Spaces:
Running
Running
comments address
Browse files
probability/19_maximum_likelihood_estimation.py
CHANGED
@@ -48,16 +48,11 @@ def _(mo):
|
|
48 |
|
49 |
Likelihood measures how probable our observed data is, given specific values of the parameters $\theta$.
|
50 |
|
51 |
-
- For **discrete** distributions: likelihood is the probability mass function (PMF) of our data
|
52 |
-
- For **continuous** distributions: likelihood is the probability density function (PDF) of our data
|
53 |
-
|
54 |
/// note
|
55 |
**Probability vs. Likelihood**
|
56 |
|
57 |
- **Probability**: Given parameters $\theta$, what's the chance of observing data $X$?
|
58 |
- **Likelihood**: Given observed data $X$, how likely are different parameter values $\theta$?
|
59 |
-
|
60 |
-
They use the same formula but different perspectives!
|
61 |
///
|
62 |
|
63 |
To simplify notation, we'll use $f(X=x|\Theta=\theta)$ to represent either the PMF or PDF of our data, conditioned on the parameters.
|
@@ -687,9 +682,9 @@ def _(
|
|
687 |
def _(mo):
|
688 |
mo.md(
|
689 |
r"""
|
690 |
-
## Interactive Concept:
|
691 |
|
692 |
-
To better understand the distinction between likelihood and
|
693 |
"""
|
694 |
)
|
695 |
return
|
@@ -714,7 +709,7 @@ def _(concept_dist_type, mo, np, perspective_selector, plt, stats):
|
|
714 |
|
715 |
if concept_dist_type_value == "Normal":
|
716 |
if concept_view_mode == "probability":
|
717 |
-
#
|
718 |
concept_mu = 0 # fixed parameter
|
719 |
concept_sigma = 1 # fixed parameter
|
720 |
|
@@ -733,11 +728,11 @@ def _(concept_dist_type, mo, np, perspective_selector, plt, stats):
|
|
733 |
concept_prob = stats.norm.pdf(concept_data, concept_mu, concept_sigma)
|
734 |
concept_ax.plot([concept_data, concept_data], [0, concept_prob], concept_colors[concept_i], linewidth=2)
|
735 |
concept_ax.scatter(concept_data, concept_prob, color=concept_colors[concept_i], s=50,
|
736 |
-
label=f'
|
737 |
|
738 |
concept_ax.set_xlabel('Data (x)')
|
739 |
concept_ax.set_ylabel('Probability Density')
|
740 |
-
concept_ax.set_title('
|
741 |
|
742 |
else: # likelihood perspective
|
743 |
# likelihood perspective: fixed data, varying parameters
|
@@ -900,19 +895,19 @@ def _(concept_dist_type, mo, np, perspective_selector, plt, stats):
|
|
900 |
if concept_view_mode == "probability":
|
901 |
concept_explanation = mo.md(
|
902 |
f"""
|
903 |
-
###
|
904 |
|
905 |
-
In the **
|
906 |
|
907 |
-
For the {concept_dist_type_value} distribution, we've fixed the parameter{'s' if concept_dist_type_value == 'Normal' else ''} and shown the probability
|
908 |
|
909 |
This is the typical perspective when:
|
910 |
|
911 |
- We know the true parameters of a distribution
|
912 |
-
- We want to
|
913 |
- We make predictions based on our model
|
914 |
|
915 |
-
**Mathematical notation**: $
|
916 |
"""
|
917 |
)
|
918 |
else: # likelihood perspective
|
@@ -982,12 +977,12 @@ def _(mo):
|
|
982 |
|
983 |
Which of the following statements about Maximum Likelihood Estimation are correct? Click each statement to check your answer.
|
984 |
|
985 |
-
/// details | Probability and likelihood
|
986 |
✅ **Correct!**
|
987 |
|
988 |
Probability measures how likely it is to observe particular data when we know the parameters. Likelihood measures how likely particular parameter values are, given observed data.
|
989 |
|
990 |
-
Mathematically, probability is $P(X=x|\theta)$ while likelihood is $L(\theta|X=x)$.
|
991 |
///
|
992 |
|
993 |
/// details | We use log-likelihood instead of likelihood because it's mathematically simpler and numerically more stable.
|
|
|
48 |
|
49 |
Likelihood measures how probable our observed data is, given specific values of the parameters $\theta$.
|
50 |
|
|
|
|
|
|
|
51 |
/// note
|
52 |
**Probability vs. Likelihood**
|
53 |
|
54 |
- **Probability**: Given parameters $\theta$, what's the chance of observing data $X$?
|
55 |
- **Likelihood**: Given observed data $X$, how likely are different parameter values $\theta$?
|
|
|
|
|
56 |
///
|
57 |
|
58 |
To simplify notation, we'll use $f(X=x|\Theta=\theta)$ to represent either the PMF or PDF of our data, conditioned on the parameters.
|
|
|
682 |
def _(mo):
|
683 |
mo.md(
|
684 |
r"""
|
685 |
+
## Interactive Concept: Density/Mass Functions vs. Likelihood
|
686 |
|
687 |
+
To better understand the distinction between likelihood and density/mass functions, let's create an interactive visualization. This concept is crucial for understanding why MLE works.
|
688 |
"""
|
689 |
)
|
690 |
return
|
|
|
709 |
|
710 |
if concept_dist_type_value == "Normal":
|
711 |
if concept_view_mode == "probability":
|
712 |
+
# density function perspective: fixed params, varying data
|
713 |
concept_mu = 0 # fixed parameter
|
714 |
concept_sigma = 1 # fixed parameter
|
715 |
|
|
|
728 |
concept_prob = stats.norm.pdf(concept_data, concept_mu, concept_sigma)
|
729 |
concept_ax.plot([concept_data, concept_data], [0, concept_prob], concept_colors[concept_i], linewidth=2)
|
730 |
concept_ax.scatter(concept_data, concept_prob, color=concept_colors[concept_i], s=50,
|
731 |
+
label=f'PDF at x={concept_data}: {concept_prob:.3f}')
|
732 |
|
733 |
concept_ax.set_xlabel('Data (x)')
|
734 |
concept_ax.set_ylabel('Probability Density')
|
735 |
+
concept_ax.set_title('Density Function Perspective: Fixed Parameters (μ=0, σ=1), Different Data Points')
|
736 |
|
737 |
else: # likelihood perspective
|
738 |
# likelihood perspective: fixed data, varying parameters
|
|
|
895 |
if concept_view_mode == "probability":
|
896 |
concept_explanation = mo.md(
|
897 |
f"""
|
898 |
+
### Density/Mass Function Perspective
|
899 |
|
900 |
+
In the **density/mass function perspective**, the parameters of the distribution are **fixed and known**, and we evaluate the function at **different possible data values**.
|
901 |
|
902 |
+
For the {concept_dist_type_value} distribution, we've fixed the parameter{'s' if concept_dist_type_value == 'Normal' else ''} and shown the {'density' if concept_dist_type_value == 'Normal' else 'probability mass'} function evaluated at different data points.
|
903 |
|
904 |
This is the typical perspective when:
|
905 |
|
906 |
- We know the true parameters of a distribution
|
907 |
+
- We want to evaluate the {'density' if concept_dist_type_value == 'Normal' else 'probability mass'} at different observations
|
908 |
- We make predictions based on our model
|
909 |
|
910 |
+
**Mathematical notation**: $f(x | \theta)$
|
911 |
"""
|
912 |
)
|
913 |
else: # likelihood perspective
|
|
|
977 |
|
978 |
Which of the following statements about Maximum Likelihood Estimation are correct? Click each statement to check your answer.
|
979 |
|
980 |
+
/// details | Probability and likelihood have different interpretations: probability measures the chance of data given parameters, while likelihood measures how likely parameters are given data.
|
981 |
✅ **Correct!**
|
982 |
|
983 |
Probability measures how likely it is to observe particular data when we know the parameters. Likelihood measures how likely particular parameter values are, given observed data.
|
984 |
|
985 |
+
Mathematically, probability is $P(X=x|\theta)$ while likelihood is $L(\theta|X=x)$.
|
986 |
///
|
987 |
|
988 |
/// details | We use log-likelihood instead of likelihood because it's mathematically simpler and numerically more stable.
|