Akshay Agrawal commited on
Commit
cdca786
·
unverified ·
2 Parent(s): 0b08ba3 daee87c

Merge pull request #31 from marimo-team/haleshot-02_axioms

Browse files
Files changed (1) hide show
  1. probability/02_axioms.py +214 -0
probability/02_axioms.py ADDED
@@ -0,0 +1,214 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # /// script
2
+ # requires-python = ">=3.11"
3
+ # dependencies = [
4
+ # "marimo",
5
+ # "matplotlib==3.10.0",
6
+ # "numpy==2.2.2",
7
+ # ]
8
+ # ///
9
+
10
+ import marimo
11
+
12
+ __generated_with = "0.11.2"
13
+ app = marimo.App(width="medium")
14
+
15
+
16
+ @app.cell
17
+ def _():
18
+ import marimo as mo
19
+ return (mo,)
20
+
21
+
22
+ @app.cell(hide_code=True)
23
+ def _(mo):
24
+ mo.md(
25
+ r"""
26
+ # Axioms of Probability
27
+
28
+ Probability theory is built on three fundamental axioms, known as the [Kolmogorov axioms](https://en.wikipedia.org/wiki/Probability_axioms). These axioms form
29
+ the mathematical foundation for all of probability theory[<sup>1</sup>](https://chrispiech.github.io/probabilityForComputerScientists/en/part1/probability).
30
+
31
+ Let's explore each axiom and understand why they make intuitive sense:
32
+ """
33
+ )
34
+ return
35
+
36
+
37
+ @app.cell(hide_code=True)
38
+ def _(mo):
39
+ mo.md(
40
+ r"""
41
+ ## The Three Axioms
42
+
43
+ | Axiom | Mathematical Form | Meaning |
44
+ |-------|------------------|----------|
45
+ | **Axiom 1** | $0 \leq P(E) \leq 1$ | All probabilities are between 0 and 1 |
46
+ | **Axiom 2** | $P(S) = 1$ | The probability of the sample space is 1 |
47
+ | **Axiom 3** | $P(E \cup F) = P(E) + P(F)$ | For mutually exclusive events, probabilities add |
48
+
49
+ where the set $S$ is the sample space (all possible outcomes), and $E$ and $F$ are sets that represent events. The notation $P(E)$ denotes the probability of $E$, which you can interpret as the chance that something happens. $P(E) = 0$ means that the event cannot happen, while $P(E) = 1$ means the event will happen no matter what; $P(E) = 0.5$ means that $E$ has a 50% chance of happening.
50
+
51
+ For an example, when rolling a fair six-sided die once, the sample space $S$ is the set of die faces ${1, 2, 3, 4, 5, 6}$, and there are many possible events; we'll see some examples below.
52
+ """
53
+ )
54
+ return
55
+
56
+
57
+ @app.cell(hide_code=True)
58
+ def _(mo):
59
+ mo.md(
60
+ r"""
61
+ ## Understanding Through Examples
62
+
63
+ Let's explore these axioms using a simple experiment: rolling a fair six-sided die.
64
+ We'll use this to demonstrate why each axiom makes intuitive sense.
65
+ """
66
+ )
67
+ return
68
+
69
+
70
+ @app.cell
71
+ def _(event):
72
+ event
73
+ return
74
+
75
+
76
+ @app.cell(hide_code=True)
77
+ def _(mo):
78
+ # Create an interactive widget to explore different events
79
+
80
+ event = mo.ui.dropdown(
81
+
82
+ options=[
83
+
84
+ "Rolling an even number (2,4,6)",
85
+
86
+ "Rolling an odd number (1,3,5)",
87
+
88
+ "Rolling a prime number (2,3,5)",
89
+
90
+ "Rolling less than 4 (1,2,3)",
91
+
92
+ "Any possible roll (1,2,3,4,5,6)",
93
+
94
+ ],
95
+
96
+ value="Rolling an even number (2,4,6)",
97
+
98
+ label="Select an event"
99
+
100
+ )
101
+ return (event,)
102
+
103
+
104
+ @app.cell(hide_code=True)
105
+ def _(event, mo, np, plt):
106
+ # Define the probabilities for each event
107
+ event_map = {
108
+ "Rolling an even number (2,4,6)": [2, 4, 6],
109
+ "Rolling an odd number (1,3,5)": [1, 3, 5],
110
+ "Rolling a prime number (2,3,5)": [2, 3, 5],
111
+ "Rolling less than 4 (1,2,3)": [1, 2, 3],
112
+ "Any possible roll (1,2,3,4,5,6)": [1, 2, 3, 4, 5, 6],
113
+ }
114
+
115
+ # Get outcomes directly from the event value
116
+ outcomes = event_map[event.value]
117
+ prob = len(outcomes) / 6
118
+
119
+ # Visualize the probability
120
+ dice = np.arange(1, 7)
121
+ colors = ['#1f77b4' if d in outcomes else '#d3d3d3' for d in dice]
122
+
123
+ fig, ax = plt.subplots(figsize=(8, 2))
124
+ ax.bar(dice, np.ones_like(dice), color=colors)
125
+ ax.set_xticks(dice)
126
+ ax.set_yticks([])
127
+ ax.set_title(f"P(Event) = {prob:.2f}")
128
+
129
+ # Add explanation
130
+ explanation = mo.md(f"""
131
+ **Event**: {event.value}
132
+
133
+ **Probability**: {prob:.2f}
134
+
135
+ **Favorable outcomes**: {outcomes}
136
+
137
+ This example demonstrates:
138
+
139
+ - Axiom 1: The probability is between 0 and 1
140
+
141
+ - Axiom 2: For the sample space, P(S) = 1
142
+
143
+ - Axiom 3: The probability is the sum of individual outcome probabilities
144
+ """)
145
+
146
+ mo.hstack([plt.gcf(), explanation])
147
+ return ax, colors, dice, event_map, explanation, fig, outcomes, prob
148
+
149
+
150
+ @app.cell(hide_code=True)
151
+ def _(mo):
152
+ mo.md(
153
+ r"""
154
+ ## Why These Axioms Matter
155
+
156
+ These axioms are more than just rules - they provide the foundation for all of probability theory:
157
+
158
+ 1. **Non-negativity** (Axiom 1) makes intuitive sense: you can't have a negative number of occurrences
159
+ in any experiment.
160
+
161
+ 2. **Normalization** (Axiom 2) ensures that something must happen - the total probability must be 1.
162
+
163
+ 3. **Additivity** (Axiom 3) lets us build complex probabilities from simple ones, but only for events
164
+ that can't happen together (mutually exclusive events).
165
+
166
+ From these simple rules, we can derive all the powerful tools of probability theory that are used in
167
+ statistics, machine learning, and other fields.
168
+ """
169
+ )
170
+ return
171
+
172
+
173
+ @app.cell(hide_code=True)
174
+ def _(mo):
175
+ mo.md(
176
+ r"""
177
+ ## 🤔 Test Your Understanding
178
+
179
+ Consider rolling two dice. Which of these statements follow from the axioms?
180
+
181
+ <details>
182
+ <summary>1. P(sum is 13) = 0</summary>
183
+
184
+ ✅ Correct! This follows from Axiom 1. Since no combination of dice can sum to 13,
185
+ the probability must be non-negative but can be 0.
186
+ </details>
187
+
188
+ <details>
189
+ <summary>2. P(sum is 7) + P(sum is not 7) = 1</summary>
190
+
191
+ ✅ Correct! This follows from Axioms 2 and 3. These events are mutually exclusive and cover
192
+ the entire sample space.
193
+ </details>
194
+
195
+ <details>
196
+ <summary>3. P(first die is 6 or second die is 6) = P(first die is 6) + P(second die is 6)</summary>
197
+
198
+ ❌ Incorrect! This doesn't follow from Axiom 3 because the events are not mutually exclusive -
199
+ you could roll (6,6).
200
+ </details>
201
+ """
202
+ )
203
+ return
204
+
205
+
206
+ @app.cell
207
+ def _():
208
+ import numpy as np
209
+ import matplotlib.pyplot as plt
210
+ return np, plt
211
+
212
+
213
+ if __name__ == "__main__":
214
+ app.run()