Akshay Agrawal commited on
Commit
cb50f45
·
1 Parent(s): c214ac4

update notebooks

Browse files
Python/006_dictionaries.py CHANGED
@@ -15,17 +15,17 @@ app = marimo.App()
15
  def _(mo):
16
  mo.md(
17
  """
18
- # 📚 Python Dictionaries
19
 
20
- Welcome to the world of Python dictionaries where data gets organized with keys!
21
 
22
- ## Creating Dictionaries
23
- Dictionaries are collections of key-value pairs. Here's how to create them:
24
 
25
  ```python
26
- simple_dict = {"name": "Alice", "age": 25} # direct creation
27
- empty_dict = dict() # empty dictionary
28
- from_pairs = dict([("a", 1), ("b", 2)]) # from key-value pairs
29
  ```
30
 
31
  Below is a sample dictionary we'll use to explore operations.
@@ -50,10 +50,23 @@ def _():
50
  def _(mo):
51
  mo.md(
52
  """
53
- ## Basic Dictionary Operations
54
 
55
  Let's explore how to work with dictionaries.
56
- Try modifying the `sample_dict` above and watch how the results change!
 
 
 
 
 
 
 
 
 
 
 
 
 
57
  """
58
  )
59
  return
@@ -61,35 +74,29 @@ def _(mo):
61
 
62
  @app.cell
63
  def _(sample_dict):
64
- # Accessing values of the dictionary
65
- def access_dict():
66
- print(f"Name: {sample_dict['name']}")
67
- print(f"Year: {sample_dict['year']}")
68
 
69
 
70
- access_dict()
71
- return (access_dict,)
 
 
72
 
73
 
74
  @app.cell
75
  def _(sample_dict):
76
- # Safe access with get()
77
- def safe_access():
78
- print(f"Version: {sample_dict.get('version', 'Not specified')}")
79
- print(f"Type: {sample_dict.get('type', 'Unknown')}")
80
-
81
-
82
- safe_access()
83
- return (safe_access,)
84
 
85
 
86
  @app.cell(hide_code=True)
87
  def _(mo):
88
  mo.md(
89
  """
90
- ## Dictionary Methods
91
 
92
- Python dictionaries come with powerful built-in methods:
93
  """
94
  )
95
  return
@@ -97,20 +104,24 @@ def _(mo):
97
 
98
  @app.cell
99
  def _(sample_dict):
100
- # Viewing dictionary components
101
- def view_components():
102
- print("Keys:", list(sample_dict.keys()))
103
- print("Values:", list(sample_dict.values()))
104
- print("Items:", list(sample_dict.items()))
 
 
 
105
 
106
 
107
- view_components()
108
- return (view_components,)
 
 
109
 
110
 
111
  @app.cell
112
  def _():
113
- # Modifying dictionaries
114
  def demonstrate_modification():
115
  _dict = {"a": 1, "b": 2}
116
  print("Original:", _dict)
@@ -132,7 +143,7 @@ def _():
132
  def _(mo):
133
  mo.md(
134
  """
135
- ## Dictionary Comprehension
136
 
137
  Create dictionaries efficiently with dictionary comprehensions:
138
  """
@@ -142,26 +153,21 @@ def _(mo):
142
 
143
  @app.cell
144
  def _():
145
- # Dictionary comprehension examples
146
- def demonstrate_comprehension():
147
- # Squares dictionary
148
- _squares = {x: x**2 for x in range(5)}
149
- print("Squares:", _squares)
150
-
151
- # Filtered dictionary
152
- _even_squares = {x: x**2 for x in range(5) if x % 2 == 0}
153
- print("Even squares:", _even_squares)
154
 
155
 
156
- demonstrate_comprehension()
157
- return (demonstrate_comprehension,)
 
 
158
 
159
 
160
  @app.cell(hide_code=True)
161
  def _(mo):
162
  mo.md(
163
  """
164
- ## Nested Dictionaries
165
 
166
  Dictionaries can contain other dictionaries, creating complex data structures:
167
  """
@@ -189,40 +195,22 @@ def _():
189
 
190
 
191
  @app.cell
192
- def _(nested_data):
193
- # Accessing nested data
194
- def access_nested():
195
- print("Alice's age:", nested_data["users"]["alice"]["age"])
196
- print("Bob's interests:", nested_data["users"]["bob"]["interests"])
197
-
198
- # Safe nested access
199
- def _get_nested(data, *keys, default=None):
200
- _current = data
201
- for _key in keys:
202
- if isinstance(_current, dict):
203
- _current = _current.get(_key, default)
204
- else:
205
- return default
206
- return _current
207
-
208
- print("\nSafe access example:")
209
- print(
210
- "Charlie's age:",
211
- _get_nested(
212
- nested_data, "users", "charlie", "age", default="Not found"
213
- ),
214
- )
215
-
216
-
217
- access_nested()
218
- return (access_nested,)
219
 
220
 
221
  @app.cell(hide_code=True)
222
  def _(mo):
223
  mo.md(
224
  """
225
- ## Common Dictionary Patterns
226
 
227
  Here are some useful patterns when working with dictionaries:
228
 
@@ -250,25 +238,6 @@ def _(mo):
250
  return
251
 
252
 
253
- @app.cell(hide_code=True)
254
- def _(mo):
255
- callout_text = mo.md("""
256
- ## Master the Dictionary!
257
-
258
- Next Steps:
259
-
260
- - Practice different dictionary methods
261
- - Try creating nested data structures
262
- - Experiment with dictionary comprehensions
263
- - Build something using common patterns
264
-
265
- Keep organizing your data! 🗂️✨
266
- """)
267
-
268
- mo.callout(callout_text, kind="success")
269
- return (callout_text,)
270
-
271
-
272
  @app.cell
273
  def _():
274
  import marimo as mo
 
15
  def _(mo):
16
  mo.md(
17
  """
18
+ # 📚 Dictionaries
19
 
20
+ Dictionaries are collections of key-value pairs, with each key associated with a value. The keys are unique, meaning they show up only once.
21
 
22
+ ## Creating dictionaries
23
+ Here are a few ways to create dictionaries:
24
 
25
  ```python
26
+ simple_dict = {"name": "Alice", "age": 25}
27
+ empty_dict = dict()
28
+ from_pairs = dict([("a", 1), ("b", 2)])
29
  ```
30
 
31
  Below is a sample dictionary we'll use to explore operations.
 
50
  def _(mo):
51
  mo.md(
52
  """
53
+ ## Operations
54
 
55
  Let's explore how to work with dictionaries.
56
+
57
+ **Try it!** Try modifying the `sample_dict` above and watch how the results change!
58
+ """
59
+ )
60
+ return
61
+
62
+
63
+ @app.cell(hide_code=True)
64
+ def _(mo):
65
+ mo.md(
66
+ r"""
67
+ ### Accessing values by key
68
+
69
+ Access values by key using square brackets, like below
70
  """
71
  )
72
  return
 
74
 
75
  @app.cell
76
  def _(sample_dict):
77
+ sample_dict['name'], sample_dict['year']
78
+ return
 
 
79
 
80
 
81
+ @app.cell(hide_code=True)
82
+ def _(mo):
83
+ mo.md(r"""If you're not sure if a dictionary has a given key, use `get()`:""")
84
+ return
85
 
86
 
87
  @app.cell
88
  def _(sample_dict):
89
+ sample_dict.get("version", "Not specified"), sample_dict.get("type", "Unknown")
90
+ return
 
 
 
 
 
 
91
 
92
 
93
  @app.cell(hide_code=True)
94
  def _(mo):
95
  mo.md(
96
  """
97
+ ## Enumerating dictionary contents
98
 
99
+ Python dictionaries come with helpful methods to enumerate keys, values, and pairs.
100
  """
101
  )
102
  return
 
104
 
105
  @app.cell
106
  def _(sample_dict):
107
+ print(list(sample_dict.keys()))
108
+ return
109
+
110
+
111
+ @app.cell
112
+ def _(sample_dict):
113
+ print(list(sample_dict.values()))
114
+ return
115
 
116
 
117
+ @app.cell
118
+ def _(sample_dict):
119
+ print(list(sample_dict.items()))
120
+ return
121
 
122
 
123
  @app.cell
124
  def _():
 
125
  def demonstrate_modification():
126
  _dict = {"a": 1, "b": 2}
127
  print("Original:", _dict)
 
143
  def _(mo):
144
  mo.md(
145
  """
146
+ ## Dictionary comprehension
147
 
148
  Create dictionaries efficiently with dictionary comprehensions:
149
  """
 
153
 
154
  @app.cell
155
  def _():
156
+ print({x: x**2 for x in range(5)})
157
+ return
 
 
 
 
 
 
 
158
 
159
 
160
+ @app.cell
161
+ def _():
162
+ print({x: x**2 for x in range(5) if x % 2 == 0})
163
+ return
164
 
165
 
166
  @app.cell(hide_code=True)
167
  def _(mo):
168
  mo.md(
169
  """
170
+ ## Nested dictionaries
171
 
172
  Dictionaries can contain other dictionaries, creating complex data structures:
173
  """
 
195
 
196
 
197
  @app.cell
198
+ def _(mo, nested_data):
199
+ mo.md(f"Alice's age: {nested_data["users"]["alice"]["age"]}")
200
+ return
201
+
202
+
203
+ @app.cell
204
+ def _(mo, nested_data):
205
+ mo.md(f"Bob's interests: {nested_data["users"]["bob"]["interests"]}")
206
+ return
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
207
 
208
 
209
  @app.cell(hide_code=True)
210
  def _(mo):
211
  mo.md(
212
  """
213
+ ## Common dictionary patterns
214
 
215
  Here are some useful patterns when working with dictionaries:
216
 
 
238
  return
239
 
240
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
241
  @app.cell
242
  def _():
243
  import marimo as mo
Python/007_advanced_collections.py CHANGED
@@ -7,27 +7,22 @@
7
 
8
  import marimo
9
 
10
- __generated_with = "0.10.14"
11
  app = marimo.App()
12
 
13
 
14
- @app.cell
15
- def _():
16
- import marimo as mo
17
- return (mo,)
18
-
19
-
20
  @app.cell(hide_code=True)
21
  def _(mo):
22
  mo.md(
23
  """
24
- # 🔄 Advanced Collections in Python
25
 
26
- Let's dive deep into advanced collection handling in Python!
27
 
28
- ## Lists of Dictionaries
29
- A common pattern in data handling is working with lists of dictionaries -
30
- perfect for representing structured data like records or entries.
 
31
  """
32
  )
33
  return
@@ -48,10 +43,10 @@ def _():
48
  def _(mo):
49
  mo.md(
50
  """
51
- ## Working with Lists of Dictionaries
52
-
53
  Let's explore common operations on structured data.
54
- Try modifying the `users_data` above and see how the results change!
 
 
55
  """
56
  )
57
  return
@@ -60,18 +55,22 @@ def _(mo):
60
  @app.cell
61
  def _(users_data):
62
  # Finding users with specific skills
63
- python_users = [user["name"] for user in users_data if "Python" in user["skills"]]
 
 
64
  print("Python developers:", python_users)
65
  return (python_users,)
66
 
67
 
68
  @app.cell(hide_code=True)
69
  def _(mo):
70
- mo.md("""
 
71
  ## Nested Data Structures
72
 
73
  Python collections can be nested in various ways to represent complex data:
74
- """)
 
75
  return
76
 
77
 
@@ -110,11 +109,13 @@ def _(project_data):
110
 
111
  @app.cell(hide_code=True)
112
  def _(mo):
113
- mo.md("""
114
- ## Data Transformation
 
115
 
116
  Let's explore how to transform and reshape collection data:
117
- """)
 
118
  return
119
 
120
 
@@ -148,10 +149,11 @@ def _(sales_data):
148
 
149
  @app.cell(hide_code=True)
150
  def _(mo):
151
- mo.md("""
152
- ## Collection Utilities
 
153
 
154
- Python's collections module provides specialized container datatypes:
155
 
156
  ```python
157
  from collections import defaultdict, Counter, deque
@@ -169,7 +171,8 @@ def _(mo):
169
  history = deque(maxlen=10) # Only keeps last 10 items
170
  history.append(item)
171
  ```
172
- """)
 
173
  return
174
 
175
 
@@ -191,20 +194,21 @@ def _():
191
 
192
  @app.cell(hide_code=True)
193
  def _(mo):
194
- callout_text = mo.md("""
195
- ## Level Up Your Collections!
196
-
197
- Next Steps:
198
 
199
- - Practice transforming complex data structures
200
- - Experiment with different collection types
201
- - Try combining multiple data structures
 
 
202
 
203
- Keep organizing! 📊✨
204
- """)
205
 
206
- mo.callout(callout_text, kind="success")
207
- return (callout_text,)
 
 
208
 
209
 
210
  if __name__ == "__main__":
 
7
 
8
  import marimo
9
 
10
+ __generated_with = "0.10.19"
11
  app = marimo.App()
12
 
13
 
 
 
 
 
 
 
14
  @app.cell(hide_code=True)
15
  def _(mo):
16
  mo.md(
17
  """
18
+ # 🔄 Advanced Collections
19
 
20
+ This tutorials hows advanced patterns for working with collections.
21
 
22
+ ## Lists of dictionaries
23
+
24
+ A common pattern in data handling is working with lists of dictionaries:
25
+ this is helpful for representing structured data like records or entries.
26
  """
27
  )
28
  return
 
43
  def _(mo):
44
  mo.md(
45
  """
 
 
46
  Let's explore common operations on structured data.
47
+
48
+ **Try it!** Try modifying the `users_data` above and see how the results
49
+ change!
50
  """
51
  )
52
  return
 
55
  @app.cell
56
  def _(users_data):
57
  # Finding users with specific skills
58
+ python_users = [
59
+ user["name"] for user in users_data if "Python" in user["skills"]
60
+ ]
61
  print("Python developers:", python_users)
62
  return (python_users,)
63
 
64
 
65
  @app.cell(hide_code=True)
66
  def _(mo):
67
+ mo.md(
68
+ """
69
  ## Nested Data Structures
70
 
71
  Python collections can be nested in various ways to represent complex data:
72
+ """
73
+ )
74
  return
75
 
76
 
 
109
 
110
  @app.cell(hide_code=True)
111
  def _(mo):
112
+ mo.md(
113
+ """
114
+ ### Example: data transformation
115
 
116
  Let's explore how to transform and reshape collection data:
117
+ """
118
+ )
119
  return
120
 
121
 
 
149
 
150
  @app.cell(hide_code=True)
151
  def _(mo):
152
+ mo.md(
153
+ """
154
+ ## More collection utilities
155
 
156
+ Python's `collections` module provides specialized container datatypes:
157
 
158
  ```python
159
  from collections import defaultdict, Counter, deque
 
171
  history = deque(maxlen=10) # Only keeps last 10 items
172
  history.append(item)
173
  ```
174
+ """
175
+ )
176
  return
177
 
178
 
 
194
 
195
  @app.cell(hide_code=True)
196
  def _(mo):
197
+ mo.md(
198
+ """
199
+ ## Next steps
 
200
 
201
+ For a reference on the `collections` module, see [the official Python
202
+ docs](https://docs.python.org/3/library/collections.html).
203
+ """
204
+ )
205
+ return
206
 
 
 
207
 
208
+ @app.cell
209
+ def _():
210
+ import marimo as mo
211
+ return (mo,)
212
 
213
 
214
  if __name__ == "__main__":
Python/008_functions.py CHANGED
@@ -7,57 +7,69 @@
7
 
8
  import marimo
9
 
10
- __generated_with = "0.10.16"
11
  app = marimo.App()
12
 
13
 
14
- @app.cell
15
- def _():
16
- import marimo as mo
17
- return (mo,)
18
-
19
-
20
  @app.cell(hide_code=True)
21
  def _(mo):
22
  mo.md(
23
  """
24
- # 🧩 Function Design in Python
25
 
26
- Dive into the world of Python functions — where code becomes modular and powerful!
27
 
28
- ## Function Basics
29
- Functions help you:
30
 
31
- - Break down complex problems
 
 
 
 
 
 
 
 
 
 
32
 
33
- - Create reusable code blocks
34
 
35
- - Improve code readability (good practice)
 
 
 
36
 
37
- ```python
38
- def function_name(parameters):
39
- '''Docstring explaining the function'''
40
- # Function body
41
- return result
42
- ```
 
 
43
  """
44
  )
45
  return
46
 
47
 
48
  @app.cell
49
- def _():
50
- # Example function with parameter
51
- def greet(name):
52
- return f"Hello, {name}!"
53
 
54
- name = "Python Learner"
55
- return greet, name
56
 
 
 
 
 
 
57
 
58
- @app.cell
59
- def _(greet, name):
60
- greet(name)
 
 
61
  return
62
 
63
 
@@ -65,7 +77,7 @@ def _(greet, name):
65
  def _(mo):
66
  mo.md(
67
  """
68
- ## Default Parameters
69
  Make your functions more flexible by providing default values.
70
  """
71
  )
@@ -74,21 +86,30 @@ def _(mo):
74
 
75
  @app.cell
76
  def _():
77
- # Function with default parameter
78
  def create_profile(name, age=18):
79
  return f"{name} is {age} years old"
 
 
80
 
 
 
81
  # Example usage
82
  example_name = "Alex"
83
  example_profile = create_profile(example_name)
84
  example_profile
85
- return create_profile, example_name, example_profile
 
 
 
 
 
 
86
 
87
 
88
  @app.cell
89
  def _():
90
- # Show closure over values
91
  base_multiplier = 2
 
92
  def multiplier(x):
93
  """
94
  Create a function that multiplies input by a base value.
@@ -97,49 +118,12 @@ def _():
97
  values from their surrounding scope.
98
  """
99
  return x * base_multiplier
100
-
101
- # Example of using the closure
102
- sample_numbers = [1, 2, 3, 4, 5]
103
- multiplied_numbers = [multiplier(num) for num in sample_numbers]
104
- print(multiplied_numbers)
105
- return base_multiplier, multiplied_numbers, multiplier, sample_numbers
106
 
107
 
108
  @app.cell
109
- def _():
110
- def calculate(a, b):
111
- """
112
- Perform multiple calculations on two numbers.
113
-
114
- Args:
115
- a (int): First number
116
- b (int): Second number
117
-
118
- Returns:
119
- dict: Results of various calculations
120
- """
121
- return {
122
- "sum": a + b,
123
- "product": a * b,
124
- "difference": a - b,
125
- "max": max(a, b)
126
- }
127
-
128
- # Example usage with concrete values
129
- first_number = 10
130
- second_number = 5
131
- result = calculate(first_number, second_number)
132
- return calculate, first_number, result, second_number
133
-
134
-
135
- @app.cell(hide_code=True)
136
- def _(mo, result):
137
- mo.md(f"""
138
- ## Function Results
139
-
140
- Calculation Results:
141
- {result}
142
- """)
143
  return
144
 
145
 
@@ -147,16 +131,10 @@ def _(mo, result):
147
  def _(mo):
148
  mo.md(
149
  """
150
- ## Multiple Return Values
151
- Python allows returning multiple values easily:
152
-
153
- ```python
154
- def multiple_returns():
155
- return value1, value2, value3
156
 
157
- # Unpacking returns
158
- x, y, z = multiple_returns()
159
- ```
160
  """
161
  )
162
  return
@@ -182,47 +160,26 @@ def _():
182
  return "Mild", "Comfortable clothing", "Low"
183
  else:
184
  return "Hot", "Stay hydrated", "High"
 
185
 
186
- # Example temperature analysis
187
- temperature = 25
188
- status, recommendation, warning_level = weather_analysis(temperature)
189
- return (
190
- recommendation,
191
- status,
192
- temperature,
193
- warning_level,
194
- weather_analysis,
195
- )
196
 
 
 
 
 
197
 
198
- @app.cell(hide_code=True)
199
- def _(mo, recommendation, status, warning_level):
200
- mo.md(f"""
201
- ## Function Results
202
-
203
- Calculation Results:
204
- {status}, {recommendation}, {warning_level}
205
- """)
206
- return
207
-
208
-
209
- @app.cell(hide_code=True)
210
- def _(mo):
211
- callout_text = mo.md("""
212
- ## Your Function Design Journey!
213
-
214
- Next Steps:
215
-
216
- - Practice creating functions
217
-
218
- - Experiment with default parameters
219
 
220
- - Explore multiple return values
 
 
 
 
221
 
222
- """)
223
 
224
- mo.callout(callout_text, kind="success")
225
- return (callout_text,)
 
 
226
 
227
 
228
  if __name__ == "__main__":
 
7
 
8
  import marimo
9
 
10
+ __generated_with = "0.10.19"
11
  app = marimo.App()
12
 
13
 
 
 
 
 
 
 
14
  @app.cell(hide_code=True)
15
  def _(mo):
16
  mo.md(
17
  """
18
+ # 🧩 Functions
19
 
20
+ This tutorial is about an important topic: **functions.**
21
 
22
+ A function is a reusable block of code, similar in spirit to a mathematical function. Each function has a **name**, and accepts some number of **arguments**. These arguments are used in the function "body" (its block of code), and each function can **return** values.
 
23
 
24
+ **Example.** Below is an example function.
25
+ """
26
+ )
27
+ return
28
+
29
+
30
+ @app.cell
31
+ def _():
32
+ def greet(your_name):
33
+ return f"Hello, {your_name}!"
34
+ return (greet,)
35
 
 
36
 
37
+ @app.cell(hide_code=True)
38
+ def _(mo):
39
+ mo.md(r"""The keyword `def` starts the function definition. The function's **name** is `greet`. It accepts one **argument** called `your_name`. It then creates a string and **returns** it.""")
40
+ return
41
 
42
+
43
+ @app.cell(hide_code=True)
44
+ def _(mo):
45
+ mo.md(
46
+ """
47
+ In the next cell, we **call** the function with a value and assign its return value to a variable.
48
+
49
+ **Try it!** Try changing the input to the function.
50
  """
51
  )
52
  return
53
 
54
 
55
  @app.cell
56
+ def _(greet):
57
+ greeting = greet(your_name="<your name here>")
58
+ greeting
59
+ return (greeting,)
60
 
 
 
61
 
62
+ @app.cell(hide_code=True)
63
+ def _(mo):
64
+ mo.md(
65
+ """
66
+ **Why use functions?** Functions help you:
67
 
68
+ - Break down complex problems
69
+ - Create reusable code blocks
70
+ - Improve code readability
71
+ """
72
+ )
73
  return
74
 
75
 
 
77
  def _(mo):
78
  mo.md(
79
  """
80
+ ## Default parameters
81
  Make your functions more flexible by providing default values.
82
  """
83
  )
 
86
 
87
  @app.cell
88
  def _():
 
89
  def create_profile(name, age=18):
90
  return f"{name} is {age} years old"
91
+ return (create_profile,)
92
+
93
 
94
+ @app.cell
95
+ def _(create_profile):
96
  # Example usage
97
  example_name = "Alex"
98
  example_profile = create_profile(example_name)
99
  example_profile
100
+ return example_name, example_profile
101
+
102
+
103
+ @app.cell(hide_code=True)
104
+ def _(mo):
105
+ mo.md("""You can also create functions that reference variables outside the function body. This is called 'closing over' variables""")
106
+ return
107
 
108
 
109
  @app.cell
110
  def _():
 
111
  base_multiplier = 2
112
+
113
  def multiplier(x):
114
  """
115
  Create a function that multiplies input by a base value.
 
118
  values from their surrounding scope.
119
  """
120
  return x * base_multiplier
121
+ return base_multiplier, multiplier
 
 
 
 
 
122
 
123
 
124
  @app.cell
125
+ def _(multiplier):
126
+ print([multiplier(num) for num in [1, 2, 3]])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
127
  return
128
 
129
 
 
131
  def _(mo):
132
  mo.md(
133
  """
134
+ ## Returning multiple values
 
 
 
 
 
135
 
136
+ Functions can return multiple values: just separate the values to return by
137
+ commas. Check out the next cell for an example.
 
138
  """
139
  )
140
  return
 
160
  return "Mild", "Comfortable clothing", "Low"
161
  else:
162
  return "Hot", "Stay hydrated", "High"
163
+ return (weather_analysis,)
164
 
 
 
 
 
 
 
 
 
 
 
165
 
166
+ @app.cell
167
+ def _():
168
+ temperature = 25
169
+ return (temperature,)
170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
171
 
172
+ @app.cell
173
+ def _(temperature, weather_analysis):
174
+ status, recommendation, warning_level = weather_analysis(temperature)
175
+ status, recommendation, warning_level
176
+ return recommendation, status, warning_level
177
 
 
178
 
179
+ @app.cell
180
+ def _():
181
+ import marimo as mo
182
+ return (mo,)
183
 
184
 
185
  if __name__ == "__main__":
Python/{009_modular_programming.py → 009_modules.py} RENAMED
@@ -7,29 +7,21 @@
7
 
8
  import marimo
9
 
10
- __generated_with = "0.10.16"
11
  app = marimo.App()
12
 
13
 
14
- @app.cell
15
- def _():
16
- import marimo as mo
17
- return (mo,)
18
-
19
-
20
  @app.cell(hide_code=True)
21
  def _(mo):
22
  mo.md(
23
  """
24
- # 🧩 Modular Programming in Python
25
 
26
- Unlock the power of organized, reusable, and maintainable code!
 
27
 
28
- ## Why Modular Programming?
29
- - Break complex problems into smaller, manageable pieces
30
- - Improve code readability
31
- - Enhance code reusability
32
- - Easier debugging and maintenance
33
  """
34
  )
35
  return
@@ -39,8 +31,9 @@ def _(mo):
39
  def _(mo):
40
  mo.md(
41
  """
42
- ## Standard Library Imports
43
- Python's standard library provides powerful, pre-built modules:
 
44
 
45
  ```python
46
  # String manipulation
@@ -56,15 +49,20 @@ def _(mo):
56
  import math
57
  ```
58
 
59
- For more details, check the [Python Standard Library Documentation](https://docs.python.org/3/library/)
60
  """
61
  )
62
  return
63
 
64
 
 
 
 
 
 
 
65
  @app.cell
66
  def _():
67
- # importing and using standard library modules
68
  import string
69
  import os
70
  import datetime
@@ -108,8 +106,9 @@ def _():
108
  def _(mo):
109
  mo.md(
110
  """
111
- ## Import Strategies
112
- Multiple ways to import and use modules:
 
113
 
114
  ```python
115
  # Import entire module
@@ -160,8 +159,16 @@ def _():
160
  def _(mo):
161
  mo.md(
162
  """
163
- ## Code Reusability
164
- Create functions that can be used across different parts of your project
 
 
 
 
 
 
 
 
165
  """
166
  )
167
  return
@@ -169,64 +176,8 @@ def _(mo):
169
 
170
  @app.cell
171
  def _():
172
- def generate_reusable_functions():
173
- """
174
- Demonstrate different types of reusable functions
175
- """
176
-
177
- def process_text(text):
178
- '''Reusable text processing function'''
179
- return text.strip().lower()
180
-
181
- def normalize_number(value, min_val=0, max_val=100):
182
- '''Normalize a number to a specific range'''
183
- return max(min_val, min(max_val, value))
184
-
185
- def validate_input(value, type_check=str, min_length=1):
186
- '''Validate input based on type and minimum length'''
187
- if not isinstance(value, type_check):
188
- return False
189
- return len(str(value)) >= min_length
190
-
191
- # usage
192
- return {
193
- "Text Processing": {
194
- "Example 1": process_text(" John Doe "),
195
- "Example 2": process_text(" [email protected] ")
196
- },
197
- "Number Normalization": {
198
- "Oversized Input": normalize_number(150),
199
- "Negative Input": normalize_number(-10, min_val=-20, max_val=50)
200
- },
201
- "Input Validation": {
202
- "Username Validation": validate_input("john"),
203
- "Age Validation": validate_input(25, type_check=int)
204
- }
205
- }
206
-
207
- # Run the reusable functions demonstration
208
- reusable_function_examples = generate_reusable_functions()
209
- reusable_function_examples
210
- return generate_reusable_functions, reusable_function_examples
211
-
212
-
213
- @app.cell(hide_code=True)
214
- def _(mo):
215
- callout_text = mo.md("""
216
- ## Your Modular Programming Journey!
217
-
218
- Next Steps:
219
-
220
- - Explore Python's standard library
221
-
222
- - Practice different import strategies
223
-
224
- - Design reusable functions
225
-
226
- """)
227
-
228
- mo.callout(callout_text, kind="success")
229
- return (callout_text,)
230
 
231
 
232
  if __name__ == "__main__":
 
7
 
8
  import marimo
9
 
10
+ __generated_with = "0.10.19"
11
  app = marimo.App()
12
 
13
 
 
 
 
 
 
 
14
  @app.cell(hide_code=True)
15
  def _(mo):
16
  mo.md(
17
  """
18
+ # 🧩 Using modules
19
 
20
+ A `module` in Python is a Python file that defines functions and variables. Modules can be `imported` into other Python files, letting you reuse their
21
+ functions and variables.
22
 
23
+ We have already seen some modules in previous tutorials, including the `math`
24
+ module. Python comes with many other modules built-in.
 
 
 
25
  """
26
  )
27
  return
 
31
  def _(mo):
32
  mo.md(
33
  """
34
+ ## The Python standard library
35
+
36
+ Python's "standard library" provides many modules, for many kinds of tasks.
37
 
38
  ```python
39
  # String manipulation
 
49
  import math
50
  ```
51
 
52
+ See the [Python standard library documentation](https://docs.python.org/3/library/) for a full reference
53
  """
54
  )
55
  return
56
 
57
 
58
+ @app.cell(hide_code=True)
59
+ def _(mo):
60
+ mo.md("""### Example""")
61
+ return
62
+
63
+
64
  @app.cell
65
  def _():
 
66
  import string
67
  import os
68
  import datetime
 
106
  def _(mo):
107
  mo.md(
108
  """
109
+ ## Import syntax
110
+
111
+ You can import entire modules, and access their functions and variables using dot notation (`math.sqrt`). Or you can import specific members:
112
 
113
  ```python
114
  # Import entire module
 
159
  def _(mo):
160
  mo.md(
161
  """
162
+ ## Third-party packages
163
+
164
+ In addition to Python's standard library, there are hundreds of thousands of
165
+ modules available for free on the Python Package index.
166
+
167
+ These are distributed as Python "packages", and include packages for
168
+ manipulating arrays of numbers, creating web applications, and more. `marimo`
169
+ itself is a third-party package!
170
+
171
+ For installing packages on your machine, we recommend using the [`uv` package manager](https://docs.astral.sh/uv/).
172
  """
173
  )
174
  return
 
176
 
177
  @app.cell
178
  def _():
179
+ import marimo as mo
180
+ return (mo,)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
181
 
182
 
183
  if __name__ == "__main__":
Python/010_exceptions.py CHANGED
@@ -7,44 +7,78 @@
7
 
8
  import marimo
9
 
10
- __generated_with = "0.10.16"
11
  app = marimo.App()
12
 
13
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  @app.cell
15
  def _():
16
- import marimo as mo
17
- return (mo,)
18
 
19
 
20
  @app.cell(hide_code=True)
21
  def _(mo):
22
  mo.md(
23
  """
24
- # 🛡️ Error Management in Python
 
 
 
 
 
 
 
25
 
26
- Welcome to the world of Python error handling - where bugs become learning opportunities!
27
 
28
- ## Why Error Handling Matters
29
- Imagine your code as a superhero navigating through the treacherous landscape of potential problems.
30
- Error handling is like your hero's shield, protecting your program from unexpected challenges.
 
 
31
 
32
- ```python
33
- # Without error handling
34
- result = 10 / 0 # 💥 Boom! Unhandled ZeroDivisionError
35
 
36
- # With error handling
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
  try:
38
- result = 10 / 0
39
- except ZeroDivisionError:
40
- result = "Oops! Can't divide by zero 🛑"
41
  ```
42
  """
43
  )
44
  return
45
 
46
 
47
- @app.cell
48
  def _(error_types):
49
  error_types
50
  return
@@ -54,6 +88,7 @@ def _(error_types):
54
  def _(mo):
55
  # Choose error type
56
  error_types = mo.ui.dropdown(
 
57
  options=[
58
  "ZeroDivisionError",
59
  "TypeError",
@@ -61,7 +96,7 @@ def _(mo):
61
  "IndexError",
62
  "KeyError"
63
  ],
64
- label="Select an Error Type to Explore"
65
  )
66
  return (error_types,)
67
 
@@ -122,58 +157,12 @@ def _(error_types, mo):
122
  return (error_explanations,)
123
 
124
 
125
- @app.cell
126
- def _(division_input, divisor_input, mo):
127
- mo.hstack([division_input, divisor_input])
128
- return
129
-
130
-
131
  @app.cell(hide_code=True)
132
  def _(mo):
133
- # Try-Except work help
134
- division_input = mo.ui.number(
135
- value=10,
136
- label="Number to Divide",
137
- start=-100,
138
- stop=100
139
- )
140
- divisor_input = mo.ui.number(
141
- value=0,
142
- label="Divisor",
143
- start=-100,
144
- stop=100
145
- )
146
- return division_input, divisor_input
147
-
148
-
149
- @app.cell
150
- def _(division_input, divisor_input, mo):
151
- # Safe division function with appropriate error handling
152
- def safe_divide(numerator, denominator):
153
- try:
154
- _result = numerator / denominator
155
- return f"Result: {_result}"
156
- except ZeroDivisionError:
157
- return "🚫 Cannot divide by zero!"
158
- except Exception as e:
159
- return f"Unexpected error: {e}"
160
-
161
- # Display result with explanation
162
- _result = safe_divide(division_input.value, divisor_input.value)
163
-
164
- mo.hstack([
165
- mo.md(f"**Division**: {division_input.value} ÷ {divisor_input.value}"),
166
- mo.md(f"**Result**: {_result}")
167
- ])
168
- return (safe_divide,)
169
-
170
-
171
- @app.cell
172
- def _(mo):
173
- # Multiple Exception Handling
174
  mo.md(
175
  """
176
- ## Multiple Exception Handling
 
177
  Catch and handle different types of errors specifically:
178
 
179
  ```python
@@ -188,64 +177,28 @@ def _(mo):
188
  return "No division by zero!"
189
  except ValueError:
190
  return "Conversion error!"
 
 
 
 
 
191
  ```
192
  """
193
  )
194
  return
195
 
196
 
197
- @app.cell
198
- def _(error_chain_input):
199
- error_chain_input
200
- return
201
-
202
-
203
- @app.cell
204
- def _(mo):
205
- # Try it out
206
- error_chain_input = mo.ui.text(
207
- label="Try to break the code",
208
- placeholder="Enter something tricky..."
209
- )
210
- return (error_chain_input,)
211
-
212
-
213
- @app.cell
214
- def _(error_chain_input, mo):
215
- # Error chain demonstration
216
- def tricky_function(input_str):
217
- try:
218
- # Simulating a error scenario
219
- number = int(input_str)
220
- result = 100 / number
221
- return f"Success! Result: {result}"
222
- except ValueError:
223
- return "❌ Could not convert to number"
224
- except ZeroDivisionError:
225
- return "❌ Cannot divide by zero"
226
- except Exception as e:
227
- return f"🤯 Unexpected error: {type(e).__name__}"
228
-
229
- result = tricky_function(error_chain_input.value)
230
-
231
- mo.hstack([
232
- mo.md(f"**Input**: {error_chain_input.value}"),
233
- mo.md(f"**Result**: {result}")
234
- ])
235
- return result, tricky_function
236
-
237
-
238
- @app.cell
239
  def _(finally_input):
240
  finally_input
241
  return
242
 
243
 
244
- @app.cell
245
  def _(mo):
246
  # Finally Block Demonstration
247
  finally_input = mo.ui.switch(
248
- label="Simulate Resource Management",
249
  value=True
250
  )
251
  return (finally_input,)
@@ -256,7 +209,7 @@ def _(finally_input, mo):
256
  def simulate_resource_management():
257
  try:
258
  # Simulating a resource-intensive operation
259
- if finally_input.value:
260
  return "🟢 Resource processing successful"
261
  else:
262
  raise Exception("Simulated failure")
@@ -265,12 +218,13 @@ def _(finally_input, mo):
265
  finally:
266
  return "📦 Resource cleanup completed"
267
 
 
268
  _result = simulate_resource_management()
269
 
270
  mo.md(f"""
271
- ### Resource Management Simulation
272
 
273
- **Scenario**: {'Normal operation' if finally_input.value else 'Error scenario'}
274
 
275
  **Result**: {_result}
276
 
@@ -279,22 +233,10 @@ def _(finally_input, mo):
279
  return (simulate_resource_management,)
280
 
281
 
282
- @app.cell(hide_code=True)
283
- def _(mo):
284
- callout_text = mo.md("""
285
- ## Your Error Handling Journey Continues!
286
-
287
- Next Steps:
288
-
289
- - Practice creating custom exceptions
290
- - Explore context managers
291
- - Build robust error-handling strategies
292
-
293
- You're becoming a Python error-handling ninja! 🥷🐍
294
- """)
295
-
296
- mo.callout(callout_text, kind="success")
297
- return (callout_text,)
298
 
299
 
300
  if __name__ == "__main__":
 
7
 
8
  import marimo
9
 
10
+ __generated_with = "0.10.19"
11
  app = marimo.App()
12
 
13
 
14
+ @app.cell(hide_code=True)
15
+ def _(mo):
16
+ mo.md(
17
+ """
18
+ # 🛡️ Handling errors
19
+
20
+ Sometimes things go wrong in programs. When that happens, Python raises `exceptions` to tell you what went amiss. For example, maybe you divided by 0:
21
+ """
22
+ )
23
+ return
24
+
25
+
26
  @app.cell
27
  def _():
28
+ 1 / 0
29
+ return
30
 
31
 
32
  @app.cell(hide_code=True)
33
  def _(mo):
34
  mo.md(
35
  """
36
+ That's a lot of red! The outputs above are Python telling you that
37
+ something went wrong — in this case, we tried dividing a number by 0.
38
+
39
+ Python provides tools to catch and handle exceptions: the `try/except`
40
+ block. This is demonstrated in the next couple cells.
41
+ """
42
+ )
43
+ return
44
 
 
45
 
46
+ @app.cell
47
+ def _():
48
+ # Try changing the value of divisor below, and see how the output changes.
49
+ divisor = 0
50
+ return (divisor,)
51
 
 
 
 
52
 
53
+ @app.cell
54
+ def _(divisor):
55
+ try:
56
+ print(1 / divisor)
57
+ except ZeroDivisionError as e:
58
+ print("Something went wrong!", e)
59
+ return
60
+
61
+
62
+ @app.cell(hide_code=True)
63
+ def _(mo):
64
+ mo.md(
65
+ """
66
+ Python has many types of Exceptions besides `ZeroDivisionError`. If you
67
+ don't know what kind of exception you're handling, catch the generic
68
+ `Exception` type:
69
+
70
+ ```python
71
  try:
72
+ ...
73
+ except Exception:
74
+ ...
75
  ```
76
  """
77
  )
78
  return
79
 
80
 
81
+ @app.cell(hide_code=True)
82
  def _(error_types):
83
  error_types
84
  return
 
88
  def _(mo):
89
  # Choose error type
90
  error_types = mo.ui.dropdown(
91
+ value="ZeroDivisionError",
92
  options=[
93
  "ZeroDivisionError",
94
  "TypeError",
 
96
  "IndexError",
97
  "KeyError"
98
  ],
99
+ label="Learn about ..."
100
  )
101
  return (error_types,)
102
 
 
157
  return (error_explanations,)
158
 
159
 
 
 
 
 
 
 
160
  @app.cell(hide_code=True)
161
  def _(mo):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
162
  mo.md(
163
  """
164
+ ## Handling multiple exception types
165
+
166
  Catch and handle different types of errors specifically:
167
 
168
  ```python
 
177
  return "No division by zero!"
178
  except ValueError:
179
  return "Conversion error!"
180
+ finally:
181
+ # The `finally` block always runs, regardless if there
182
+ # was an error or not
183
+ ...
184
+
185
  ```
186
  """
187
  )
188
  return
189
 
190
 
191
+ @app.cell(hide_code=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
192
  def _(finally_input):
193
  finally_input
194
  return
195
 
196
 
197
+ @app.cell(hide_code=True)
198
  def _(mo):
199
  # Finally Block Demonstration
200
  finally_input = mo.ui.switch(
201
+ label="Throw an error?",
202
  value=True
203
  )
204
  return (finally_input,)
 
209
  def simulate_resource_management():
210
  try:
211
  # Simulating a resource-intensive operation
212
+ if not finally_input.value:
213
  return "🟢 Resource processing successful"
214
  else:
215
  raise Exception("Simulated failure")
 
218
  finally:
219
  return "📦 Resource cleanup completed"
220
 
221
+
222
  _result = simulate_resource_management()
223
 
224
  mo.md(f"""
225
+ ### Example: the finally clause
226
 
227
+ **Scenario**: {"Normal operation" if not finally_input.value else "An exception was raised"}
228
 
229
  **Result**: {_result}
230
 
 
233
  return (simulate_resource_management,)
234
 
235
 
236
+ @app.cell
237
+ def _():
238
+ import marimo as mo
239
+ return (mo,)
 
 
 
 
 
 
 
 
 
 
 
 
240
 
241
 
242
  if __name__ == "__main__":