Raine Hoang Srihari Thyagarajan commited on
Commit
8f31f6f
·
unverified ·
1 Parent(s): 083415e

Apply suggestions from code review

Browse files

Co-authored-by: Srihari Thyagarajan <[email protected]>

Files changed (1) hide show
  1. polars/02_dataframes.py +9 -8
polars/02_dataframes.py CHANGED
@@ -32,7 +32,8 @@ def _(mo):
32
 
33
  In this tutorial, we will go over the central data structure for structured data, DataFrames. There are a multitude of packages that work with DataFrames, but we will be focusing on the way Polars uses them the different options it provides.
34
 
35
- **Note**: The following tutorial has been adapted from the Polars [documentation](https://docs.pola.rs/api/python/stable/reference/dataframe/index.html).
 
36
  """
37
  )
38
  return
@@ -60,7 +61,7 @@ def _(mo):
60
  def _(mo):
61
  mo.md(
62
  r"""
63
- There are 5 data types that can be converted into a DataFrame.
64
 
65
  1. Dictionary
66
  2. Sequence
@@ -78,7 +79,7 @@ def _(mo):
78
  r"""
79
  #### Dictionary
80
 
81
- Dictionaries are structures that store data as key:value pairs. Let's say we have the following dictionary:
82
  """
83
  )
84
  return
@@ -93,7 +94,7 @@ def _():
93
 
94
  @app.cell(hide_code=True)
95
  def _(mo):
96
- mo.md(r"""In order to convert this dictionary into a DataFrame, we simply need to pass it into the data parameter in the .DataFrame() method like so.""")
97
  return
98
 
99
 
@@ -144,7 +145,7 @@ def _(pl, seq_data):
144
 
145
  @app.cell(hide_code=True)
146
  def _(mo):
147
- mo.md(r"""Notice that since we didn't specify the column names, Polars automatically named them "column_0", "column_1", and "column_2". Later, we will show you how to specify the names of the columns.""")
148
  return
149
 
150
 
@@ -242,7 +243,7 @@ def _(mo):
242
  return
243
 
244
 
245
- @app.cell
246
  def _(mo):
247
  mo.md(
248
  r"""
@@ -387,7 +388,7 @@ def _(mo):
387
  return
388
 
389
 
390
- @app.cell
391
  def _(mo):
392
  mo.md(
393
  r"""
@@ -413,7 +414,7 @@ def _(pl):
413
  return
414
 
415
 
416
- @app.cell
417
  def _(mo):
418
  mo.md(r"""Now let's try setting strict to `False`.""")
419
  return
 
32
 
33
  In this tutorial, we will go over the central data structure for structured data, DataFrames. There are a multitude of packages that work with DataFrames, but we will be focusing on the way Polars uses them the different options it provides.
34
 
35
+ /// Note
36
+ The following tutorial has been adapted from the Polars [documentation](https://docs.pola.rs/api/python/stable/reference/dataframe/index.html).
37
  """
38
  )
39
  return
 
61
  def _(mo):
62
  mo.md(
63
  r"""
64
+ There are [5 data types](https://github.com/pola-rs/polars/blob/py-1.29.0/py-polars/polars/dataframe/frame.py#L197) that can be converted into a DataFrame.
65
 
66
  1. Dictionary
67
  2. Sequence
 
79
  r"""
80
  #### Dictionary
81
 
82
+ Dictionaries are structures that store data as `key:value` pairs. Let's say we have the following dictionary:
83
  """
84
  )
85
  return
 
94
 
95
  @app.cell(hide_code=True)
96
  def _(mo):
97
+ mo.md(r"""In order to convert this dictionary into a DataFrame, we simply need to pass it into the data parameter in the `.DataFrame()` method like so.""")
98
  return
99
 
100
 
 
145
 
146
  @app.cell(hide_code=True)
147
  def _(mo):
148
+ mo.md(r"""Notice that since we didn't specify the column names, Polars automatically named them `column_0`, `column_1`, and `column_2`. Later, we will show you how to specify the names of the columns.""")
149
  return
150
 
151
 
 
243
  return
244
 
245
 
246
+ @app.cell(hide_code=True)
247
  def _(mo):
248
  mo.md(
249
  r"""
 
388
  return
389
 
390
 
391
+ @app.cell(hide_code=True)
392
  def _(mo):
393
  mo.md(
394
  r"""
 
414
  return
415
 
416
 
417
+ @app.cell(hide_code=True)
418
  def _(mo):
419
  mo.md(r"""Now let's try setting strict to `False`.""")
420
  return