Spaces:
Running
Running
Add notebook `Bernoulli distribution`
Browse filesnotebook that explores the Bernoulli distribution, including its properties, relevant visualization.
probability/13_bernoulli_distribution.py
ADDED
@@ -0,0 +1,427 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# /// script
|
2 |
+
# requires-python = ">=3.10"
|
3 |
+
# dependencies = [
|
4 |
+
# "marimo",
|
5 |
+
# "matplotlib==3.10.0",
|
6 |
+
# "numpy==2.2.3",
|
7 |
+
# "scipy==1.15.2",
|
8 |
+
# ]
|
9 |
+
# ///
|
10 |
+
|
11 |
+
import marimo
|
12 |
+
|
13 |
+
__generated_with = "0.11.22"
|
14 |
+
app = marimo.App(width="medium", app_title="Bernoulli Distribution")
|
15 |
+
|
16 |
+
|
17 |
+
@app.cell(hide_code=True)
|
18 |
+
def _(mo):
|
19 |
+
mo.md(
|
20 |
+
r"""
|
21 |
+
# Bernoulli Distribution
|
22 |
+
|
23 |
+
_This notebook is a computational companion to ["Probability for Computer Scientists"](https://chrispiech.github.io/probabilityForComputerScientists/en/part2/bernoulli/), by Stanford professor Chris Piech._
|
24 |
+
|
25 |
+
## Parametric Random Variables
|
26 |
+
|
27 |
+
There are many classic and commonly-seen random variable abstractions that show up in the world of probability. At this point, we'll learn about several of the most significant parametric discrete distributions.
|
28 |
+
|
29 |
+
When solving problems, if you can recognize that a random variable fits one of these formats, then you can use its pre-derived Probability Mass Function (PMF), expectation, variance, and other properties. Random variables of this sort are called **parametric random variables**. If you can argue that a random variable falls under one of the studied parametric types, you simply need to provide parameters.
|
30 |
+
|
31 |
+
> A good analogy is a `class` in programming. Creating a parametric random variable is very similar to calling a constructor with input parameters.
|
32 |
+
"""
|
33 |
+
)
|
34 |
+
return
|
35 |
+
|
36 |
+
|
37 |
+
@app.cell(hide_code=True)
|
38 |
+
def _(mo):
|
39 |
+
mo.md(
|
40 |
+
r"""
|
41 |
+
## Bernoulli Random Variables
|
42 |
+
|
43 |
+
A **Bernoulli random variable** (also called a boolean or indicator random variable) is the simplest kind of parametric random variable. It can take on two values: 1 and 0.
|
44 |
+
|
45 |
+
It takes on a 1 if an experiment with probability $p$ resulted in success and a 0 otherwise.
|
46 |
+
|
47 |
+
Some example uses include:
|
48 |
+
|
49 |
+
- A coin flip (heads = 1, tails = 0)
|
50 |
+
- A random binary digit
|
51 |
+
- Whether a disk drive crashed
|
52 |
+
- Whether someone likes a Netflix movie
|
53 |
+
|
54 |
+
Here $p$ is the parameter, but different instances of Bernoulli random variables might have different values of $p$.
|
55 |
+
"""
|
56 |
+
)
|
57 |
+
return
|
58 |
+
|
59 |
+
|
60 |
+
@app.cell(hide_code=True)
|
61 |
+
def _(mo):
|
62 |
+
mo.md(
|
63 |
+
r"""
|
64 |
+
## Key Properties of a Bernoulli Random Variable
|
65 |
+
|
66 |
+
If $X$ is declared to be a Bernoulli random variable with parameter $p$, denoted $X \sim \text{Bern}(p)$, it has the following properties:
|
67 |
+
"""
|
68 |
+
)
|
69 |
+
return
|
70 |
+
|
71 |
+
|
72 |
+
@app.cell
|
73 |
+
def _(stats):
|
74 |
+
# Define the Bernoulli distribution function
|
75 |
+
def Bern(p):
|
76 |
+
return stats.bernoulli(p)
|
77 |
+
return (Bern,)
|
78 |
+
|
79 |
+
|
80 |
+
@app.cell(hide_code=True)
|
81 |
+
def _(mo):
|
82 |
+
mo.md(
|
83 |
+
r"""
|
84 |
+
## Bernoulli Distribution Properties
|
85 |
+
|
86 |
+
$\begin{array}{lll}
|
87 |
+
\text{Notation:} & X \sim \text{Bern}(p) \\
|
88 |
+
\text{Description:} & \text{A boolean variable that is 1 with probability } p \\
|
89 |
+
\text{Parameters:} & p, \text{ the probability that } X = 1 \\
|
90 |
+
\text{Support:} & x \text{ is either 0 or 1} \\
|
91 |
+
\text{PMF equation:} & P(X = x) =
|
92 |
+
\begin{cases}
|
93 |
+
p & \text{if }x = 1\\
|
94 |
+
1-p & \text{if }x = 0
|
95 |
+
\end{cases} \\
|
96 |
+
\text{PMF (smooth):} & P(X = x) = p^x(1-p)^{1-x} \\
|
97 |
+
\text{Expectation:} & E[X] = p \\
|
98 |
+
\text{Variance:} & \text{Var}(X) = p(1-p) \\
|
99 |
+
\end{array}$
|
100 |
+
"""
|
101 |
+
)
|
102 |
+
return
|
103 |
+
|
104 |
+
|
105 |
+
@app.cell(hide_code=True)
|
106 |
+
def _(mo, p_slider):
|
107 |
+
# Visualization of the Bernoulli PMF
|
108 |
+
_p = p_slider.value
|
109 |
+
|
110 |
+
# Values for PMF
|
111 |
+
values = [0, 1]
|
112 |
+
probabilities = [1 - _p, _p]
|
113 |
+
|
114 |
+
# Relevant statistics
|
115 |
+
expected_value = _p
|
116 |
+
variance = _p * (1 - _p)
|
117 |
+
|
118 |
+
mo.md(f"""
|
119 |
+
## PMF Graph for Bernoulli($p={_p:.2f}$)
|
120 |
+
|
121 |
+
Parameter $p$: {p_slider}
|
122 |
+
|
123 |
+
Expected value: $E[X] = {expected_value:.2f}$
|
124 |
+
|
125 |
+
Variance: $\\text{{Var}}(X) = {variance:.2f}$
|
126 |
+
""")
|
127 |
+
return expected_value, probabilities, values, variance
|
128 |
+
|
129 |
+
|
130 |
+
@app.cell(hide_code=True)
|
131 |
+
def _(expected_value, p_slider, plt, probabilities, values, variance):
|
132 |
+
# PMF
|
133 |
+
_p = p_slider.value
|
134 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
135 |
+
|
136 |
+
# Bar plot for PMF
|
137 |
+
ax.bar(values, probabilities, width=0.4, color='blue', alpha=0.7)
|
138 |
+
|
139 |
+
ax.set_xlabel('Values that X can take on')
|
140 |
+
ax.set_ylabel('Probability')
|
141 |
+
ax.set_title(f'PMF of Bernoulli Distribution with p = {_p:.2f}')
|
142 |
+
|
143 |
+
# x-axis limit
|
144 |
+
ax.set_xticks([0, 1])
|
145 |
+
ax.set_xlim(-0.5, 1.5)
|
146 |
+
|
147 |
+
# y-axis w/ some padding
|
148 |
+
ax.set_ylim(0, max(probabilities) * 1.1)
|
149 |
+
|
150 |
+
# Add expectation as vertical line
|
151 |
+
ax.axvline(x=expected_value, color='red', linestyle='--',
|
152 |
+
label=f'E[X] = {expected_value:.2f}')
|
153 |
+
|
154 |
+
# Add variance annotation
|
155 |
+
ax.text(0.5, max(probabilities) * 0.8,
|
156 |
+
f'Var(X) = {variance:.3f}',
|
157 |
+
horizontalalignment='center',
|
158 |
+
bbox=dict(facecolor='white', alpha=0.7))
|
159 |
+
|
160 |
+
ax.legend()
|
161 |
+
plt.tight_layout()
|
162 |
+
plt.gca()
|
163 |
+
return ax, fig
|
164 |
+
|
165 |
+
|
166 |
+
@app.cell(hide_code=True)
|
167 |
+
def _(mo):
|
168 |
+
mo.md(
|
169 |
+
r"""
|
170 |
+
## Proof: Expectation of a Bernoulli
|
171 |
+
|
172 |
+
If $X$ is a Bernoulli with parameter $p$, $X \sim \text{Bern}(p)$:
|
173 |
+
|
174 |
+
\begin{align}
|
175 |
+
E[X] &= \sum_x x \cdot (X=x) && \text{Definition of expectation} \\
|
176 |
+
&= 1 \cdot p + 0 \cdot (1-p) &&
|
177 |
+
X \text{ can take on values 0 and 1} \\
|
178 |
+
&= p && \text{Remove the 0 term}
|
179 |
+
\end{align}
|
180 |
+
|
181 |
+
## Proof: Variance of a Bernoulli
|
182 |
+
|
183 |
+
If $X$ is a Bernoulli with parameter $p$, $X \sim \text{Bern}(p)$:
|
184 |
+
|
185 |
+
To compute variance, first compute $E[X^2]$:
|
186 |
+
|
187 |
+
\begin{align}
|
188 |
+
E[X^2]
|
189 |
+
&= \sum_x x^2 \cdot (X=x) &&\text{LOTUS}\\
|
190 |
+
&= 0^2 \cdot (1-p) + 1^2 \cdot p\\
|
191 |
+
&= p
|
192 |
+
\end{align}
|
193 |
+
|
194 |
+
\begin{align}
|
195 |
+
(X)
|
196 |
+
&= E[X^2] - E[X]^2&& \text{Def of variance} \\
|
197 |
+
&= p - p^2 && \text{Substitute }E[X^2]=p, E[X] = p \\
|
198 |
+
&= p (1-p) && \text{Factor out }p
|
199 |
+
\end{align}
|
200 |
+
"""
|
201 |
+
)
|
202 |
+
return
|
203 |
+
|
204 |
+
|
205 |
+
@app.cell(hide_code=True)
|
206 |
+
def _(mo):
|
207 |
+
mo.md(
|
208 |
+
r"""
|
209 |
+
## Indicator Random Variable
|
210 |
+
|
211 |
+
> **Definition**: An indicator variable is a Bernoulli random variable which takes on the value 1 if an **underlying event occurs**, and 0 _otherwise_.
|
212 |
+
|
213 |
+
Indicator random variables are a convenient way to convert the "true/false" outcome of an event into a number. That number may be easier to incorporate into an equation.
|
214 |
+
|
215 |
+
A random variable $I$ is an indicator variable for an event $A$ if $I = 1$ when $A$ occurs and $I = 0$ if $A$ does not occur. Indicator random variables are Bernoulli random variables, with $p = P(A)$. $I_A$ is a common choice of name for an indicator random variable.
|
216 |
+
|
217 |
+
Here are some properties of indicator random variables:
|
218 |
+
|
219 |
+
- $P(I=1)=P(A)$
|
220 |
+
- $E[I]=P(A)$
|
221 |
+
"""
|
222 |
+
)
|
223 |
+
return
|
224 |
+
|
225 |
+
|
226 |
+
@app.cell(hide_code=True)
|
227 |
+
def _(mo):
|
228 |
+
# Simulation of Bernoulli trials
|
229 |
+
mo.md(r"""
|
230 |
+
## Simulation of Bernoulli Trials
|
231 |
+
|
232 |
+
Let's simulate Bernoulli trials to see the law of large numbers in action. We'll flip a biased coin repeatedly and observe how the proportion of successes approaches the true probability $p$.
|
233 |
+
""")
|
234 |
+
|
235 |
+
# UI element for simulation parameters
|
236 |
+
num_trials_slider = mo.ui.slider(10, 10000, value=1000, step=10, label="Number of trials")
|
237 |
+
p_sim_slider = mo.ui.slider(0.01, 0.99, value=0.65, step=0.01, label="Success probability (p)")
|
238 |
+
return num_trials_slider, p_sim_slider
|
239 |
+
|
240 |
+
|
241 |
+
@app.cell(hide_code=True)
|
242 |
+
def _(mo):
|
243 |
+
mo.md(r"""## Simulation""")
|
244 |
+
return
|
245 |
+
|
246 |
+
|
247 |
+
@app.cell(hide_code=True)
|
248 |
+
def _(mo, num_trials_slider, p_sim_slider):
|
249 |
+
mo.hstack([num_trials_slider, p_sim_slider], justify='space-around')
|
250 |
+
return
|
251 |
+
|
252 |
+
|
253 |
+
@app.cell(hide_code=True)
|
254 |
+
def _(np, num_trials_slider, p_sim_slider, plt):
|
255 |
+
# Bernoulli trials
|
256 |
+
_num_trials = num_trials_slider.value
|
257 |
+
p = p_sim_slider.value
|
258 |
+
|
259 |
+
# Random Bernoulli trials
|
260 |
+
trials = np.random.binomial(1, p, size=_num_trials)
|
261 |
+
|
262 |
+
# Cumulative proportion of successes
|
263 |
+
cumulative_mean = np.cumsum(trials) / np.arange(1, _num_trials + 1)
|
264 |
+
|
265 |
+
# Results
|
266 |
+
plt.figure(figsize=(10, 6))
|
267 |
+
plt.plot(range(1, _num_trials + 1), cumulative_mean, label='Proportion of successes')
|
268 |
+
plt.axhline(y=p, color='r', linestyle='--', label=f'True probability (p={p})')
|
269 |
+
|
270 |
+
plt.xscale('log') # Use log scale for better visualization
|
271 |
+
plt.xlabel('Number of trials')
|
272 |
+
plt.ylabel('Proportion of successes')
|
273 |
+
plt.title('Convergence of Sample Proportion to True Probability')
|
274 |
+
plt.legend()
|
275 |
+
plt.grid(True, alpha=0.3)
|
276 |
+
|
277 |
+
# Add annotation
|
278 |
+
plt.annotate('As the number of trials increases,\nthe proportion approaches p',
|
279 |
+
xy=(_num_trials, cumulative_mean[-1]),
|
280 |
+
xytext=(_num_trials/5, p + 0.1),
|
281 |
+
arrowprops=dict(facecolor='black', shrink=0.05, width=1))
|
282 |
+
|
283 |
+
plt.tight_layout()
|
284 |
+
plt.gca()
|
285 |
+
return cumulative_mean, p, trials
|
286 |
+
|
287 |
+
|
288 |
+
@app.cell(hide_code=True)
|
289 |
+
def _(mo, np, trials):
|
290 |
+
# Calculate statistics from the simulation
|
291 |
+
num_successes = np.sum(trials)
|
292 |
+
num_trials = len(trials)
|
293 |
+
proportion = num_successes / num_trials
|
294 |
+
|
295 |
+
# Display the results
|
296 |
+
mo.md(f"""
|
297 |
+
### Simulation Results
|
298 |
+
|
299 |
+
- Number of trials: {num_trials}
|
300 |
+
- Number of successes: {num_successes}
|
301 |
+
- Proportion of successes: {proportion:.4f}
|
302 |
+
|
303 |
+
This demonstrates how the sample proportion approaches the true probability $p$ as the number of trials increases.
|
304 |
+
""")
|
305 |
+
return num_successes, num_trials, proportion
|
306 |
+
|
307 |
+
|
308 |
+
@app.cell(hide_code=True)
|
309 |
+
def _(mo):
|
310 |
+
mo.md(
|
311 |
+
r"""
|
312 |
+
## 🤔 Test Your Understanding
|
313 |
+
|
314 |
+
Pick which of these statements about Bernoulli random variables you think are correct:
|
315 |
+
|
316 |
+
/// details | The variance of a Bernoulli random variable is always less than or equal to 0.25
|
317 |
+
✅ Correct! The variance $p(1-p)$ reaches its maximum value of 0.25 when $p = 0.5$.
|
318 |
+
///
|
319 |
+
|
320 |
+
/// details | The expected value of a Bernoulli random variable must be either 0 or 1
|
321 |
+
❌ Incorrect! The expected value is $p$, which can be any value between 0 and 1.
|
322 |
+
///
|
323 |
+
|
324 |
+
/// details | If $X \sim \text{Bern}(0.3)$ and $Y \sim \text{Bern}(0.7)$, then $X$ and $Y$ have the same variance
|
325 |
+
✅ Correct! $\text{Var}(X) = 0.3 \times 0.7 = 0.21$ and $\text{Var}(Y) = 0.7 \times 0.3 = 0.21$.
|
326 |
+
///
|
327 |
+
|
328 |
+
/// details | Two independent coin flips can be modeled as the sum of two Bernoulli random variables
|
329 |
+
✅ Correct! The sum would follow a Binomial distribution with $n=2$.
|
330 |
+
///
|
331 |
+
"""
|
332 |
+
)
|
333 |
+
return
|
334 |
+
|
335 |
+
|
336 |
+
@app.cell(hide_code=True)
|
337 |
+
def _(mo):
|
338 |
+
mo.md(
|
339 |
+
r"""
|
340 |
+
## Applications of Bernoulli Random Variables
|
341 |
+
|
342 |
+
Bernoulli random variables are used in many real-world scenarios:
|
343 |
+
|
344 |
+
1. **Quality Control**: Testing if a manufactured item is defective (1) or not (0)
|
345 |
+
|
346 |
+
2. **A/B Testing**: Determining if a user clicks (1) or doesn't click (0) on a website button
|
347 |
+
|
348 |
+
3. **Medical Testing**: Checking if a patient tests positive (1) or negative (0) for a disease
|
349 |
+
|
350 |
+
4. **Election Modeling**: Modeling if a particular voter votes for candidate A (1) or not (0)
|
351 |
+
|
352 |
+
5. **Financial Markets**: Modeling if a stock price goes up (1) or down (0) in a simplified model
|
353 |
+
|
354 |
+
Because Bernoulli random variables are parametric, as soon as you declare a random variable to be of type Bernoulli, you automatically know all of its pre-derived properties!
|
355 |
+
"""
|
356 |
+
)
|
357 |
+
return
|
358 |
+
|
359 |
+
|
360 |
+
@app.cell(hide_code=True)
|
361 |
+
def _(mo):
|
362 |
+
mo.md(
|
363 |
+
r"""
|
364 |
+
## Summary
|
365 |
+
|
366 |
+
And that's a wrap on Bernoulli distributions! We've learnt the simplest of all probability distributions — the one that only has two possible outcomes. Flip a coin, check if an email is spam, see if your blind date shows up — these are all Bernoulli trials with success probability $p$.
|
367 |
+
|
368 |
+
The beauty of Bernoulli is in its simplicity: just set $p$ (the probability of success) and you're good to go! The PMF gives us $P(X=1) = p$ and $P(X=0) = 1-p$, while expectation is simply $p$ and variance is $p(1-p)$. Oh, and when you're tracking whether specific events happen or not? That's an indicator random variable — just another Bernoulli in disguise!
|
369 |
+
|
370 |
+
Two key things to remember:
|
371 |
+
|
372 |
+
/// note
|
373 |
+
💡 **Maximum Variance**: A Bernoulli's variance $p(1-p)$ reaches its maximum at $p=0.5$, making a fair coin the most "unpredictable" Bernoulli random variable.
|
374 |
+
|
375 |
+
💡 **Instant Properties**: When you identify a random variable as Bernoulli, you instantly know all its properties—expectation, variance, PMF—without additional calculations.
|
376 |
+
///
|
377 |
+
|
378 |
+
Next up: Binomial distribution—where we'll see what happens when we let Bernoulli trials have a party and add themselves together!
|
379 |
+
"""
|
380 |
+
)
|
381 |
+
return
|
382 |
+
|
383 |
+
|
384 |
+
@app.cell(hide_code=True)
|
385 |
+
def _(mo):
|
386 |
+
mo.md(r"""#### Appendix (containing helper code for the notebook)""")
|
387 |
+
return
|
388 |
+
|
389 |
+
|
390 |
+
@app.cell
|
391 |
+
def _():
|
392 |
+
import marimo as mo
|
393 |
+
return (mo,)
|
394 |
+
|
395 |
+
|
396 |
+
@app.cell(hide_code=True)
|
397 |
+
def _():
|
398 |
+
from marimo import Html
|
399 |
+
return (Html,)
|
400 |
+
|
401 |
+
|
402 |
+
@app.cell(hide_code=True)
|
403 |
+
def _():
|
404 |
+
import numpy as np
|
405 |
+
import matplotlib.pyplot as plt
|
406 |
+
from scipy import stats
|
407 |
+
import math
|
408 |
+
|
409 |
+
# Set style for consistent visualizations
|
410 |
+
plt.style.use('seaborn-v0_8-whitegrid')
|
411 |
+
plt.rcParams['figure.figsize'] = [10, 6]
|
412 |
+
plt.rcParams['font.size'] = 12
|
413 |
+
|
414 |
+
# Set random seed for reproducibility
|
415 |
+
np.random.seed(42)
|
416 |
+
return math, np, plt, stats
|
417 |
+
|
418 |
+
|
419 |
+
@app.cell(hide_code=True)
|
420 |
+
def _(mo):
|
421 |
+
# Create a UI element for the parameter p
|
422 |
+
p_slider = mo.ui.slider(0.01, 0.99, value=0.65, step=0.01, label="Parameter p")
|
423 |
+
return (p_slider,)
|
424 |
+
|
425 |
+
|
426 |
+
if __name__ == "__main__":
|
427 |
+
app.run()
|