metaboulie commited on
Commit
c6fe084
·
1 Parent(s): 8b10f04

Remove duplicate implementations in markdown

Browse files
Files changed (1) hide show
  1. functional_programming/05_functors.py +132 -162
functional_programming/05_functors.py CHANGED
@@ -103,7 +103,17 @@ def _(md):
103
  return
104
 
105
 
106
- @app.cell(hide_code=True)
 
 
 
 
 
 
 
 
 
 
107
  def _(Callable, Functor, Generic, a, b, dataclass):
108
  @dataclass
109
  class Wrapper(Functor, Generic[a]):
@@ -152,28 +162,11 @@ def _(md):
152
  ## The List Wrapper
153
 
154
  We can define a `ListWrapper` class to represent a wrapped list that supports `fmap`:
155
-
156
- ```python
157
- @dataclass
158
- class ListWrapper(Generic[a]):
159
- value: list[a]
160
-
161
- def fmap(self, func: Callable[[a], b]) -> "ListWrapper[b]":
162
- return ListWrapper([func(x) for x in self.value])
163
-
164
-
165
- >>> list_wrapper = ListWrapper([1, 2, 3, 4])
166
- >>> list_wrapper.fmap(lambda x: x + 1)
167
- ListWrapper(value=[2, 3, 4, 5])
168
- >>> list_wrapper.fmap(lambda x: [x])
169
- ListWrapper(value=[[1], [2], [3], [4]])
170
- ```
171
- > Try using `ListWrapper` in the cell below.
172
  """)
173
  return
174
 
175
 
176
- @app.cell(hide_code=True)
177
  def _(Callable, Functor, Generic, a, b, dataclass):
178
  @dataclass
179
  class ListWrapper(Functor, Generic[a]):
@@ -190,6 +183,14 @@ def _(Callable, Functor, Generic, a, b, dataclass):
190
  return ListWrapper, list_wrapper
191
 
192
 
 
 
 
 
 
 
 
 
193
  @app.cell(hide_code=True)
194
  def _(md):
195
  md("""
@@ -314,17 +315,6 @@ def _(md):
314
  return
315
 
316
 
317
- @app.cell(hide_code=True)
318
- def _(RoseTree, mo):
319
- ftree = RoseTree(1, [RoseTree(2, []), RoseTree(3, [RoseTree(4, [])])])
320
-
321
- with mo.redirect_stdout():
322
- print(ftree)
323
- print(ftree.fmap(lambda x: [x]))
324
- print(ftree.fmap(lambda x: RoseTree(x, [])))
325
- return (ftree,)
326
-
327
-
328
  @app.cell(hide_code=True)
329
  def _(Callable, Functor, Generic, a, b, dataclass, md):
330
  @dataclass
@@ -372,6 +362,17 @@ def _(Callable, Functor, Generic, a, b, dataclass, md):
372
  return (RoseTree,)
373
 
374
 
 
 
 
 
 
 
 
 
 
 
 
375
  @app.cell(hide_code=True)
376
  def _(md):
377
  md("""
@@ -511,28 +512,12 @@ def _(ftree, list_wrapper, mo, wrapper):
511
  @app.cell(hide_code=True)
512
  def _(md):
513
  md("""
514
- And here is an `EvilFunctor`
515
-
516
- ```Python
517
- @dataclass
518
- class EvilFunctor(Functor, Generic[a]):
519
- value: list[a]
520
-
521
- def fmap(self, func: Callable[[a], b]) -> "EvilFunctor[b]":
522
- return (
523
- EvilFunctor([self.value[0]] * 2 + list(map(func, self.value[1:])))
524
- if self.value
525
- else []
526
- )
527
-
528
- def __repr__(self):
529
- return repr(self.value)
530
- ```
531
  """)
532
  return
533
 
534
 
535
- @app.cell(hide_code=True)
536
  def _(Callable, Functor, Generic, a, b, dataclass):
537
  @dataclass
538
  class EvilFunctor(Functor, Generic[a]):
@@ -646,7 +631,7 @@ def _(ABC, Callable, Generic, a, abstractmethod, b, dataclass, id, md):
646
  @app.cell(hide_code=True)
647
  def _(md):
648
  md("""
649
- - Try with utility functions in the cell below
650
  """)
651
  return
652
 
@@ -675,8 +660,12 @@ def _(md):
675
  One example is the **`Maybe`** type from Haskell, which is used to represent computations that can either result in a value (`Just a`) or no value (`Nothing`).
676
 
677
  We can define the `Maybe` functor as below:
 
 
678
 
679
- ```python
 
 
680
  @dataclass
681
  class Just(Generic[a]):
682
  value: a
@@ -688,18 +677,25 @@ def _(md):
688
  def __repr__(self):
689
  return f"Just {self.value}"
690
 
 
691
  @dataclass
692
  class Maybe(Functor, Generic[a]):
693
  value: None | Just[a]
694
 
695
  def fmap(self, func: Callable[[a], b]) -> "Maybe[b]":
696
  # Apply the function to the value inside `Just`, or return `Nothing` if value is None
697
- return Maybe(Just(func(self.value.value))) if self.value else Maybe(None)
 
 
698
 
699
  def __repr__(self):
700
  return repr(self.value) if self.value else "Nothing"
701
- ```
702
 
 
 
 
 
703
  - **`Just`** is a wrapper that holds a value. We use it to represent the presence of a value.
704
  - **`Maybe`** is a functor that can either hold a `Just` value or be `Nothing` (equivalent to `None` in Python). The `fmap` method applies a function to the value inside the `Just` wrapper, if it exists. If the value is `None` (representing `Nothing`), `fmap` simply returns `Nothing`.
705
 
@@ -710,33 +706,6 @@ def _(md):
710
  return
711
 
712
 
713
- @app.cell(hide_code=True)
714
- def _(Callable, Functor, Generic, a, b, dataclass):
715
- @dataclass
716
- class Just(Generic[a]):
717
- value: a
718
-
719
- def __init__(self, value: a):
720
- self.value = value.value if isinstance(value, Just) else value
721
-
722
- def __repr__(self):
723
- return f"Just {self.value}"
724
-
725
-
726
- @dataclass
727
- class Maybe(Functor, Generic[a]):
728
- value: None | Just[a]
729
-
730
- def fmap(self, func: Callable[[a], b]) -> "Maybe[b]":
731
- return (
732
- Maybe(Just(func(self.value.value))) if self.value else Maybe(None)
733
- )
734
-
735
- def __repr__(self):
736
- return repr(self.value) if self.value else "Nothing"
737
- return Just, Maybe
738
-
739
-
740
  @app.cell(hide_code=True)
741
  def _(Just, Maybe, ftree, inc, mo):
742
  with mo.redirect_stdout():
@@ -792,7 +761,7 @@ def _(md):
792
  There are three laws that categories need to follow.
793
 
794
  1. The composition of morphisms needs to be **associative**. Symbolically, $f ∘ (g ∘ h) = (f ∘ g) ∘ h$
795
-
796
  - Morphisms are applied right to left, so with $f ∘ g$ first $g$ is applied, then $f$.
797
 
798
  2. The category needs to be **closed** under the composition operation. So if $f : B → C$ and $g : A → B$, then there must be some morphism $h : A → C$ in the category such that $h = f ∘ g$.
@@ -1066,31 +1035,49 @@ def _(md):
1066
  ### Category of List Concatenation
1067
 
1068
  First, let’s define the category of list concatenation:
 
 
1069
 
1070
- ```python
 
 
1071
  @dataclass
1072
- class ListConcatenation(Generic[a]):
1073
  value: list[a]
1074
 
1075
  @staticmethod
1076
- def id() -> "ListConcatenation[a]":
1077
- return ListConcatenation([])
1078
 
1079
  @staticmethod
1080
  def compose(
1081
- this: "ListConcatenation[a]", other: "ListConcatenation[a]"
1082
- ) -> "ListConcatenation[a]":
1083
- return ListConcatenation(this.value + other.value)
1084
- ```
1085
 
 
 
 
 
1086
  - **Identity**: The identity element is an empty list (`ListConcatenation([])`).
1087
  - **Composition**: The composition of two lists is their concatenation (`this.value + other.value`).
 
 
1088
 
 
 
 
 
1089
  ### Category of Integer Addition
1090
 
1091
  Now, let's define the category of integer addition:
 
 
1092
 
1093
- ```python
 
 
1094
  @dataclass
1095
  class IntAddition:
1096
  value: int
@@ -1102,102 +1089,95 @@ def _(md):
1102
  @staticmethod
1103
  def compose(this: "IntAddition", other: "IntAddition") -> "IntAddition":
1104
  return IntAddition(this.value + other.value)
1105
- ```
1106
 
 
 
 
 
1107
  - **Identity**: The identity element is `IntAddition(0)` (the additive identity).
1108
  - **Composition**: The composition of two integers is their sum (`this.value + other.value`).
 
 
1109
 
 
 
 
 
1110
  ### Defining the Length Functor
1111
 
1112
  We now define the `length` function as a functor, mapping from the category of list concatenation to the category of integer addition:
 
 
1113
 
1114
- ```python
 
 
1115
  length = lambda l: IntAddition(len(l.value))
1116
- ```
 
1117
 
 
 
 
1118
  This function takes an instance of `ListConcatenation`, computes its length, and returns an `IntAddition` instance with the computed length.
 
 
 
1119
 
 
 
 
1120
  ### Verifying Functor Laws
1121
 
1122
  Now, let’s verify that `length` satisfies the two functor laws.
1123
 
1124
  #### 1. **Identity Law**:
1125
  The identity law states that applying the functor to the identity element of one category should give the identity element of the other category.
1126
-
1127
- ```python
1128
- >>> length(ListConcatenation.id()) == IntAddition.id()
1129
- True
1130
- ```
1131
-
1132
- This ensures that the length of an empty list (identity in the `ListConcatenation` category) is `0` (identity in the `IntAddition` category).
1133
-
1134
- #### 2. **Composition Law**:
1135
- The composition law states that the functor should preserve composition. Applying the functor to a composed element should be the same as composing the functor applied to the individual elements.
1136
-
1137
- ```python
1138
- >>> length(ListConcatenation.compose(lista, listb)) == IntAddition.compose(
1139
- >>> length(lista), length(listb)
1140
- >>> )
1141
- True
1142
- ```
1143
-
1144
- This ensures that the length of the concatenation of two lists is the same as the sum of the lengths of the individual lists.
1145
  """)
1146
  return
1147
 
1148
 
1149
- @app.cell(hide_code=True)
1150
- def _(Generic, a, dataclass):
1151
- @dataclass
1152
- class ListConcatentation(Generic[a]):
1153
- value: list[a]
1154
-
1155
- @staticmethod
1156
- def id() -> "ListConcatentation[a]":
1157
- return ListConcatentation([])
1158
-
1159
- @staticmethod
1160
- def compose(
1161
- this: "ListConcatentation[a]", other: "ListConcatentation[a]"
1162
- ) -> "ListConcatentation[a]":
1163
- return ListConcatentation(this.value + other.value)
1164
-
1165
-
1166
- @dataclass
1167
- class IntAddition:
1168
- value: int
1169
-
1170
- @staticmethod
1171
- def id() -> "IntAddition":
1172
- return IntAddition(0)
1173
-
1174
- @staticmethod
1175
- def compose(this: "IntAddition", other: "IntAddition") -> "IntAddition":
1176
- return IntAddition(this.value + other.value)
1177
- return IntAddition, ListConcatentation
1178
 
1179
 
1180
  @app.cell(hide_code=True)
1181
- def _(IntAddition):
1182
- length = lambda l: IntAddition(len(l.value))
1183
- return (length,)
 
 
1184
 
1185
 
1186
  @app.cell(hide_code=True)
1187
- def _(IntAddition, ListConcatentation, length):
1188
- length(ListConcatentation.id()) == IntAddition.id()
 
 
 
1189
  return
1190
 
1191
 
1192
- @app.cell(hide_code=True)
1193
  def _(IntAddition, ListConcatentation, length):
1194
- _list_a = ListConcatentation([1, 2])
1195
- _list_b = ListConcatentation([3, 4])
1196
 
1197
 
1198
- length(ListConcatentation.compose(_list_a, _list_b)) == IntAddition.compose(
1199
- length(_list_a), length(_list_b)
1200
  )
 
 
 
 
 
 
 
 
1201
  return
1202
 
1203
 
@@ -1243,23 +1223,13 @@ def _():
1243
  @app.cell(hide_code=True)
1244
  def _():
1245
  from abc import abstractmethod, ABC
1246
- from dataclasses import dataclass
1247
- return ABC, abstractmethod, dataclass
1248
-
1249
-
1250
- @app.cell(hide_code=True)
1251
- def _():
1252
- from typing import TypeVar, Generic
1253
- from collections.abc import Callable
1254
- return Callable, Generic, TypeVar
1255
 
1256
 
1257
  @app.cell(hide_code=True)
1258
  def _(TypeVar):
1259
- a = TypeVar("a")
1260
- b = TypeVar("b")
1261
  c = TypeVar("c")
1262
- return a, b, c
1263
 
1264
 
1265
  if __name__ == "__main__":
 
103
  return
104
 
105
 
106
+ @app.cell
107
+ def _():
108
+ from dataclasses import dataclass
109
+ from typing import Callable, Generic, TypeVar
110
+
111
+ a = TypeVar("a")
112
+ b = TypeVar("b")
113
+ return Callable, Generic, TypeVar, a, b, dataclass
114
+
115
+
116
+ @app.cell
117
  def _(Callable, Functor, Generic, a, b, dataclass):
118
  @dataclass
119
  class Wrapper(Functor, Generic[a]):
 
162
  ## The List Wrapper
163
 
164
  We can define a `ListWrapper` class to represent a wrapped list that supports `fmap`:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
165
  """)
166
  return
167
 
168
 
169
+ @app.cell
170
  def _(Callable, Functor, Generic, a, b, dataclass):
171
  @dataclass
172
  class ListWrapper(Functor, Generic[a]):
 
183
  return ListWrapper, list_wrapper
184
 
185
 
186
+ @app.cell
187
+ def _(ListWrapper, mo):
188
+ with mo.redirect_stdout():
189
+ print(ListWrapper(value=[2, 3, 4, 5]))
190
+ print(ListWrapper(value=[[1], [2], [3], [4]]))
191
+ return
192
+
193
+
194
  @app.cell(hide_code=True)
195
  def _(md):
196
  md("""
 
315
  return
316
 
317
 
 
 
 
 
 
 
 
 
 
 
 
318
  @app.cell(hide_code=True)
319
  def _(Callable, Functor, Generic, a, b, dataclass, md):
320
  @dataclass
 
362
  return (RoseTree,)
363
 
364
 
365
+ @app.cell(hide_code=True)
366
+ def _(RoseTree, mo):
367
+ ftree = RoseTree(1, [RoseTree(2, []), RoseTree(3, [RoseTree(4, [])])])
368
+
369
+ with mo.redirect_stdout():
370
+ print(ftree)
371
+ print(ftree.fmap(lambda x: [x]))
372
+ print(ftree.fmap(lambda x: RoseTree(x, [])))
373
+ return (ftree,)
374
+
375
+
376
  @app.cell(hide_code=True)
377
  def _(md):
378
  md("""
 
512
  @app.cell(hide_code=True)
513
  def _(md):
514
  md("""
515
+ And here is an `EvilFunctor`. We can verify it's not a valid `Functor`.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
516
  """)
517
  return
518
 
519
 
520
+ @app.cell
521
  def _(Callable, Functor, Generic, a, b, dataclass):
522
  @dataclass
523
  class EvilFunctor(Functor, Generic[a]):
 
631
  @app.cell(hide_code=True)
632
  def _(md):
633
  md("""
634
+ > Try with utility functions in the cell below
635
  """)
636
  return
637
 
 
660
  One example is the **`Maybe`** type from Haskell, which is used to represent computations that can either result in a value (`Just a`) or no value (`Nothing`).
661
 
662
  We can define the `Maybe` functor as below:
663
+ """)
664
+ return
665
 
666
+
667
+ @app.cell
668
+ def _(Callable, Functor, Generic, a, b, dataclass):
669
  @dataclass
670
  class Just(Generic[a]):
671
  value: a
 
677
  def __repr__(self):
678
  return f"Just {self.value}"
679
 
680
+
681
  @dataclass
682
  class Maybe(Functor, Generic[a]):
683
  value: None | Just[a]
684
 
685
  def fmap(self, func: Callable[[a], b]) -> "Maybe[b]":
686
  # Apply the function to the value inside `Just`, or return `Nothing` if value is None
687
+ return (
688
+ Maybe(Just(func(self.value.value))) if self.value else Maybe(None)
689
+ )
690
 
691
  def __repr__(self):
692
  return repr(self.value) if self.value else "Nothing"
693
+ return Just, Maybe
694
 
695
+
696
+ @app.cell(hide_code=True)
697
+ def _(md):
698
+ md("""
699
  - **`Just`** is a wrapper that holds a value. We use it to represent the presence of a value.
700
  - **`Maybe`** is a functor that can either hold a `Just` value or be `Nothing` (equivalent to `None` in Python). The `fmap` method applies a function to the value inside the `Just` wrapper, if it exists. If the value is `None` (representing `Nothing`), `fmap` simply returns `Nothing`.
701
 
 
706
  return
707
 
708
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
709
  @app.cell(hide_code=True)
710
  def _(Just, Maybe, ftree, inc, mo):
711
  with mo.redirect_stdout():
 
761
  There are three laws that categories need to follow.
762
 
763
  1. The composition of morphisms needs to be **associative**. Symbolically, $f ∘ (g ∘ h) = (f ∘ g) ∘ h$
764
+
765
  - Morphisms are applied right to left, so with $f ∘ g$ first $g$ is applied, then $f$.
766
 
767
  2. The category needs to be **closed** under the composition operation. So if $f : B → C$ and $g : A → B$, then there must be some morphism $h : A → C$ in the category such that $h = f ∘ g$.
 
1035
  ### Category of List Concatenation
1036
 
1037
  First, let’s define the category of list concatenation:
1038
+ """)
1039
+ return
1040
 
1041
+
1042
+ @app.cell
1043
+ def _(Generic, a, dataclass):
1044
  @dataclass
1045
+ class ListConcatentation(Generic[a]):
1046
  value: list[a]
1047
 
1048
  @staticmethod
1049
+ def id() -> "ListConcatentation[a]":
1050
+ return ListConcatentation([])
1051
 
1052
  @staticmethod
1053
  def compose(
1054
+ this: "ListConcatentation[a]", other: "ListConcatentation[a]"
1055
+ ) -> "ListConcatentation[a]":
1056
+ return ListConcatentation(this.value + other.value)
1057
+ return (ListConcatentation,)
1058
 
1059
+
1060
+ @app.cell(hide_code=True)
1061
+ def _(md):
1062
+ md("""
1063
  - **Identity**: The identity element is an empty list (`ListConcatenation([])`).
1064
  - **Composition**: The composition of two lists is their concatenation (`this.value + other.value`).
1065
+ """)
1066
+ return
1067
 
1068
+
1069
+ @app.cell(hide_code=True)
1070
+ def _(md):
1071
+ md("""
1072
  ### Category of Integer Addition
1073
 
1074
  Now, let's define the category of integer addition:
1075
+ """)
1076
+ return
1077
 
1078
+
1079
+ @app.cell
1080
+ def _(dataclass):
1081
  @dataclass
1082
  class IntAddition:
1083
  value: int
 
1089
  @staticmethod
1090
  def compose(this: "IntAddition", other: "IntAddition") -> "IntAddition":
1091
  return IntAddition(this.value + other.value)
1092
+ return (IntAddition,)
1093
 
1094
+
1095
+ @app.cell(hide_code=True)
1096
+ def _(md):
1097
+ md("""
1098
  - **Identity**: The identity element is `IntAddition(0)` (the additive identity).
1099
  - **Composition**: The composition of two integers is their sum (`this.value + other.value`).
1100
+ """)
1101
+ return
1102
 
1103
+
1104
+ @app.cell(hide_code=True)
1105
+ def _(md):
1106
+ md("""
1107
  ### Defining the Length Functor
1108
 
1109
  We now define the `length` function as a functor, mapping from the category of list concatenation to the category of integer addition:
1110
+ """)
1111
+ return
1112
 
1113
+
1114
+ @app.cell
1115
+ def _(IntAddition):
1116
  length = lambda l: IntAddition(len(l.value))
1117
+ return (length,)
1118
+
1119
 
1120
+ @app.cell(hide_code=True)
1121
+ def _(md):
1122
+ md("""
1123
  This function takes an instance of `ListConcatenation`, computes its length, and returns an `IntAddition` instance with the computed length.
1124
+ """)
1125
+ return
1126
+
1127
 
1128
+ @app.cell(hide_code=True)
1129
+ def _(md):
1130
+ md("""
1131
  ### Verifying Functor Laws
1132
 
1133
  Now, let’s verify that `length` satisfies the two functor laws.
1134
 
1135
  #### 1. **Identity Law**:
1136
  The identity law states that applying the functor to the identity element of one category should give the identity element of the other category.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1137
  """)
1138
  return
1139
 
1140
 
1141
+ @app.cell
1142
+ def _(IntAddition, ListConcatentation, length):
1143
+ length(ListConcatentation.id()) == IntAddition.id()
1144
+ return
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1145
 
1146
 
1147
  @app.cell(hide_code=True)
1148
+ def _(md):
1149
+ md("""
1150
+ This ensures that the length of an empty list (identity in the `ListConcatenation` category) is `0` (identity in the `IntAddition` category).
1151
+ """)
1152
+ return
1153
 
1154
 
1155
  @app.cell(hide_code=True)
1156
+ def _(md):
1157
+ md("""
1158
+ #### 2. **Composition Law**:
1159
+ The composition law states that the functor should preserve composition. Applying the functor to a composed element should be the same as composing the functor applied to the individual elements.
1160
+ """)
1161
  return
1162
 
1163
 
1164
+ @app.cell
1165
  def _(IntAddition, ListConcatentation, length):
1166
+ lista = ListConcatentation([1, 2])
1167
+ listb = ListConcatentation([3, 4])
1168
 
1169
 
1170
+ length(ListConcatentation.compose(lista, listb)) == IntAddition.compose(
1171
+ length(lista), length(listb)
1172
  )
1173
+ return lista, listb
1174
+
1175
+
1176
+ @app.cell(hide_code=True)
1177
+ def _(md):
1178
+ md("""
1179
+ This ensures that the length of the concatenation of two lists is the same as the sum of the lengths of the individual lists.
1180
+ """)
1181
  return
1182
 
1183
 
 
1223
  @app.cell(hide_code=True)
1224
  def _():
1225
  from abc import abstractmethod, ABC
1226
+ return ABC, abstractmethod
 
 
 
 
 
 
 
 
1227
 
1228
 
1229
  @app.cell(hide_code=True)
1230
  def _(TypeVar):
 
 
1231
  c = TypeVar("c")
1232
+ return (c,)
1233
 
1234
 
1235
  if __name__ == "__main__":