Browse files
probability/07_law_of_total_probability.py ADDED
@@ -0,0 +1,421 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # /// script
2
+ # requires-python = ">=3.10"
3
+ # dependencies = [
4
+ # "marimo",
5
+ # "matplotlib",
6
+ # "matplotlib-venn"
7
+ # ]
8
+ # ///
9
+
10
+ import marimo
11
+
12
+ __generated_with = "0.11.7"
13
+ app = marimo.App(width="medium")
14
+
15
+
16
+ @app.cell
17
+ def _():
18
+ import marimo as mo
19
+ return (mo,)
20
+
21
+
22
+ @app.cell
23
+ def _():
24
+ import matplotlib.pyplot as plt
25
+ from matplotlib_venn import venn2
26
+ import numpy as np
27
+ return np, plt, venn2
28
+
29
+
30
+ @app.cell(hide_code=True)
31
+ def _(mo):
32
+ mo.md(
33
+ r"""
34
+ # Law of Total Probability
35
+
36
+ _This notebook is a computational companion to the book ["Probability for Computer Scientists"](https://chrispiech.github.io/probabilityForComputerScientists/en/part1/law_total/), by Stanford professor Chris Piech._
37
+
38
+ The Law of Total Probability is a fundamental rule that helps us calculate probabilities by breaking down complex events into simpler parts. It's particularly useful when we want to compute the probability of an event that can occur through multiple distinct scenarios.
39
+ """
40
+ )
41
+ return
42
+
43
+
44
+ @app.cell(hide_code=True)
45
+ def _(mo):
46
+ mo.md(
47
+ r"""
48
+ ## The Core Concept
49
+
50
+ The Law of Total Probability emerged from a simple but powerful observation: any event E can be broken down into parts based on another event F and its complement Fᶜ.
51
+
52
+ ### From Simple Observation to Powerful Law
53
+
54
+ Consider an event E that can occur in two ways:
55
+
56
+ 1. When F occurs (E ∩ F)
57
+ 2. When F doesn't occur (E ∩ Fᶜ)
58
+
59
+ This leads to our first insight:
60
+
61
+ $P(E) = P(E \cap F) + P(E \cap F^c)$
62
+
63
+ Applying the chain rule to each term:
64
+
65
+ \begin{align}
66
+ P(E) &= P(E \cap F) + P(E \cap F^c) \\
67
+ &= P(E|F)P(F) + P(E|F^c)P(F^c)
68
+ \end{align}
69
+
70
+ This two-part version generalizes to any number of [mutually exclusive](https://github.com/marimo-team/learn/blob/main/probability/03_probability_of_or.py) events that cover the sample space:
71
+
72
+ $P(A) = \sum_{i=1}^n P(A|B_i)P(B_i)$
73
+
74
+ where {B₁, B₂, ..., Bₙ} forms a partition of the sample space.
75
+ """
76
+ )
77
+ return
78
+
79
+
80
+ @app.cell
81
+ def _():
82
+ def is_valid_partition(events, sample_space):
83
+ """Check if events form a valid partition of the sample space"""
84
+ # Check if events are mutually exclusive
85
+ for i, event1 in enumerate(events):
86
+ for j, event2 in enumerate(events[i+1:], i+1):
87
+ if event1.intersection(event2):
88
+ return False
89
+
90
+ # Check if events cover sample space
91
+ union = set().union(*events)
92
+ return union == sample_space
93
+
94
+ # Example with dice
95
+ sample_space = {1, 2, 3, 4, 5, 6}
96
+ partition1 = [{1, 3, 5}, {2, 4, 6}] # odd vs even
97
+ partition2 = [{1, 2}, {3, 4}, {5, 6}] # pairs
98
+
99
+ print("Odd/Even partition:", is_valid_partition(partition1, sample_space))
100
+ print("Number pairs partition:", is_valid_partition(partition2, sample_space))
101
+ return is_valid_partition, partition1, partition2, sample_space
102
+
103
+
104
+ @app.cell
105
+ def _(is_valid_partition):
106
+ # Example: Student Grades
107
+ grade_space = {'A', 'B', 'C', 'D', 'F'}
108
+ passing_partition = [{'A', 'B', 'C'}, {'D', 'F'}] # Pass/Fail
109
+ letter_groups = [{'A'}, {'B'}, {'C'}, {'D'}, {'F'}] # Individual grades
110
+
111
+ print("Student Grades Examples:")
112
+ print("Pass/Fail partition:", is_valid_partition(passing_partition, grade_space))
113
+ print("Individual grades partition:", is_valid_partition(letter_groups, grade_space))
114
+ return grade_space, letter_groups, passing_partition
115
+
116
+
117
+ @app.cell
118
+ def _(is_valid_partition):
119
+ # Example: Card Suits
120
+ card_space = {'♠', '♣', '♥', '♦'}
121
+ color_partition = [{'♠', '♣'}, {'♥', '♦'}] # Black/Red
122
+ invalid_partition = [{'♠', '♥'}, {'♣'}] # Invalid: Doesn't cover full space
123
+
124
+ print("\nPlaying Cards Examples:")
125
+ print("Color-based partition:", is_valid_partition(color_partition, card_space)) # True
126
+ print("Invalid partition:", is_valid_partition(invalid_partition, card_space)) # False
127
+ return card_space, color_partition, invalid_partition
128
+
129
+
130
+ @app.cell(hide_code=True)
131
+ def _(mo, plt, venn2):
132
+ # Create Venn diagram for E and F
133
+ plt.figure(figsize=(10, 5))
134
+ v = venn2(subsets=(0.3, 0.4, 0.2),
135
+ set_labels=('F', 'E'))
136
+ plt.title("Decomposing Event E using F")
137
+
138
+ viz_explanation = mo.md(r"""
139
+ ### Visual Intuition
140
+
141
+ In this diagram:
142
+
143
+ - The red region (E) is split into two parts:
144
+ 1. Part inside F (E ∩ F)
145
+ 2. Part outside F (E ∩ Fᶜ)
146
+
147
+ This visualization shows why:
148
+ $P(E) = P(E|F)P(F) + P(E|F^c)P(F^c)$
149
+
150
+ The same principle extends to any number of mutually exclusive parts!
151
+ """)
152
+
153
+ mo.hstack([plt.gca(), viz_explanation])
154
+ return v, viz_explanation
155
+
156
+
157
+ @app.cell(hide_code=True)
158
+ def _(mo):
159
+ mo.md(
160
+ r"""
161
+ ## Computing Total Probability
162
+
163
+ To use the Law of Total Probability:
164
+
165
+ 1. Identify a partition of the sample space
166
+ 2. Calculate $P(B_i)$ for each part
167
+ 3. Calculate $P(A|B_i)$ for each part
168
+ 4. Sum the products $P(A|B_i)P(B_i)$
169
+ """
170
+ )
171
+ return
172
+
173
+
174
+ @app.cell(hide_code=True)
175
+ def _(mo):
176
+ mo.md(r"""Let's implement this calculation:""")
177
+ return
178
+
179
+
180
+ @app.cell
181
+ def _():
182
+ def total_probability(conditional_probs, partition_probs):
183
+ """Calculate total probability using Law of Total Probability
184
+ conditional_probs: List of P(A|Bi)
185
+ partition_probs: List of P(Bi)
186
+ """
187
+ if len(conditional_probs) != len(partition_probs):
188
+ raise ValueError("Must have same number of conditional and partition probabilities")
189
+
190
+ if abs(sum(partition_probs) - 1) > 1e-10:
191
+ raise ValueError("Partition probabilities must sum to 1")
192
+
193
+ return sum(c * p for c, p in zip(conditional_probs, partition_probs))
194
+ return (total_probability,)
195
+
196
+
197
+ @app.cell(hide_code=True)
198
+ def _(mo):
199
+ mo.md(
200
+ r"""
201
+ ## Example: System Reliability
202
+
203
+ Consider a computer system that can be in three states:
204
+
205
+ - Normal (70% of time)
206
+ - Degraded (20% of time)
207
+ - Critical (10% of time)
208
+
209
+ The probability of errors in each state:
210
+
211
+ - P(Error | Normal) = 0.01 (1%)
212
+ - P(Error | Degraded) = 0.15 (15%)
213
+ - P(Error | Critical) = 0.45 (45%)
214
+
215
+ Let's calculate the overall probability of encountering an error:
216
+ """
217
+ )
218
+ return
219
+
220
+
221
+ @app.cell
222
+ def _(mo, total_probability):
223
+ # System states and probabilities
224
+ states = ["Normal", "Degraded", "Critical"]
225
+ state_probs = [0.7, 0.2, 0.1] # System spends 70%, 20%, 10% of time in each state
226
+ error_probs = [0.01, 0.15, 0.45] # Error rates increase with system degradation
227
+
228
+ # Calculate total probability
229
+ total_error = total_probability(error_probs, state_probs)
230
+
231
+ explanation = mo.md(f"""
232
+ ### System Error Analysis
233
+
234
+ Given:
235
+
236
+ - Normal State (70% of time):
237
+ - Only 1% chance of errors
238
+ - Degraded State (20% of time):
239
+ - Higher 15% chance of errors
240
+ - Critical State (10% of time):
241
+ - Highest 45% chance of errors
242
+
243
+ Using Law of Total Probability:
244
+ $P(\text{{Error}}) = \sum_{{i=1}}^3 P(\text{{Error}}|B_i)P(B_i)$
245
+
246
+ Step by step:
247
+
248
+ 1. Normal: 0.01 × 0.7 = 0.007 (0.7%)
249
+ 2. Degraded: 0.15 × 0.2 = 0.030 (3.0%)
250
+ 3. Critical: 0.45 × 0.1 = 0.045 (4.5%)
251
+
252
+ Total: {total_error:.3f} or {total_error:.1%} chance of error
253
+ """)
254
+ explanation
255
+ return error_probs, explanation, state_probs, states, total_error
256
+
257
+
258
+ @app.cell(hide_code=True)
259
+ def _(mo):
260
+ mo.md(r"""## Interactive Example:""")
261
+ return
262
+
263
+
264
+ @app.cell
265
+ def _(late_given_dry, late_given_rain, mo, weather_prob):
266
+ mo.hstack([weather_prob, late_given_rain, late_given_dry])
267
+ return
268
+
269
+
270
+ @app.cell(hide_code=True)
271
+ def _(mo):
272
+ # Create sliders for interactive example
273
+ weather_prob = mo.ui.slider(0, 1, value=0.3, label="P(Rain)")
274
+ late_given_rain = mo.ui.slider(0, 1, value=0.6, label="P(Late|Rain)")
275
+ late_given_dry = mo.ui.slider(0, 1, value=0.2, label="P(Late|No Rain)")
276
+ return late_given_dry, late_given_rain, weather_prob
277
+
278
+
279
+ @app.cell
280
+ def _(late_given_dry, late_given_rain, mo, plt, venn2, weather_prob):
281
+ # Calculate probabilities
282
+ p_rain = weather_prob.value
283
+ p_dry = 1 - p_rain
284
+ p_late = late_given_rain.value * p_rain + late_given_dry.value * p_dry
285
+
286
+ # Create explanation
287
+ explanation_example = mo.md(f"""
288
+ ### Weather and Traffic Analysis
289
+
290
+ Given:
291
+
292
+ - P(Rain) = {p_rain:.2f}
293
+ - P(No Rain) = {p_dry:.2f}
294
+ - P(Late|Rain) = {late_given_rain.value:.2f}
295
+ - P(Late|No Rain) = {late_given_dry.value:.2f}
296
+
297
+ Using Law of Total Probability:
298
+
299
+ $P(\text{{Late}}) = P(\text{{Late}}|\text{{Rain}})P(\text{{Rain}}) + P(\text{{Late}}|\text{{No Rain}})P(\text{{No Rain}})$
300
+
301
+ $P(\text{{Late}}) = ({late_given_rain.value:.2f} \ times {p_rain:.2f}) + ({late_given_dry.value:.2f} \ times {p_dry:.2f}) = {p_late:.2f}$
302
+ """)
303
+
304
+ # Visualize with Venn diagram
305
+ plt.figure(figsize=(10, 5))
306
+ _v = venn2(subsets=(
307
+ round(p_rain * (1 - late_given_rain.value), 2), # Rain only
308
+ round(p_dry * (1 - late_given_dry.value), 2), # No Rain only
309
+ round(p_rain * late_given_rain.value, 2) # Intersection
310
+ ), set_labels=('Rain', 'Late'))
311
+ plt.title("Weather and Traffic Probability")
312
+
313
+ mo.hstack([plt.gca(), explanation_example])
314
+ return explanation_example, p_dry, p_late, p_rain
315
+
316
+
317
+ @app.cell(hide_code=True)
318
+ def _(mo):
319
+ mo.md(
320
+ r"""
321
+ ## Visual Intuition
322
+
323
+ The Law of Total Probability works because:
324
+
325
+ 1. The partition divides the sample space into non-overlapping regions
326
+ 2. Every outcome belongs to exactly one region
327
+ 3. We account for all possible ways an event can occur
328
+
329
+ Let's visualize this with a tree diagram:
330
+ """
331
+ )
332
+ return
333
+
334
+
335
+ @app.cell(hide_code=True)
336
+ def _(plt):
337
+ # Create tree diagram with better spacing
338
+ plt.figure(figsize=(12, 8))
339
+
340
+ # First level - partition probabilities sum to 1
341
+ plt.plot([0, 2], [6, 9], 'k-', linewidth=2) # B₁ branch
342
+ plt.plot([0, 2], [6, 6], 'k-', linewidth=2) # B₂ branch
343
+ plt.plot([0, 2], [6, 3], 'k-', linewidth=2) # B₃ branch
344
+
345
+ # Second level - conditional probabilities sum to 1 for each branch
346
+ plt.plot([2, 4], [9, 10], 'b-', linewidth=2) # A|B₁
347
+ plt.plot([2, 4], [9, 8], 'r-', linewidth=2) # Aᶜ|B₁
348
+ plt.plot([2, 4], [6, 7], 'b-', linewidth=2) # A|B₂
349
+ plt.plot([2, 4], [6, 5], 'r-', linewidth=2) # Aᶜ|B₂
350
+ plt.plot([2, 4], [3, 4], 'b-', linewidth=2) # A|B₃
351
+ plt.plot([2, 4], [3, 2], 'r-', linewidth=2) # Aᶜ|B₃
352
+
353
+ # Add labels with actual probabilities
354
+ plt.text(0, 6.2, 'S (1.0)', fontsize=12)
355
+ plt.text(2, 9.2, 'B₁ (1/3)', fontsize=12)
356
+ plt.text(2, 6.2, 'B₂ (1/3)', fontsize=12)
357
+ plt.text(2, 3.2, 'B₃ (1/3)', fontsize=12)
358
+
359
+ # Add conditional probability labels
360
+ plt.text(4, 10.2, 'A (P(A|B₁))', fontsize=10, color='blue')
361
+ plt.text(4, 7.8, 'Aᶜ (1-P(A|B₁))', fontsize=10, color='red')
362
+ plt.text(4, 7.2, 'A (P(A|B₂))', fontsize=10, color='blue')
363
+ plt.text(4, 4.8, 'Aᶜ (1-P(A|B₂))', fontsize=10, color='red')
364
+ plt.text(4, 4.2, 'A (P(A|B₃))', fontsize=10, color='blue')
365
+ plt.text(4, 1.8, 'Aᶜ (1-P(A|B₃))', fontsize=10, color='red')
366
+
367
+ plt.axis('off')
368
+ plt.gca()
369
+ return
370
+
371
+
372
+ @app.cell(hide_code=True)
373
+ def _(mo):
374
+ mo.md(
375
+ r"""
376
+ ## 🤔 Test Your Understanding
377
+
378
+ For a fair six-sided die with partitions:
379
+ - B₁: Numbers less than 3 {1,2}
380
+ - B₂: Numbers from 3 to 4 {3,4}
381
+ - B₃: Numbers greater than 4 {5,6}
382
+
383
+ **Question 1**: Which of these statements correctly describes the partition?
384
+ <details>
385
+ <summary>The sets overlap at number 3</summary>
386
+ ❌ Incorrect! The sets are clearly separated with no overlapping numbers.
387
+ </details>
388
+ <details>
389
+ <summary>Some numbers are missing from the partition</summary>
390
+ ❌ Incorrect! All numbers from 1 to 6 are included exactly once.
391
+ </details>
392
+ <details>
393
+ <summary>The sets form a valid partition of {1,2,3,4,5,6}</summary>
394
+ ✅ Correct! The sets are mutually exclusive and their union covers all outcomes.
395
+ </details>
396
+ """
397
+ )
398
+ return
399
+
400
+
401
+ @app.cell(hide_code=True)
402
+ def _(mo):
403
+ mo.md(
404
+ """
405
+ ## Summary
406
+
407
+ You've learned:
408
+
409
+ - How to identify valid partitions of a sample space
410
+ - The Law of Total Probability formula and its components
411
+ - How to break down complex probability calculations
412
+ - Applications to real-world scenarios
413
+
414
+ In the next lesson, we'll explore **Bayes' Theorem**, which builds on these concepts to solve even more sophisticated probability problems.
415
+ """
416
+ )
417
+ return
418
+
419
+
420
+ if __name__ == "__main__":
421
+ app.run()