Haleshot commited on
Commit
c400c65
·
unverified ·
1 Parent(s): 6befcfa

Add `Expectation Notebook`

Browse files

This notebook introduces the concept of expectation in probability, detailing its definition, properties, and applications. It includes interactive visualizations for various probability distributions, calculations for expected values, and demonstrations of key properties such as linearity and the Law of the Unconscious Statistician (LOTUS). The content is structured to enhance understanding of expectation's role in decision-making under uncertainty.

Files changed (1) hide show
  1. probability/11_expectation.py +891 -0
probability/11_expectation.py ADDED
@@ -0,0 +1,891 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # /// script
2
+ # requires-python = ">=3.10"
3
+ # dependencies = [
4
+ # "marimo",
5
+ # "matplotlib==3.10.0",
6
+ # "numpy==2.2.3",
7
+ # "scipy==1.15.2",
8
+ # ]
9
+ # ///
10
+
11
+ import marimo
12
+
13
+ __generated_with = "0.11.19"
14
+ app = marimo.App(width="medium", app_title="Expectation")
15
+
16
+
17
+ @app.cell(hide_code=True)
18
+ def _(mo):
19
+ mo.md(
20
+ r"""
21
+ # Expectation
22
+
23
+ _This notebook is a computational companion to ["Probability for Computer Scientists"](https://chrispiech.github.io/probabilityForComputerScientists/en/part2/expectation/), by Stanford professor Chris Piech._
24
+
25
+ A random variable is fully represented by its Probability Mass Function (PMF), which describes each value the random variable can take on and the corresponding probabilities. However, a PMF can contain a lot of information. Sometimes it's useful to summarize a random variable with a single value!
26
+
27
+ The most common, and arguably the most useful, summary of a random variable is its **Expectation** (also called the expected value or mean).
28
+ """
29
+ )
30
+ return
31
+
32
+
33
+ @app.cell(hide_code=True)
34
+ def _(mo):
35
+ mo.md(
36
+ r"""
37
+ ## Definition of Expectation
38
+
39
+ The expectation of a random variable $X$, written $E[X]$, is the average of all the values the random variable can take on, each weighted by the probability that the random variable will take on that value.
40
+
41
+ $$E[X] = \sum_x x \cdot P(X=x)$$
42
+
43
+ Expectation goes by many other names: Mean, Weighted Average, Center of Mass, 1st Moment. All of these are calculated using the same formula.
44
+ """
45
+ )
46
+ return
47
+
48
+
49
+ @app.cell(hide_code=True)
50
+ def _(mo):
51
+ mo.md(
52
+ r"""
53
+ ## Intuition Behind Expectation
54
+
55
+ The expected value represents the long-run average value of a random variable over many independent repetitions of an experiment.
56
+
57
+ For example, if you roll a fair six-sided die many times and calculate the average of all rolls, that average will approach the expected value of 3.5 as the number of rolls increases.
58
+
59
+ Let's visualize this concept:
60
+ """
61
+ )
62
+ return
63
+
64
+
65
+ @app.cell(hide_code=True)
66
+ def _(np, plt):
67
+ # Set random seed for reproducibility
68
+ np.random.seed(42)
69
+
70
+ # Simulate rolling a die many times
71
+ exp_num_rolls = 1000
72
+ exp_die_rolls = np.random.randint(1, 7, size=exp_num_rolls)
73
+
74
+ # Calculate the running average
75
+ exp_running_avg = np.cumsum(exp_die_rolls) / np.arange(1, exp_num_rolls + 1)
76
+
77
+ # Create the plot
78
+ plt.figure(figsize=(10, 5))
79
+ plt.plot(range(1, exp_num_rolls + 1), exp_running_avg, label='Running Average')
80
+ plt.axhline(y=3.5, color='r', linestyle='--', label='Expected Value (3.5)')
81
+ plt.xlabel('Number of Rolls')
82
+ plt.ylabel('Average Value')
83
+ plt.title('Running Average of Die Rolls Approaching Expected Value')
84
+ plt.legend()
85
+ plt.grid(alpha=0.3)
86
+ plt.xscale('log') # Log scale to better see convergence
87
+
88
+ # Add annotations
89
+ plt.annotate('As the number of rolls increases,\nthe average approaches the expected value',
90
+ xy=(exp_num_rolls, exp_running_avg[-1]), xytext=(exp_num_rolls/3, 4),
91
+ arrowprops=dict(facecolor='black', shrink=0.05, width=1.5))
92
+
93
+ plt.gca() # Return the current axes to ensure proper display
94
+ return exp_die_rolls, exp_num_rolls, exp_running_avg
95
+
96
+
97
+ @app.cell(hide_code=True)
98
+ def _(mo):
99
+ mo.md(r"""## Properties of Expectation""")
100
+ return
101
+
102
+
103
+ @app.cell(hide_code=True)
104
+ def _(mo):
105
+ mo.accordion(
106
+ {
107
+ "1. Linearity of Expectation": mo.md(
108
+ r"""
109
+ $$E[aX + b] = a \cdot E[X] + b$$
110
+
111
+ Where $a$ and $b$ are constants (not random variables).
112
+
113
+ This means that if you multiply a random variable by a constant, the expectation is multiplied by that constant. And if you add a constant to a random variable, the expectation increases by that constant.
114
+ """
115
+ ),
116
+ "2. Expectation of the Sum of Random Variables": mo.md(
117
+ r"""
118
+ $$E[X + Y] = E[X] + E[Y]$$
119
+
120
+ This is true regardless of the relationship between $X$ and $Y$. They can be dependent, and they can have different distributions. This also applies with more than two random variables:
121
+
122
+ $$E\left[\sum_{i=1}^n X_i\right] = \sum_{i=1}^n E[X_i]$$
123
+ """
124
+ ),
125
+ "3. Law of the Unconscious Statistician (LOTUS)": mo.md(
126
+ r"""
127
+ $$E[g(X)] = \sum_x g(x) \cdot P(X=x)$$
128
+
129
+ This allows us to calculate the expected value of a function $g(X)$ of a random variable $X$ when we know the probability distribution of $X$ but don't explicitly know the distribution of $g(X)$.
130
+
131
+ This theorem has the humorous name "Law of the Unconscious Statistician" (LOTUS) because it's so useful that you should be able to employ it unconsciously.
132
+ """
133
+ ),
134
+ "4. Expectation of a Constant": mo.md(
135
+ r"""
136
+ $$E[a] = a$$
137
+
138
+ Sometimes in proofs, you'll end up with the expectation of a constant (rather than a random variable). Since a constant doesn't change, its expected value is just the constant itself.
139
+ """
140
+ ),
141
+ }
142
+ )
143
+ return
144
+
145
+
146
+ @app.cell(hide_code=True)
147
+ def _(mo):
148
+ mo.md(
149
+ r"""
150
+ ## Calculating Expectation
151
+
152
+ Let's calculate the expected value for some common examples:
153
+
154
+ ### Example 1: Fair Die Roll
155
+
156
+ For a fair six-sided die, the PMF is:
157
+
158
+ $$P(X=x) = \frac{1}{6} \text{ for } x \in \{1, 2, 3, 4, 5, 6\}$$
159
+
160
+ The expected value is:
161
+
162
+ $$E[X] = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6} = \frac{21}{6} = 3.5$$
163
+
164
+ Let's implement this calculation in Python:
165
+ """
166
+ )
167
+ return
168
+
169
+
170
+ @app.cell
171
+ def _():
172
+ def calc_expectation_die():
173
+ """Calculate the expected value of a fair six-sided die roll."""
174
+ exp_die_values = range(1, 7)
175
+ exp_die_probs = [1/6] * 6
176
+
177
+ exp_die_expected = sum(x * p for x, p in zip(exp_die_values, exp_die_probs))
178
+ return exp_die_expected
179
+
180
+ exp_die_result = calc_expectation_die()
181
+ print(f"Expected value of a fair die roll: {exp_die_result}")
182
+ return calc_expectation_die, exp_die_result
183
+
184
+
185
+ @app.cell(hide_code=True)
186
+ def _(mo):
187
+ mo.md(
188
+ r"""
189
+ ### Example 2: Sum of Two Dice
190
+
191
+ Now let's calculate the expected value for the sum of two fair dice. First, we need the PMF:
192
+ """
193
+ )
194
+ return
195
+
196
+
197
+ @app.cell
198
+ def _():
199
+ def pmf_sum_two_dice(y_val):
200
+ """Returns the probability that the sum of two dice is y."""
201
+ # Count the number of ways to get sum y
202
+ exp_count = 0
203
+ for dice1 in range(1, 7):
204
+ for dice2 in range(1, 7):
205
+ if dice1 + dice2 == y_val:
206
+ exp_count += 1
207
+ return exp_count / 36 # There are 36 possible outcomes (6×6)
208
+
209
+ # Test the function for a few values
210
+ exp_test_values = [2, 7, 12]
211
+ for exp_test_y in exp_test_values:
212
+ print(f"P(Y = {exp_test_y}) = {pmf_sum_two_dice(exp_test_y)}")
213
+ return exp_test_values, exp_test_y, pmf_sum_two_dice
214
+
215
+
216
+ @app.cell
217
+ def _(pmf_sum_two_dice):
218
+ def calc_expectation_sum_two_dice():
219
+ """Calculate the expected value of the sum of two dice."""
220
+ exp_sum_two_dice = 0
221
+ # Sum of dice can take on the values 2 through 12
222
+ for exp_x in range(2, 13):
223
+ exp_pr_x = pmf_sum_two_dice(exp_x) # PMF gives P(sum is x)
224
+ exp_sum_two_dice += exp_x * exp_pr_x
225
+ return exp_sum_two_dice
226
+
227
+ exp_sum_result = calc_expectation_sum_two_dice()
228
+
229
+ # Round to 2 decimal places for display
230
+ exp_sum_result_rounded = round(exp_sum_result, 2)
231
+
232
+ print(f"Expected value of the sum of two dice: {exp_sum_result_rounded}")
233
+
234
+ # Let's also verify this with a direct calculation
235
+ exp_direct_calc = sum(x * pmf_sum_two_dice(x) for x in range(2, 13))
236
+ exp_direct_calc_rounded = round(exp_direct_calc, 2)
237
+
238
+ print(f"Direct calculation: {exp_direct_calc_rounded}")
239
+
240
+ # Verify that this equals 7
241
+ print(f"Is the expected value exactly 7? {abs(exp_sum_result - 7) < 1e-10}")
242
+ return (
243
+ calc_expectation_sum_two_dice,
244
+ exp_direct_calc,
245
+ exp_direct_calc_rounded,
246
+ exp_sum_result,
247
+ exp_sum_result_rounded,
248
+ )
249
+
250
+
251
+ @app.cell(hide_code=True)
252
+ def _(mo):
253
+ mo.md(
254
+ r"""
255
+ ### Visualizing Expectation
256
+
257
+ Let's visualize the expectation for the sum of two dice. The expected value is the "center of mass" of the PMF:
258
+ """
259
+ )
260
+ return
261
+
262
+
263
+ @app.cell(hide_code=True)
264
+ def _(plt, pmf_sum_two_dice):
265
+ # Create the visualization
266
+ exp_y_values = list(range(2, 13))
267
+ exp_probabilities = [pmf_sum_two_dice(y) for y in exp_y_values]
268
+
269
+ dice_fig, dice_ax = plt.subplots(figsize=(10, 5))
270
+ dice_ax.bar(exp_y_values, exp_probabilities, width=0.4)
271
+ dice_ax.axvline(x=7, color='r', linestyle='--', linewidth=2, label='Expected Value (7)')
272
+
273
+ dice_ax.set_xticks(exp_y_values)
274
+ dice_ax.set_xlabel('Sum of two dice (y)')
275
+ dice_ax.set_ylabel('Probability: P(Y = y)')
276
+ dice_ax.set_title('PMF of Sum of Two Dice with Expected Value')
277
+ dice_ax.grid(alpha=0.3)
278
+ dice_ax.legend()
279
+
280
+ # Add probability values on top of bars
281
+ for exp_i, exp_prob in enumerate(exp_probabilities):
282
+ dice_ax.text(exp_y_values[exp_i], exp_prob + 0.001, f'{exp_prob:.3f}', ha='center')
283
+
284
+ plt.tight_layout()
285
+ plt.gca()
286
+ return dice_ax, dice_fig, exp_i, exp_prob, exp_probabilities, exp_y_values
287
+
288
+
289
+ @app.cell(hide_code=True)
290
+ def _(mo):
291
+ mo.md(
292
+ r"""
293
+ ## Demonstrating the Properties of Expectation
294
+
295
+ Let's demonstrate some of these properties with examples:
296
+ """
297
+ )
298
+ return
299
+
300
+
301
+ @app.cell
302
+ def _(exp_die_result):
303
+ # Demonstrate linearity of expectation (1)
304
+ # E[aX + b] = a*E[X] + b
305
+
306
+ # For a die roll X with E[X] = 3.5
307
+ prop_a = 2
308
+ prop_b = 10
309
+
310
+ # Calculate E[2X + 10] using the property
311
+ prop_expected_using_property = prop_a * exp_die_result + prop_b
312
+ prop_expected_using_property_rounded = round(prop_expected_using_property, 2)
313
+
314
+ print(f"Using linearity property: E[{prop_a}X + {prop_b}] = {prop_a} * E[X] + {prop_b} = {prop_expected_using_property_rounded}")
315
+
316
+ # Calculate E[2X + 10] directly
317
+ prop_expected_direct = sum((prop_a * x + prop_b) * (1/6) for x in range(1, 7))
318
+ prop_expected_direct_rounded = round(prop_expected_direct, 2)
319
+
320
+ print(f"Direct calculation: E[{prop_a}X + {prop_b}] = {prop_expected_direct_rounded}")
321
+
322
+ # Verify they match
323
+ print(f"Do they match? {abs(prop_expected_using_property - prop_expected_direct) < 1e-10}")
324
+ return (
325
+ prop_a,
326
+ prop_b,
327
+ prop_expected_direct,
328
+ prop_expected_direct_rounded,
329
+ prop_expected_using_property,
330
+ prop_expected_using_property_rounded,
331
+ )
332
+
333
+
334
+ @app.cell(hide_code=True)
335
+ def _(mo):
336
+ mo.md(
337
+ r"""
338
+ ### Law of the Unconscious Statistician (LOTUS)
339
+
340
+ Let's use LOTUS to calculate $E[X^2]$ for a die roll, which will be useful when we study variance:
341
+ """
342
+ )
343
+ return
344
+
345
+
346
+ @app.cell
347
+ def _():
348
+ # Calculate E[X^2] for a die roll using LOTUS (3)
349
+ lotus_die_values = range(1, 7)
350
+ lotus_die_probs = [1/6] * 6
351
+
352
+ # Using LOTUS: E[X^2] = sum(x^2 * P(X=x))
353
+ lotus_expected_x_squared = sum(x**2 * p for x, p in zip(lotus_die_values, lotus_die_probs))
354
+ lotus_expected_x_squared_rounded = round(lotus_expected_x_squared, 2)
355
+
356
+ expected_x_squared = 3.5**2
357
+ expected_x_squared_rounded = round(expected_x_squared, 2)
358
+
359
+ print(f"E[X^2] for a die roll = {lotus_expected_x_squared_rounded}")
360
+ print(f"(E[X])^2 for a die roll = {expected_x_squared_rounded}")
361
+ return (
362
+ expected_x_squared,
363
+ expected_x_squared_rounded,
364
+ lotus_die_probs,
365
+ lotus_die_values,
366
+ lotus_expected_x_squared,
367
+ lotus_expected_x_squared_rounded,
368
+ )
369
+
370
+
371
+ @app.cell(hide_code=True)
372
+ def _(mo):
373
+ mo.md(
374
+ r"""
375
+ /// Note
376
+ Note that E[X^2] != (E[X])^2
377
+ """
378
+ )
379
+ return
380
+
381
+
382
+ @app.cell(hide_code=True)
383
+ def _(mo):
384
+ mo.md(
385
+ r"""
386
+ ## Interactive Example
387
+
388
+ Let's explore how the expected value changes as we adjust the parameters of common probability distributions. This interactive visualization focuses specifically on the relationship between distribution parameters and expected values.
389
+
390
+ Use the controls below to select a distribution and adjust its parameters. The graph will show how the expected value changes across a range of parameter values.
391
+ """
392
+ )
393
+ return
394
+
395
+
396
+ @app.cell(hide_code=True)
397
+ def _(mo):
398
+ # Create UI elements for distribution selection
399
+ dist_selection = mo.ui.dropdown(
400
+ options=[
401
+ "bernoulli",
402
+ "binomial",
403
+ "geometric",
404
+ "poisson"
405
+ ],
406
+ value="bernoulli",
407
+ label="Select a distribution"
408
+ )
409
+ return (dist_selection,)
410
+
411
+
412
+ @app.cell(hide_code=True)
413
+ def _(dist_selection):
414
+ dist_selection.center()
415
+ return
416
+
417
+
418
+ @app.cell(hide_code=True)
419
+ def _(dist_description):
420
+ dist_description
421
+ return
422
+
423
+
424
+ @app.cell(hide_code=True)
425
+ def _(mo):
426
+ mo.md("""### Adjust Parameters""")
427
+ return
428
+
429
+
430
+ @app.cell(hide_code=True)
431
+ def _(controls):
432
+ controls
433
+ return
434
+
435
+
436
+ @app.cell(hide_code=True)
437
+ def _(
438
+ dist_selection,
439
+ lambda_range,
440
+ np,
441
+ param_lambda,
442
+ param_n,
443
+ param_p,
444
+ param_range,
445
+ plt,
446
+ ):
447
+ # Calculate expected values based on the selected distribution
448
+ if dist_selection.value == "bernoulli":
449
+ # Get parameter range for visualization
450
+ p_min, p_max = param_range.value
451
+ param_values = np.linspace(p_min, p_max, 100)
452
+
453
+ # E[X] = p for Bernoulli
454
+ expected_values = param_values
455
+ current_param = param_p.value
456
+ current_expected = round(current_param, 2)
457
+ x_label = "p (probability of success)"
458
+ title = "Expected Value of Bernoulli Distribution"
459
+ formula = "E[X] = p"
460
+
461
+ elif dist_selection.value == "binomial":
462
+ # Get parameter range for visualization
463
+ p_min, p_max = param_range.value
464
+ param_values = np.linspace(p_min, p_max, 100)
465
+
466
+ # E[X] = np for Binomial
467
+ n = int(param_n.value)
468
+ expected_values = [n * p for p in param_values]
469
+ current_param = param_p.value
470
+ current_expected = round(n * current_param, 2)
471
+ x_label = "p (probability of success)"
472
+ title = f"Expected Value of Binomial Distribution (n={n})"
473
+ formula = f"E[X] = n × p = {n} × p"
474
+
475
+ elif dist_selection.value == "geometric":
476
+ # Get parameter range for visualization
477
+ p_min, p_max = param_range.value
478
+ # Ensure p is not 0 for geometric distribution
479
+ p_min = max(0.01, p_min)
480
+ param_values = np.linspace(p_min, p_max, 100)
481
+
482
+ # E[X] = 1/p for Geometric
483
+ expected_values = [1/p for p in param_values]
484
+ current_param = param_p.value
485
+ current_expected = round(1 / current_param, 2)
486
+ x_label = "p (probability of success)"
487
+ title = "Expected Value of Geometric Distribution"
488
+ formula = "E[X] = 1/p"
489
+
490
+ else: # Poisson
491
+ # Get parameter range for visualization
492
+ lambda_min, lambda_max = lambda_range.value
493
+ param_values = np.linspace(lambda_min, lambda_max, 100)
494
+
495
+ # E[X] = lambda for Poisson
496
+ expected_values = param_values
497
+ current_param = param_lambda.value
498
+ current_expected = round(current_param, 2)
499
+ x_label = "λ (rate parameter)"
500
+ title = "Expected Value of Poisson Distribution"
501
+ formula = "E[X] = λ"
502
+
503
+ # Create the plot
504
+ dist_fig, dist_ax = plt.subplots(figsize=(10, 6))
505
+
506
+ # Plot the expected value function
507
+ dist_ax.plot(param_values, expected_values, 'b-', linewidth=2, label="Expected Value Function")
508
+
509
+ # Mark the current parameter value
510
+ dist_ax.plot(current_param, current_expected, 'ro', markersize=10, label=f"Current Value: E[X] = {current_expected}")
511
+
512
+ # Add a horizontal line from y-axis to the current point
513
+ dist_ax.hlines(current_expected, param_values[0], current_param, colors='r', linestyles='dashed')
514
+
515
+ # Add a vertical line from x-axis to the current point
516
+ dist_ax.vlines(current_param, 0, current_expected, colors='r', linestyles='dashed')
517
+
518
+ # Add shaded area under the curve
519
+ dist_ax.fill_between(param_values, 0, expected_values, alpha=0.2, color='blue')
520
+
521
+ dist_ax.set_xlabel(x_label, fontsize=12)
522
+ dist_ax.set_ylabel("Expected Value: E[X]", fontsize=12)
523
+ dist_ax.set_title(title, fontsize=14, fontweight='bold')
524
+ dist_ax.grid(True, alpha=0.3)
525
+
526
+ # Move legend to lower right to avoid overlap with formula
527
+ dist_ax.legend(loc='lower right', fontsize=10)
528
+
529
+ # Add formula text box in upper left
530
+ dist_props = dict(boxstyle='round', facecolor='white', alpha=0.8)
531
+ dist_ax.text(0.02, 0.95, formula, transform=dist_ax.transAxes, fontsize=12,
532
+ verticalalignment='top', bbox=dist_props)
533
+
534
+ # Set reasonable y-axis limits based on the distribution
535
+ if dist_selection.value == "geometric":
536
+ max_y = min(50, 2/max(0.01, param_values[0]))
537
+ dist_ax.set_ylim(0, max_y)
538
+ elif dist_selection.value == "binomial":
539
+ dist_ax.set_ylim(0, int(param_n.value) + 1)
540
+ else:
541
+ dist_ax.set_ylim(0, max(expected_values) * 1.1)
542
+
543
+ # Add annotations for current value
544
+ annotation_x = current_param + (param_values[-1] - param_values[0]) * 0.05
545
+ annotation_y = current_expected
546
+
547
+ # Adjust annotation position if it would go off the chart
548
+ if annotation_x > param_values[-1] * 0.9:
549
+ annotation_x = current_param - (param_values[-1] - param_values[0]) * 0.2
550
+
551
+ dist_ax.annotate(
552
+ f"Parameter: {current_param:.2f}\nE[X] = {current_expected}",
553
+ xy=(current_param, current_expected),
554
+ xytext=(annotation_x, annotation_y),
555
+ arrowprops=dict(facecolor='black', shrink=0.05, width=1.5, alpha=0.7),
556
+ bbox=dist_props
557
+ )
558
+
559
+ plt.tight_layout()
560
+ plt.gca()
561
+ return (
562
+ annotation_x,
563
+ annotation_y,
564
+ current_expected,
565
+ current_param,
566
+ dist_ax,
567
+ dist_fig,
568
+ dist_props,
569
+ expected_values,
570
+ formula,
571
+ lambda_max,
572
+ lambda_min,
573
+ max_y,
574
+ n,
575
+ p_max,
576
+ p_min,
577
+ param_values,
578
+ title,
579
+ x_label,
580
+ )
581
+
582
+
583
+ @app.cell(hide_code=True)
584
+ def _(mo):
585
+ mo.md(
586
+ r"""
587
+ ## Expectation vs. Mode
588
+
589
+ The expected value (mean) of a random variable is not always the same as its most likely value (mode). Let's explore this with an example:
590
+ """
591
+ )
592
+ return
593
+
594
+
595
+ @app.cell(hide_code=True)
596
+ def _(np, plt, stats):
597
+ # Create a skewed distribution
598
+ skew_n = 10
599
+ skew_p = 0.25
600
+
601
+ # Binomial PMF
602
+ skew_x_values = np.arange(0, skew_n+1)
603
+ skew_pmf_values = stats.binom.pmf(skew_x_values, skew_n, skew_p)
604
+
605
+ # Find the mode (most likely value)
606
+ skew_mode = skew_x_values[np.argmax(skew_pmf_values)]
607
+
608
+ # Calculate the expected value
609
+ skew_expected = skew_n * skew_p
610
+ skew_expected_rounded = round(skew_expected, 2)
611
+
612
+ # Create the plot
613
+ skew_fig, skew_ax = plt.subplots(figsize=(10, 5))
614
+ skew_ax.bar(skew_x_values, skew_pmf_values, alpha=0.7, width=0.4)
615
+
616
+ # Add vertical lines for mode and expected value
617
+ skew_ax.axvline(x=skew_mode, color='g', linestyle='--', linewidth=2,
618
+ label=f'Mode = {skew_mode} (Most likely value)')
619
+ skew_ax.axvline(x=skew_expected, color='r', linestyle='--', linewidth=2,
620
+ label=f'Expected Value = {skew_expected_rounded} (Mean)')
621
+
622
+ # Add annotations to highlight the difference
623
+ skew_ax.annotate('Mode', xy=(skew_mode, 0.05), xytext=(skew_mode-2.0, 0.1),
624
+ arrowprops=dict(facecolor='green', shrink=0.05, width=1.5), color='green')
625
+ skew_ax.annotate('Expected Value', xy=(skew_expected, 0.05), xytext=(skew_expected+1, 0.15),
626
+ arrowprops=dict(facecolor='red', shrink=0.05, width=1.5), color='red')
627
+
628
+ # Highlight the difference between mode and expected value
629
+ if skew_mode != int(skew_expected):
630
+ # Add a shaded region between mode and expected value
631
+ min_x = min(skew_mode, skew_expected)
632
+ max_x = max(skew_mode, skew_expected)
633
+ skew_ax.axvspan(min_x, max_x, alpha=0.2, color='purple')
634
+
635
+ # Add text explaining the difference
636
+ mid_x = (skew_mode + skew_expected) / 2
637
+ skew_ax.text(mid_x, max(skew_pmf_values) * 0.5,
638
+ f"Difference: {abs(skew_mode - skew_expected_rounded):.2f}",
639
+ ha='center', va='center', bbox=dict(facecolor='white', alpha=0.7))
640
+
641
+ skew_ax.set_xlabel('Number of Successes')
642
+ skew_ax.set_ylabel('Probability')
643
+ skew_ax.set_title(f'Binomial Distribution (n={skew_n}, p={skew_p})')
644
+ skew_ax.grid(alpha=0.3)
645
+ skew_ax.legend()
646
+
647
+ plt.tight_layout()
648
+ plt.gca()
649
+ return (
650
+ max_x,
651
+ mid_x,
652
+ min_x,
653
+ skew_ax,
654
+ skew_expected,
655
+ skew_expected_rounded,
656
+ skew_fig,
657
+ skew_mode,
658
+ skew_n,
659
+ skew_p,
660
+ skew_pmf_values,
661
+ skew_x_values,
662
+ )
663
+
664
+
665
+ @app.cell(hide_code=True)
666
+ def _(mo):
667
+ mo.md(
668
+ r"""
669
+ /// NOTE
670
+ For the sum of two dice we calculated earlier, we found the expected value to be exactly 7. In that case, 7 also happens to be the mode (most likely outcome) of the distribution. However, this is just a coincidence for this particular example!
671
+
672
+ As we can see from the binomial distribution above, the expected value (2.50) and the mode (2) are often different values (this is common in skewed distributions). The expected value represents the "center of mass" of the distribution, while the mode represents the most likely single outcome.
673
+ """
674
+ )
675
+ return
676
+
677
+
678
+ @app.cell(hide_code=True)
679
+ def _(mo):
680
+ mo.md(
681
+ r"""
682
+ ## Applications of Expectation
683
+
684
+ Expected value has numerous applications across various fields:
685
+
686
+ 1. **Finance**: Expected return on investments, option pricing
687
+ 2. **Insurance**: Setting premiums based on expected claims
688
+ 3. **Gaming**: Calculating the expected winnings in games of chance
689
+ 4. **Machine Learning**: Loss function minimization
690
+ 5. **Operations Research**: Decision making under uncertainty
691
+ """
692
+ )
693
+ return
694
+
695
+
696
+ @app.cell(hide_code=True)
697
+ def _(mo):
698
+ mo.md(
699
+ r"""
700
+ ## 🤔 Test Your Understanding
701
+
702
+ Choose what you believe are the correct options in the questions below:
703
+
704
+ <details>
705
+ <summary>The expected value of a random variable is always one of the possible values the random variable can take.</summary>
706
+ ❌ False! The expected value is a weighted average and may not be a value the random variable can actually take. For example, the expected value of a fair die roll is 3.5, which is not a possible outcome.
707
+ </details>
708
+
709
+ <details>
710
+ <summary>If X and Y are independent random variables, then E[X·Y] = E[X]·E[Y].</summary>
711
+ ✅ True! For independent random variables, the expectation of their product equals the product of their expectations.
712
+ </details>
713
+
714
+ <details>
715
+ <summary>The expected value of a constant random variable (one that always takes the same value) is that constant.</summary>
716
+ ✅ True! If X = c with probability 1, then E[X] = c.
717
+ </details>
718
+
719
+ <details>
720
+ <summary>The expected value of the sum of two random variables is always the sum of their expected values, regardless of whether they are independent.</summary>
721
+ ✅ True! This is the linearity of expectation property: E[X + Y] = E[X] + E[Y], which holds regardless of dependence.
722
+ </details>
723
+ """
724
+ )
725
+ return
726
+
727
+
728
+ @app.cell(hide_code=True)
729
+ def _(mo):
730
+ mo.md(
731
+ r"""
732
+ ## Practical Applications of Expectation
733
+
734
+ Expected values show up everywhere - from investment decisions and insurance pricing to machine learning algorithms and game design. Engineers use them to predict system reliability, data scientists to understand customer behavior, and economists to model market outcomes. They're essential for risk assessment in project management and for optimizing resource allocation in operations research.
735
+ """
736
+ )
737
+ return
738
+
739
+
740
+ @app.cell(hide_code=True)
741
+ def _(mo):
742
+ mo.md(
743
+ r"""
744
+ ## Key Takeaways
745
+
746
+ Expectation gives us a single value that summarizes a random variable's central tendency - it's the weighted average of all possible outcomes, where the weights are probabilities. The linearity property makes expectations easy to work with, even for complex combinations of random variables. While a PMF gives the complete probability picture, expectation provides an essential summary that helps us make decisions under uncertainty. In our next notebook, we'll explore variance, which measures how spread out a random variable's values are around its expectation.
747
+ """
748
+ )
749
+ return
750
+
751
+
752
+ @app.cell(hide_code=True)
753
+ def _(mo):
754
+ mo.md(r"""#### Appendix (containing helper code)""")
755
+ return
756
+
757
+
758
+ @app.cell(hide_code=True)
759
+ def _():
760
+ import marimo as mo
761
+ return (mo,)
762
+
763
+
764
+ @app.cell(hide_code=True)
765
+ def _():
766
+ import matplotlib.pyplot as plt
767
+ import numpy as np
768
+ from scipy import stats
769
+ import collections
770
+ return collections, np, plt, stats
771
+
772
+
773
+ @app.cell(hide_code=True)
774
+ def _(dist_selection, mo):
775
+ # Parameter controls for probability-based distributions
776
+ param_p = mo.ui.slider(
777
+ start=0.01,
778
+ stop=0.99,
779
+ step=0.01,
780
+ value=0.5,
781
+ label="p (probability of success)",
782
+ full_width=True
783
+ )
784
+
785
+ # Parameter control for binomial distribution
786
+ param_n = mo.ui.slider(
787
+ start=1,
788
+ stop=50,
789
+ step=1,
790
+ value=10,
791
+ label="n (number of trials)",
792
+ full_width=True
793
+ )
794
+
795
+ # Parameter control for Poisson distribution
796
+ param_lambda = mo.ui.slider(
797
+ start=0.1,
798
+ stop=20,
799
+ step=0.1,
800
+ value=5,
801
+ label="λ (rate parameter)",
802
+ full_width=True
803
+ )
804
+
805
+ # Parameter range sliders for visualization
806
+ param_range = mo.ui.range_slider(
807
+ start=0,
808
+ stop=1,
809
+ step=0.01,
810
+ value=[0, 1],
811
+ label="Parameter range to visualize",
812
+ full_width=True
813
+ )
814
+
815
+ lambda_range = mo.ui.range_slider(
816
+ start=0,
817
+ stop=20,
818
+ step=0.1,
819
+ value=[0, 20],
820
+ label="λ range to visualize",
821
+ full_width=True
822
+ )
823
+
824
+ # Display appropriate controls based on the selected distribution
825
+ if dist_selection.value == "bernoulli":
826
+ controls = mo.hstack([param_p, param_range], justify="space-around")
827
+ elif dist_selection.value == "binomial":
828
+ controls = mo.hstack([param_p, param_n, param_range], justify="space-around")
829
+ elif dist_selection.value == "geometric":
830
+ controls = mo.hstack([param_p, param_range], justify="space-around")
831
+ else: # poisson
832
+ controls = mo.hstack([param_lambda, lambda_range], justify="space-around")
833
+ return controls, lambda_range, param_lambda, param_n, param_p, param_range
834
+
835
+
836
+ @app.cell(hide_code=True)
837
+ def _(dist_selection, mo):
838
+ # Create distribution descriptions based on selection
839
+ if dist_selection.value == "bernoulli":
840
+ dist_description = mo.md(
841
+ r"""
842
+ **Bernoulli Distribution**
843
+
844
+ A Bernoulli distribution models a single trial with two possible outcomes: success (1) or failure (0).
845
+
846
+ - Parameter: $p$ = probability of success
847
+ - Expected Value: $E[X] = p$
848
+ - Example: Flipping a coin once (p = 0.5 for a fair coin)
849
+ """
850
+ )
851
+ elif dist_selection.value == "binomial":
852
+ dist_description = mo.md(
853
+ r"""
854
+ **Binomial Distribution**
855
+
856
+ A Binomial distribution models the number of successes in $n$ independent trials.
857
+
858
+ - Parameters: $n$ = number of trials, $p$ = probability of success
859
+ - Expected Value: $E[X] = np$
860
+ - Example: Number of heads in 10 coin flips
861
+ """
862
+ )
863
+ elif dist_selection.value == "geometric":
864
+ dist_description = mo.md(
865
+ r"""
866
+ **Geometric Distribution**
867
+
868
+ A Geometric distribution models the number of trials until the first success.
869
+
870
+ - Parameter: $p$ = probability of success
871
+ - Expected Value: $E[X] = \frac{1}{p}$
872
+ - Example: Number of coin flips until first heads
873
+ """
874
+ )
875
+ else: # poisson
876
+ dist_description = mo.md(
877
+ r"""
878
+ **Poisson Distribution**
879
+
880
+ A Poisson distribution models the number of events occurring in a fixed interval.
881
+
882
+ - Parameter: $\lambda$ = average rate of events
883
+ - Expected Value: $E[X] = \lambda$
884
+ - Example: Number of emails received per hour
885
+ """
886
+ )
887
+ return (dist_description,)
888
+
889
+
890
+ if __name__ == "__main__":
891
+ app.run()