Haleshot commited on
Commit
7ad7196
·
unverified ·
1 Parent(s): 5890b75

Add notebook `Bernoulli distribution`

Browse files

notebook that explores the Bernoulli distribution, including its properties, relevant visualization.

probability/13_bernoulli_distribution.py ADDED
@@ -0,0 +1,427 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # /// script
2
+ # requires-python = ">=3.10"
3
+ # dependencies = [
4
+ # "marimo",
5
+ # "matplotlib==3.10.0",
6
+ # "numpy==2.2.3",
7
+ # "scipy==1.15.2",
8
+ # ]
9
+ # ///
10
+
11
+ import marimo
12
+
13
+ __generated_with = "0.11.22"
14
+ app = marimo.App(width="medium", app_title="Bernoulli Distribution")
15
+
16
+
17
+ @app.cell(hide_code=True)
18
+ def _(mo):
19
+ mo.md(
20
+ r"""
21
+ # Bernoulli Distribution
22
+
23
+ _This notebook is a computational companion to ["Probability for Computer Scientists"](https://chrispiech.github.io/probabilityForComputerScientists/en/part2/bernoulli/), by Stanford professor Chris Piech._
24
+
25
+ ## Parametric Random Variables
26
+
27
+ There are many classic and commonly-seen random variable abstractions that show up in the world of probability. At this point, we'll learn about several of the most significant parametric discrete distributions.
28
+
29
+ When solving problems, if you can recognize that a random variable fits one of these formats, then you can use its pre-derived Probability Mass Function (PMF), expectation, variance, and other properties. Random variables of this sort are called **parametric random variables**. If you can argue that a random variable falls under one of the studied parametric types, you simply need to provide parameters.
30
+
31
+ > A good analogy is a `class` in programming. Creating a parametric random variable is very similar to calling a constructor with input parameters.
32
+ """
33
+ )
34
+ return
35
+
36
+
37
+ @app.cell(hide_code=True)
38
+ def _(mo):
39
+ mo.md(
40
+ r"""
41
+ ## Bernoulli Random Variables
42
+
43
+ A **Bernoulli random variable** (also called a boolean or indicator random variable) is the simplest kind of parametric random variable. It can take on two values: 1 and 0.
44
+
45
+ It takes on a 1 if an experiment with probability $p$ resulted in success and a 0 otherwise.
46
+
47
+ Some example uses include:
48
+
49
+ - A coin flip (heads = 1, tails = 0)
50
+ - A random binary digit
51
+ - Whether a disk drive crashed
52
+ - Whether someone likes a Netflix movie
53
+
54
+ Here $p$ is the parameter, but different instances of Bernoulli random variables might have different values of $p$.
55
+ """
56
+ )
57
+ return
58
+
59
+
60
+ @app.cell(hide_code=True)
61
+ def _(mo):
62
+ mo.md(
63
+ r"""
64
+ ## Key Properties of a Bernoulli Random Variable
65
+
66
+ If $X$ is declared to be a Bernoulli random variable with parameter $p$, denoted $X \sim \text{Bern}(p)$, it has the following properties:
67
+ """
68
+ )
69
+ return
70
+
71
+
72
+ @app.cell
73
+ def _(stats):
74
+ # Define the Bernoulli distribution function
75
+ def Bern(p):
76
+ return stats.bernoulli(p)
77
+ return (Bern,)
78
+
79
+
80
+ @app.cell(hide_code=True)
81
+ def _(mo):
82
+ mo.md(
83
+ r"""
84
+ ## Bernoulli Distribution Properties
85
+
86
+ $\begin{array}{lll}
87
+ \text{Notation:} & X \sim \text{Bern}(p) \\
88
+ \text{Description:} & \text{A boolean variable that is 1 with probability } p \\
89
+ \text{Parameters:} & p, \text{ the probability that } X = 1 \\
90
+ \text{Support:} & x \text{ is either 0 or 1} \\
91
+ \text{PMF equation:} & P(X = x) =
92
+ \begin{cases}
93
+ p & \text{if }x = 1\\
94
+ 1-p & \text{if }x = 0
95
+ \end{cases} \\
96
+ \text{PMF (smooth):} & P(X = x) = p^x(1-p)^{1-x} \\
97
+ \text{Expectation:} & E[X] = p \\
98
+ \text{Variance:} & \text{Var}(X) = p(1-p) \\
99
+ \end{array}$
100
+ """
101
+ )
102
+ return
103
+
104
+
105
+ @app.cell(hide_code=True)
106
+ def _(mo, p_slider):
107
+ # Visualization of the Bernoulli PMF
108
+ _p = p_slider.value
109
+
110
+ # Values for PMF
111
+ values = [0, 1]
112
+ probabilities = [1 - _p, _p]
113
+
114
+ # Relevant statistics
115
+ expected_value = _p
116
+ variance = _p * (1 - _p)
117
+
118
+ mo.md(f"""
119
+ ## PMF Graph for Bernoulli($p={_p:.2f}$)
120
+
121
+ Parameter $p$: {p_slider}
122
+
123
+ Expected value: $E[X] = {expected_value:.2f}$
124
+
125
+ Variance: $\\text{{Var}}(X) = {variance:.2f}$
126
+ """)
127
+ return expected_value, probabilities, values, variance
128
+
129
+
130
+ @app.cell(hide_code=True)
131
+ def _(expected_value, p_slider, plt, probabilities, values, variance):
132
+ # PMF
133
+ _p = p_slider.value
134
+ fig, ax = plt.subplots(figsize=(10, 6))
135
+
136
+ # Bar plot for PMF
137
+ ax.bar(values, probabilities, width=0.4, color='blue', alpha=0.7)
138
+
139
+ ax.set_xlabel('Values that X can take on')
140
+ ax.set_ylabel('Probability')
141
+ ax.set_title(f'PMF of Bernoulli Distribution with p = {_p:.2f}')
142
+
143
+ # x-axis limit
144
+ ax.set_xticks([0, 1])
145
+ ax.set_xlim(-0.5, 1.5)
146
+
147
+ # y-axis w/ some padding
148
+ ax.set_ylim(0, max(probabilities) * 1.1)
149
+
150
+ # Add expectation as vertical line
151
+ ax.axvline(x=expected_value, color='red', linestyle='--',
152
+ label=f'E[X] = {expected_value:.2f}')
153
+
154
+ # Add variance annotation
155
+ ax.text(0.5, max(probabilities) * 0.8,
156
+ f'Var(X) = {variance:.3f}',
157
+ horizontalalignment='center',
158
+ bbox=dict(facecolor='white', alpha=0.7))
159
+
160
+ ax.legend()
161
+ plt.tight_layout()
162
+ plt.gca()
163
+ return ax, fig
164
+
165
+
166
+ @app.cell(hide_code=True)
167
+ def _(mo):
168
+ mo.md(
169
+ r"""
170
+ ## Proof: Expectation of a Bernoulli
171
+
172
+ If $X$ is a Bernoulli with parameter $p$, $X \sim \text{Bern}(p)$:
173
+
174
+ \begin{align}
175
+ E[X] &= \sum_x x \cdot (X=x) && \text{Definition of expectation} \\
176
+ &= 1 \cdot p + 0 \cdot (1-p) &&
177
+ X \text{ can take on values 0 and 1} \\
178
+ &= p && \text{Remove the 0 term}
179
+ \end{align}
180
+
181
+ ## Proof: Variance of a Bernoulli
182
+
183
+ If $X$ is a Bernoulli with parameter $p$, $X \sim \text{Bern}(p)$:
184
+
185
+ To compute variance, first compute $E[X^2]$:
186
+
187
+ \begin{align}
188
+ E[X^2]
189
+ &= \sum_x x^2 \cdot (X=x) &&\text{LOTUS}\\
190
+ &= 0^2 \cdot (1-p) + 1^2 \cdot p\\
191
+ &= p
192
+ \end{align}
193
+
194
+ \begin{align}
195
+ (X)
196
+ &= E[X^2] - E[X]^2&& \text{Def of variance} \\
197
+ &= p - p^2 && \text{Substitute }E[X^2]=p, E[X] = p \\
198
+ &= p (1-p) && \text{Factor out }p
199
+ \end{align}
200
+ """
201
+ )
202
+ return
203
+
204
+
205
+ @app.cell(hide_code=True)
206
+ def _(mo):
207
+ mo.md(
208
+ r"""
209
+ ## Indicator Random Variable
210
+
211
+ > **Definition**: An indicator variable is a Bernoulli random variable which takes on the value 1 if an **underlying event occurs**, and 0 _otherwise_.
212
+
213
+ Indicator random variables are a convenient way to convert the "true/false" outcome of an event into a number. That number may be easier to incorporate into an equation.
214
+
215
+ A random variable $I$ is an indicator variable for an event $A$ if $I = 1$ when $A$ occurs and $I = 0$ if $A$ does not occur. Indicator random variables are Bernoulli random variables, with $p = P(A)$. $I_A$ is a common choice of name for an indicator random variable.
216
+
217
+ Here are some properties of indicator random variables:
218
+
219
+ - $P(I=1)=P(A)$
220
+ - $E[I]=P(A)$
221
+ """
222
+ )
223
+ return
224
+
225
+
226
+ @app.cell(hide_code=True)
227
+ def _(mo):
228
+ # Simulation of Bernoulli trials
229
+ mo.md(r"""
230
+ ## Simulation of Bernoulli Trials
231
+
232
+ Let's simulate Bernoulli trials to see the law of large numbers in action. We'll flip a biased coin repeatedly and observe how the proportion of successes approaches the true probability $p$.
233
+ """)
234
+
235
+ # UI element for simulation parameters
236
+ num_trials_slider = mo.ui.slider(10, 10000, value=1000, step=10, label="Number of trials")
237
+ p_sim_slider = mo.ui.slider(0.01, 0.99, value=0.65, step=0.01, label="Success probability (p)")
238
+ return num_trials_slider, p_sim_slider
239
+
240
+
241
+ @app.cell(hide_code=True)
242
+ def _(mo):
243
+ mo.md(r"""## Simulation""")
244
+ return
245
+
246
+
247
+ @app.cell(hide_code=True)
248
+ def _(mo, num_trials_slider, p_sim_slider):
249
+ mo.hstack([num_trials_slider, p_sim_slider], justify='space-around')
250
+ return
251
+
252
+
253
+ @app.cell(hide_code=True)
254
+ def _(np, num_trials_slider, p_sim_slider, plt):
255
+ # Bernoulli trials
256
+ _num_trials = num_trials_slider.value
257
+ p = p_sim_slider.value
258
+
259
+ # Random Bernoulli trials
260
+ trials = np.random.binomial(1, p, size=_num_trials)
261
+
262
+ # Cumulative proportion of successes
263
+ cumulative_mean = np.cumsum(trials) / np.arange(1, _num_trials + 1)
264
+
265
+ # Results
266
+ plt.figure(figsize=(10, 6))
267
+ plt.plot(range(1, _num_trials + 1), cumulative_mean, label='Proportion of successes')
268
+ plt.axhline(y=p, color='r', linestyle='--', label=f'True probability (p={p})')
269
+
270
+ plt.xscale('log') # Use log scale for better visualization
271
+ plt.xlabel('Number of trials')
272
+ plt.ylabel('Proportion of successes')
273
+ plt.title('Convergence of Sample Proportion to True Probability')
274
+ plt.legend()
275
+ plt.grid(True, alpha=0.3)
276
+
277
+ # Add annotation
278
+ plt.annotate('As the number of trials increases,\nthe proportion approaches p',
279
+ xy=(_num_trials, cumulative_mean[-1]),
280
+ xytext=(_num_trials/5, p + 0.1),
281
+ arrowprops=dict(facecolor='black', shrink=0.05, width=1))
282
+
283
+ plt.tight_layout()
284
+ plt.gca()
285
+ return cumulative_mean, p, trials
286
+
287
+
288
+ @app.cell(hide_code=True)
289
+ def _(mo, np, trials):
290
+ # Calculate statistics from the simulation
291
+ num_successes = np.sum(trials)
292
+ num_trials = len(trials)
293
+ proportion = num_successes / num_trials
294
+
295
+ # Display the results
296
+ mo.md(f"""
297
+ ### Simulation Results
298
+
299
+ - Number of trials: {num_trials}
300
+ - Number of successes: {num_successes}
301
+ - Proportion of successes: {proportion:.4f}
302
+
303
+ This demonstrates how the sample proportion approaches the true probability $p$ as the number of trials increases.
304
+ """)
305
+ return num_successes, num_trials, proportion
306
+
307
+
308
+ @app.cell(hide_code=True)
309
+ def _(mo):
310
+ mo.md(
311
+ r"""
312
+ ## 🤔 Test Your Understanding
313
+
314
+ Pick which of these statements about Bernoulli random variables you think are correct:
315
+
316
+ /// details | The variance of a Bernoulli random variable is always less than or equal to 0.25
317
+ ✅ Correct! The variance $p(1-p)$ reaches its maximum value of 0.25 when $p = 0.5$.
318
+ ///
319
+
320
+ /// details | The expected value of a Bernoulli random variable must be either 0 or 1
321
+ ❌ Incorrect! The expected value is $p$, which can be any value between 0 and 1.
322
+ ///
323
+
324
+ /// details | If $X \sim \text{Bern}(0.3)$ and $Y \sim \text{Bern}(0.7)$, then $X$ and $Y$ have the same variance
325
+ ✅ Correct! $\text{Var}(X) = 0.3 \times 0.7 = 0.21$ and $\text{Var}(Y) = 0.7 \times 0.3 = 0.21$.
326
+ ///
327
+
328
+ /// details | Two independent coin flips can be modeled as the sum of two Bernoulli random variables
329
+ ✅ Correct! The sum would follow a Binomial distribution with $n=2$.
330
+ ///
331
+ """
332
+ )
333
+ return
334
+
335
+
336
+ @app.cell(hide_code=True)
337
+ def _(mo):
338
+ mo.md(
339
+ r"""
340
+ ## Applications of Bernoulli Random Variables
341
+
342
+ Bernoulli random variables are used in many real-world scenarios:
343
+
344
+ 1. **Quality Control**: Testing if a manufactured item is defective (1) or not (0)
345
+
346
+ 2. **A/B Testing**: Determining if a user clicks (1) or doesn't click (0) on a website button
347
+
348
+ 3. **Medical Testing**: Checking if a patient tests positive (1) or negative (0) for a disease
349
+
350
+ 4. **Election Modeling**: Modeling if a particular voter votes for candidate A (1) or not (0)
351
+
352
+ 5. **Financial Markets**: Modeling if a stock price goes up (1) or down (0) in a simplified model
353
+
354
+ Because Bernoulli random variables are parametric, as soon as you declare a random variable to be of type Bernoulli, you automatically know all of its pre-derived properties!
355
+ """
356
+ )
357
+ return
358
+
359
+
360
+ @app.cell(hide_code=True)
361
+ def _(mo):
362
+ mo.md(
363
+ r"""
364
+ ## Summary
365
+
366
+ And that's a wrap on Bernoulli distributions! We've learnt the simplest of all probability distributions — the one that only has two possible outcomes. Flip a coin, check if an email is spam, see if your blind date shows up — these are all Bernoulli trials with success probability $p$.
367
+
368
+ The beauty of Bernoulli is in its simplicity: just set $p$ (the probability of success) and you're good to go! The PMF gives us $P(X=1) = p$ and $P(X=0) = 1-p$, while expectation is simply $p$ and variance is $p(1-p)$. Oh, and when you're tracking whether specific events happen or not? That's an indicator random variable — just another Bernoulli in disguise!
369
+
370
+ Two key things to remember:
371
+
372
+ /// note
373
+ 💡 **Maximum Variance**: A Bernoulli's variance $p(1-p)$ reaches its maximum at $p=0.5$, making a fair coin the most "unpredictable" Bernoulli random variable.
374
+
375
+ 💡 **Instant Properties**: When you identify a random variable as Bernoulli, you instantly know all its properties—expectation, variance, PMF—without additional calculations.
376
+ ///
377
+
378
+ Next up: Binomial distribution—where we'll see what happens when we let Bernoulli trials have a party and add themselves together!
379
+ """
380
+ )
381
+ return
382
+
383
+
384
+ @app.cell(hide_code=True)
385
+ def _(mo):
386
+ mo.md(r"""#### Appendix (containing helper code for the notebook)""")
387
+ return
388
+
389
+
390
+ @app.cell
391
+ def _():
392
+ import marimo as mo
393
+ return (mo,)
394
+
395
+
396
+ @app.cell(hide_code=True)
397
+ def _():
398
+ from marimo import Html
399
+ return (Html,)
400
+
401
+
402
+ @app.cell(hide_code=True)
403
+ def _():
404
+ import numpy as np
405
+ import matplotlib.pyplot as plt
406
+ from scipy import stats
407
+ import math
408
+
409
+ # Set style for consistent visualizations
410
+ plt.style.use('seaborn-v0_8-whitegrid')
411
+ plt.rcParams['figure.figsize'] = [10, 6]
412
+ plt.rcParams['font.size'] = 12
413
+
414
+ # Set random seed for reproducibility
415
+ np.random.seed(42)
416
+ return math, np, plt, stats
417
+
418
+
419
+ @app.cell(hide_code=True)
420
+ def _(mo):
421
+ # Create a UI element for the parameter p
422
+ p_slider = mo.ui.slider(0.01, 0.99, value=0.65, step=0.01, label="Parameter p")
423
+ return (p_slider,)
424
+
425
+
426
+ if __name__ == "__main__":
427
+ app.run()