akshayka commited on
Commit
87c93b4
·
1 Parent(s): 13db4ac

small edits

Browse files
Files changed (1) hide show
  1. probability/09_random_variables.py +63 -63
probability/09_random_variables.py CHANGED
@@ -10,7 +10,7 @@
10
 
11
  import marimo
12
 
13
- __generated_with = "0.11.9"
14
  app = marimo.App(width="medium", app_title="Random Variables")
15
 
16
 
@@ -72,7 +72,7 @@ def _(mo):
72
  r"""
73
  ## Properties of Random Variables
74
 
75
- Each random variable has several key properties that help us understand and work with it:
76
 
77
  | Property | Description | Example |
78
  |----------|-------------|---------|
@@ -81,7 +81,7 @@ def _(mo):
81
  | Support/Range | Possible values | $\{0,1,2,...,n\}$ for binomial |
82
  | Distribution | PMF or PDF | $p_X(x)$ or $f_X(x)$ |
83
  | Expectation | Weighted average | $E[X]$ |
84
- | Variance | Measure of spread | $Var(X)$ |
85
  | Standard Deviation | Square root of variance | $\sigma_X$ |
86
  | Mode | Most likely value | argmax$_x$ $p_X(x)$ |
87
 
@@ -121,14 +121,14 @@ def _(mo):
121
  def _(np, plt):
122
  def die_pmf(x):
123
  if x in [1, 2, 3, 4, 5, 6]:
124
- return 1/6
125
  return 0
126
 
127
  # Plot the PMF
128
  _x = np.arange(1, 7)
129
  probabilities = [die_pmf(i) for i in _x]
130
 
131
- plt.figure(figsize=(8, 4))
132
  plt.bar(_x, probabilities)
133
  plt.title("PMF of Rolling a Fair Die")
134
  plt.xlabel("Outcome")
@@ -166,7 +166,7 @@ def _(np, plt, stats):
166
  _pdf = stats.norm.pdf(_x, loc=0, scale=1)
167
 
168
  plt.figure(figsize=(8, 4))
169
- plt.plot(_x, _pdf, 'b-', label='PDF')
170
  plt.fill_between(_x, _pdf, where=(_x >= -1) & (_x <= 1), alpha=0.3)
171
  plt.title("Standard Normal Distribution")
172
  plt.xlabel("x")
@@ -214,7 +214,7 @@ def _(np):
214
 
215
  @app.cell
216
  def _(E_X):
217
- print(E_X)
218
  return
219
 
220
 
@@ -224,17 +224,17 @@ def _(mo):
224
  r"""
225
  ## Variance
226
 
227
- The variance $Var(X)$ measures the spread of a random variable around its mean:
228
 
229
- $Var(X) = E[(X - E[X])^2]$
230
 
231
  This can be computed as:
232
- $Var(X) = E[X^2] - (E[X])^2$
233
 
234
  Properties:
235
 
236
- 1. $Var(aX) = a^2Var(X)$
237
- 2. $Var(X + b) = Var(X)$
238
  """
239
  )
240
  return
@@ -243,7 +243,7 @@ def _(mo):
243
  @app.cell
244
  def _(E_X, die_probs, die_values, np):
245
  def variance_discrete(x_values, probabilities, expected_value):
246
- squared_diff = [(x - expected_value)**2 for x in x_values]
247
  return sum(d * p for d, p in zip(squared_diff, probabilities))
248
 
249
  # Example: Variance of a fair die roll
@@ -305,12 +305,39 @@ def _(np, variance_discrete):
305
  @app.cell(hide_code=True)
306
  def _(coin_var, mo, normal_var, uniform_var):
307
  mo.md(
308
- f"""
309
  Let's look at some calculated variances:
310
 
311
- - Fair coin (X = 0 or 1): Var(X) = {coin_var:.4f}
312
- - Standard normal distribution (discretized): Var(X) ≈ {normal_var:.4f}
313
- - Uniform distribution on [0,1] (discretized): Var(X) ≈ {uniform_var:.4f}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
314
  """
315
  )
316
  return
@@ -320,7 +347,7 @@ def _(coin_var, mo, normal_var, uniform_var):
320
  def _(mo):
321
  mo.md(
322
  r"""
323
- ## Interactive Example: Comparing PMF and PDF
324
 
325
  This example shows the relationship between a Binomial distribution (discrete) and its Normal approximation (continuous).
326
  The parameters control both distributions:
@@ -334,7 +361,7 @@ def _(mo):
334
 
335
  @app.cell
336
  def _(mo, n_trials, p_success):
337
- mo.hstack([n_trials, p_success], justify='space-around')
338
  return
339
 
340
 
@@ -348,28 +375,28 @@ def _(mo):
348
 
349
  @app.cell(hide_code=True)
350
  def _(n_trials, np, p_success, plt, stats):
351
- fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))
352
 
353
  # Discrete: Binomial PMF
354
  k = np.arange(0, n_trials.value + 1)
355
  pmf = stats.binom.pmf(k, n_trials.value, p_success.value)
356
- ax1.bar(k, pmf, alpha=0.8, color='#1f77b4', label='PMF')
357
- ax1.set_title(f'Binomial PMF (n={n_trials.value}, p={p_success.value})')
358
- ax1.set_xlabel('Number of Successes')
359
- ax1.set_ylabel('Probability')
360
  ax1.grid(True, alpha=0.3)
361
 
362
  # Continuous: Normal PDF approx.
363
  mu = n_trials.value * p_success.value
364
- sigma = np.sqrt(n_trials.value * p_success.value * (1-p_success.value))
365
- x = np.linspace(max(0, mu - 4*sigma), min(n_trials.value, mu + 4*sigma), 100)
366
  pdf = stats.norm.pdf(x, mu, sigma)
367
 
368
- ax2.plot(x, pdf, 'r-', linewidth=2, label='PDF')
369
- ax2.fill_between(x, pdf, alpha=0.3, color='red')
370
- ax2.set_title(f'Normal PDF (μ={mu:.1f}, σ={sigma:.1f})')
371
- ax2.set_xlabel('Continuous Approximation')
372
- ax2.set_ylabel('Density')
373
  ax2.grid(True, alpha=0.3)
374
 
375
  # Set consistent x-axis limits for better comparison
@@ -387,7 +414,7 @@ def _(mo, n_trials, np, p_success):
387
  **Current Distribution Properties:**
388
 
389
  - Mean (μ) = {n_trials.value * p_success.value:.2f}
390
- - Standard Deviation (σ) = {np.sqrt(n_trials.value * p_success.value * (1-p_success.value)):.2f}
391
 
392
  Notice how the Normal distribution (right) approximates the Binomial distribution (left) better when:
393
 
@@ -397,33 +424,6 @@ def _(mo, n_trials, np, p_success):
397
  return
398
 
399
 
400
- @app.cell(hide_code=True)
401
- def _(mo):
402
- mo.md(
403
- r"""
404
- ## Common Distributions
405
-
406
- 1. Bernoulli Distribution
407
- - Models a single success/failure experiment
408
- - $P(X = 1) = p$, $P(X = 0) = 1-p$
409
- - $E[X] = p$, $Var(X) = p(1-p)$
410
-
411
- 2. Binomial Distribution
412
-
413
- - Models number of successes in $n$ independent trials
414
- - $P(X = k) = \binom{n}{k}p^k(1-p)^{n-k}$
415
- - $E[X] = np$, $Var(X) = np(1-p)$
416
-
417
- 3. Normal Distribution
418
-
419
- - Bell-shaped curve defined by mean $\mu$ and variance $\sigma^2$
420
- - PDF: $f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$
421
- - $E[X] = \mu$, $Var(X) = \sigma^2$
422
- """
423
- )
424
- return
425
-
426
-
427
  @app.cell(hide_code=True)
428
  def _(mo):
429
  mo.md(
@@ -435,7 +435,7 @@ def _(mo):
435
 
436
  1. The support of $X$
437
  2. The PMF $p_X(x)$
438
- 3. $E[X]$ and $Var(X)$
439
 
440
  <details>
441
  <summary>Solution</summary>
@@ -457,7 +457,7 @@ def _(mo):
457
 
458
  1. The PDF integrates to 1
459
  2. $E[X] = 1/2$
460
- 3. $Var(X) = 1/12$
461
 
462
  Try solving this yourself first, then check the solution below.
463
  """
@@ -490,13 +490,13 @@ def _(mo):
490
  $E[X] = \int_0^1 x \cdot 1 \, dx = [\frac{x^2}{2}]_0^1 = \frac{1}{2} - 0 = \frac{1}{2}$
491
 
492
  3. **Variance**:
493
- $Var(X) = E[X^2] - (E[X])^2$
494
 
495
  First calculate $E[X^2]$:
496
  $E[X^2] = \int_0^1 x^2 \cdot 1 \, dx = [\frac{x^3}{3}]_0^1 = \frac{1}{3}$
497
 
498
  Then:
499
- $Var(X) = \frac{1}{3} - (\frac{1}{2})^2 = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}$
500
  """
501
  )
502
  return (mktext,)
 
10
 
11
  import marimo
12
 
13
+ __generated_with = "0.11.10"
14
  app = marimo.App(width="medium", app_title="Random Variables")
15
 
16
 
 
72
  r"""
73
  ## Properties of Random Variables
74
 
75
+ Each random variable has several key properties:
76
 
77
  | Property | Description | Example |
78
  |----------|-------------|---------|
 
81
  | Support/Range | Possible values | $\{0,1,2,...,n\}$ for binomial |
82
  | Distribution | PMF or PDF | $p_X(x)$ or $f_X(x)$ |
83
  | Expectation | Weighted average | $E[X]$ |
84
+ | Variance | Measure of spread | $\text{Var}(X)$ |
85
  | Standard Deviation | Square root of variance | $\sigma_X$ |
86
  | Mode | Most likely value | argmax$_x$ $p_X(x)$ |
87
 
 
121
  def _(np, plt):
122
  def die_pmf(x):
123
  if x in [1, 2, 3, 4, 5, 6]:
124
+ return 1 / 6
125
  return 0
126
 
127
  # Plot the PMF
128
  _x = np.arange(1, 7)
129
  probabilities = [die_pmf(i) for i in _x]
130
 
131
+ plt.figure(figsize=(8, 2))
132
  plt.bar(_x, probabilities)
133
  plt.title("PMF of Rolling a Fair Die")
134
  plt.xlabel("Outcome")
 
166
  _pdf = stats.norm.pdf(_x, loc=0, scale=1)
167
 
168
  plt.figure(figsize=(8, 4))
169
+ plt.plot(_x, _pdf, "b-", label="PDF")
170
  plt.fill_between(_x, _pdf, where=(_x >= -1) & (_x <= 1), alpha=0.3)
171
  plt.title("Standard Normal Distribution")
172
  plt.xlabel("x")
 
214
 
215
  @app.cell
216
  def _(E_X):
217
+ E_X
218
  return
219
 
220
 
 
224
  r"""
225
  ## Variance
226
 
227
+ The variance $\text{Var}(X)$ measures the spread of a random variable around its mean:
228
 
229
+ $\text{Var}(X) = E[(X - E[X])^2]$
230
 
231
  This can be computed as:
232
+ $\text{Var}(X) = E[X^2] - (E[X])^2$
233
 
234
  Properties:
235
 
236
+ 1. $\text{Var}(aX) = a^2Var(X)$
237
+ 2. $\text{Var}(X + b) = Var(X)$
238
  """
239
  )
240
  return
 
243
  @app.cell
244
  def _(E_X, die_probs, die_values, np):
245
  def variance_discrete(x_values, probabilities, expected_value):
246
+ squared_diff = [(x - expected_value) ** 2 for x in x_values]
247
  return sum(d * p for d, p in zip(squared_diff, probabilities))
248
 
249
  # Example: Variance of a fair die roll
 
305
  @app.cell(hide_code=True)
306
  def _(coin_var, mo, normal_var, uniform_var):
307
  mo.md(
308
+ rf"""
309
  Let's look at some calculated variances:
310
 
311
+ - Fair coin (X = 0 or 1): $\text{{Var}}(X) = {coin_var:.4f}$
312
+ - Standard normal distribution (discretized): $\text{{Var(X)}} ≈ {normal_var:.4f}$
313
+ - Uniform distribution on $[0,1]$ (discretized): $\text{{Var(X)}} ≈ {uniform_var:.4f}$
314
+ """
315
+ )
316
+ return
317
+
318
+
319
+ @app.cell(hide_code=True)
320
+ def _(mo):
321
+ mo.md(
322
+ r"""
323
+ ## Common Distributions
324
+
325
+ 1. Bernoulli Distribution
326
+ - Models a single success/failure experiment
327
+ - $P(X = 1) = p$, $P(X = 0) = 1-p$
328
+ - $E[X] = p$, $\text{Var}(X) = p(1-p)$
329
+
330
+ 2. Binomial Distribution
331
+
332
+ - Models number of successes in $n$ independent trials
333
+ - $P(X = k) = \binom{n}{k}p^k(1-p)^{n-k}$
334
+ - $E[X] = np$, $\text{Var}(X) = np(1-p)$
335
+
336
+ 3. Normal Distribution
337
+
338
+ - Bell-shaped curve defined by mean $\mu$ and variance $\sigma^2$
339
+ - PDF: $f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$
340
+ - $E[X] = \mu$, $\text{Var}(X) = \sigma^2$
341
  """
342
  )
343
  return
 
347
  def _(mo):
348
  mo.md(
349
  r"""
350
+ ### Example: Comparing Discrete and Continuous Distributions
351
 
352
  This example shows the relationship between a Binomial distribution (discrete) and its Normal approximation (continuous).
353
  The parameters control both distributions:
 
361
 
362
  @app.cell
363
  def _(mo, n_trials, p_success):
364
+ mo.hstack([n_trials, p_success], justify="space-around")
365
  return
366
 
367
 
 
375
 
376
  @app.cell(hide_code=True)
377
  def _(n_trials, np, p_success, plt, stats):
378
+ fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 3))
379
 
380
  # Discrete: Binomial PMF
381
  k = np.arange(0, n_trials.value + 1)
382
  pmf = stats.binom.pmf(k, n_trials.value, p_success.value)
383
+ ax1.bar(k, pmf, alpha=0.8, color="#1f77b4", label="PMF")
384
+ ax1.set_title(f"Binomial PMF (n={n_trials.value}, p={p_success.value})")
385
+ ax1.set_xlabel("Number of Successes")
386
+ ax1.set_ylabel("Probability")
387
  ax1.grid(True, alpha=0.3)
388
 
389
  # Continuous: Normal PDF approx.
390
  mu = n_trials.value * p_success.value
391
+ sigma = np.sqrt(n_trials.value * p_success.value * (1 - p_success.value))
392
+ x = np.linspace(max(0, mu - 4 * sigma), min(n_trials.value, mu + 4 * sigma), 100)
393
  pdf = stats.norm.pdf(x, mu, sigma)
394
 
395
+ ax2.plot(x, pdf, "r-", linewidth=2, label="PDF")
396
+ ax2.fill_between(x, pdf, alpha=0.3, color="red")
397
+ ax2.set_title(f"Normal PDF (μ={mu:.1f}, σ={sigma:.1f})")
398
+ ax2.set_xlabel("Continuous Approximation")
399
+ ax2.set_ylabel("Density")
400
  ax2.grid(True, alpha=0.3)
401
 
402
  # Set consistent x-axis limits for better comparison
 
414
  **Current Distribution Properties:**
415
 
416
  - Mean (μ) = {n_trials.value * p_success.value:.2f}
417
+ - Standard Deviation (σ) = {np.sqrt(n_trials.value * p_success.value * (1 - p_success.value)):.2f}
418
 
419
  Notice how the Normal distribution (right) approximates the Binomial distribution (left) better when:
420
 
 
424
  return
425
 
426
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
427
  @app.cell(hide_code=True)
428
  def _(mo):
429
  mo.md(
 
435
 
436
  1. The support of $X$
437
  2. The PMF $p_X(x)$
438
+ 3. $E[X]$ and $\text{Var}(X)$
439
 
440
  <details>
441
  <summary>Solution</summary>
 
457
 
458
  1. The PDF integrates to 1
459
  2. $E[X] = 1/2$
460
+ 3. $\text{Var}(X) = 1/12$
461
 
462
  Try solving this yourself first, then check the solution below.
463
  """
 
490
  $E[X] = \int_0^1 x \cdot 1 \, dx = [\frac{x^2}{2}]_0^1 = \frac{1}{2} - 0 = \frac{1}{2}$
491
 
492
  3. **Variance**:
493
+ $\text{Var}(X) = E[X^2] - (E[X])^2$
494
 
495
  First calculate $E[X^2]$:
496
  $E[X^2] = \int_0^1 x^2 \cdot 1 \, dx = [\frac{x^3}{3}]_0^1 = \frac{1}{3}$
497
 
498
  Then:
499
+ $\text{Var}(X) = \frac{1}{3} - (\frac{1}{2})^2 = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}$
500
  """
501
  )
502
  return (mktext,)