Spaces:
Running
Running
Commit
·
d417768
1
Parent(s):
0aa6802
refactor(fp): v0.1.1 of notebook 05_functors.py
Browse files- functional_programming/05_functors.py +357 -337
- functional_programming/CHANGELOG.md +25 -0
functional_programming/05_functors.py
CHANGED
@@ -8,7 +8,7 @@
|
|
8 |
import marimo
|
9 |
|
10 |
__generated_with = "0.11.17"
|
11 |
-
app = marimo.App(app_title="Category Theory and Functors"
|
12 |
|
13 |
|
14 |
@app.cell(hide_code=True)
|
@@ -37,7 +37,7 @@ def _(mo):
|
|
37 |
/// details | Notebook metadata
|
38 |
type: info
|
39 |
|
40 |
-
version: 0.1.
|
41 |
reviewer: [Haleshot](https://github.com/Haleshot)
|
42 |
|
43 |
///
|
@@ -79,12 +79,12 @@ def _(mo):
|
|
79 |
from dataclasses import dataclass
|
80 |
from typing import Callable, Generic, TypeVar
|
81 |
|
82 |
-
|
83 |
-
|
84 |
|
85 |
@dataclass
|
86 |
-
class Wrapper(Generic[
|
87 |
-
value:
|
88 |
```
|
89 |
|
90 |
Now, we can create an instance of wrapped data:
|
@@ -99,20 +99,21 @@ def _(mo):
|
|
99 |
|
100 |
```python
|
101 |
@dataclass
|
102 |
-
class Wrapper(Generic[
|
103 |
-
value:
|
104 |
|
105 |
-
|
106 |
-
|
|
|
107 |
```
|
108 |
|
109 |
Now, we can apply transformations without unwrapping:
|
110 |
|
111 |
```python
|
112 |
-
>>>
|
113 |
Wrapper(value=2)
|
114 |
|
115 |
-
>>>
|
116 |
Wrapper(value=[1])
|
117 |
```
|
118 |
|
@@ -123,19 +124,20 @@ def _(mo):
|
|
123 |
|
124 |
|
125 |
@app.cell
|
126 |
-
def _(Callable, Functor, Generic,
|
127 |
@dataclass
|
128 |
-
class Wrapper(Functor, Generic[
|
129 |
-
value:
|
130 |
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
def __repr__(self):
|
135 |
-
return repr(self.value)
|
136 |
|
137 |
|
138 |
wrapper = Wrapper(1)
|
|
|
|
|
|
|
139 |
return Wrapper, wrapper
|
140 |
|
141 |
|
@@ -145,21 +147,21 @@ def _(mo):
|
|
145 |
"""
|
146 |
We can analyze the type signature of `fmap` for `Wrapper`:
|
147 |
|
148 |
-
* `
|
149 |
-
* `
|
150 |
-
* The return value is of type `Wrapper[
|
151 |
|
152 |
Thus, in Python's type system, we can express the type signature of `fmap` as:
|
153 |
|
154 |
```python
|
155 |
-
|
156 |
```
|
157 |
|
158 |
Essentially, `fmap`:
|
159 |
|
160 |
-
1. Takes a `
|
161 |
2. Applies the function to the value inside the wrapper.
|
162 |
-
3. Returns a new `Wrapper[
|
163 |
|
164 |
Now, let's examine `list` as a similar kind of wrapper.
|
165 |
"""
|
@@ -173,35 +175,47 @@ def _(mo):
|
|
173 |
"""
|
174 |
## The List Wrapper
|
175 |
|
176 |
-
We can define a `
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
"""
|
178 |
)
|
179 |
return
|
180 |
|
181 |
|
182 |
@app.cell
|
183 |
-
def _(Callable, Functor, Generic,
|
184 |
@dataclass
|
185 |
-
class
|
186 |
-
value: list[
|
187 |
-
|
188 |
-
def fmap(self, func: Callable[[a], b]) -> "ListWrapper[b]":
|
189 |
-
return ListWrapper([func(x) for x in self.value])
|
190 |
-
|
191 |
-
def __repr__(self):
|
192 |
-
return repr(self.value)
|
193 |
|
|
|
|
|
|
|
194 |
|
195 |
-
list_wrapper = ListWrapper([1, 2, 3, 4])
|
196 |
-
return ListWrapper, list_wrapper
|
197 |
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
print(ListWrapper(value=[2, 3, 4, 5]))
|
203 |
-
print(ListWrapper(value=[[1], [2], [3], [4]]))
|
204 |
-
return
|
205 |
|
206 |
|
207 |
@app.cell(hide_code=True)
|
@@ -210,25 +224,25 @@ def _(mo):
|
|
210 |
"""
|
211 |
### Extracting the Type of `fmap`
|
212 |
|
213 |
-
The type signature of `fmap` for `
|
214 |
|
215 |
```python
|
216 |
-
|
217 |
```
|
218 |
|
219 |
Similarly, for `Wrapper`:
|
220 |
|
221 |
```python
|
222 |
-
|
223 |
```
|
224 |
|
225 |
Both follow the same pattern, which we can generalize as:
|
226 |
|
227 |
```python
|
228 |
-
|
229 |
```
|
230 |
|
231 |
-
where `Functor` can be `Wrapper`, `
|
232 |
|
233 |
### Functors in Haskell (optional)
|
234 |
|
@@ -267,13 +281,14 @@ def _(mo):
|
|
267 |
from typing import Callable, Generic, TypeVar
|
268 |
from abc import ABC, abstractmethod
|
269 |
|
270 |
-
|
271 |
-
|
272 |
|
273 |
@dataclass
|
274 |
-
class Functor(ABC, Generic[
|
|
|
275 |
@abstractmethod
|
276 |
-
def fmap(
|
277 |
raise NotImplementedError
|
278 |
```
|
279 |
|
@@ -308,21 +323,23 @@ def _(mo):
|
|
308 |
from dataclasses import dataclass
|
309 |
from typing import Callable, Generic, TypeVar
|
310 |
|
311 |
-
|
312 |
-
|
313 |
|
314 |
@dataclass
|
315 |
class RoseTree(Functor, Generic[a]):
|
316 |
-
|
317 |
-
|
|
|
318 |
|
319 |
-
|
|
|
320 |
return RoseTree(
|
321 |
-
|
322 |
)
|
323 |
|
324 |
def __repr__(self) -> str:
|
325 |
-
return f"
|
326 |
```
|
327 |
|
328 |
- The function is applied **recursively** to each node's value.
|
@@ -336,9 +353,9 @@ def _(mo):
|
|
336 |
|
337 |
|
338 |
@app.cell(hide_code=True)
|
339 |
-
def _(
|
340 |
@dataclass
|
341 |
-
class RoseTree(Functor, Generic[
|
342 |
"""
|
343 |
### Doc: RoseTree
|
344 |
|
@@ -346,51 +363,47 @@ def _(Callable, Functor, Generic, a, b, dataclass, mo):
|
|
346 |
|
347 |
**Attributes**
|
348 |
|
349 |
-
- `value (
|
350 |
-
- `children (list[RoseTree[
|
351 |
|
352 |
**Methods:**
|
353 |
|
354 |
-
- `fmap(
|
355 |
-
|
356 |
-
|
357 |
-
```
|
358 |
-
Applies a function to each value in the tree, producing a new `RoseTree[b]` with transformed values.
|
359 |
|
360 |
**Implementation logic:**
|
361 |
|
362 |
-
- The function `
|
363 |
- Each child in `children` recursively calls `fmap`, ensuring all values in the tree are mapped.
|
364 |
- The overall tree structure remains unchanged.
|
365 |
-
|
366 |
-
- `__repr__() -> str`: Returns a string representation of the node and its children.
|
367 |
"""
|
368 |
|
369 |
-
value:
|
370 |
-
children: list["RoseTree[
|
371 |
|
372 |
-
|
|
|
373 |
return RoseTree(
|
374 |
-
|
375 |
)
|
376 |
|
377 |
def __repr__(self) -> str:
|
378 |
-
return f"
|
379 |
|
380 |
|
381 |
mo.md(RoseTree.__doc__)
|
382 |
return (RoseTree,)
|
383 |
|
384 |
|
385 |
-
@app.cell
|
386 |
-
def _(RoseTree,
|
387 |
-
|
388 |
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
return (ftree,)
|
394 |
|
395 |
|
396 |
@app.cell(hide_code=True)
|
@@ -410,43 +423,40 @@ def _(mo):
|
|
410 |
Translating to Python, we get:
|
411 |
|
412 |
```python
|
413 |
-
def fmap(func: Callable[[
|
414 |
```
|
415 |
|
416 |
This means that `fmap`:
|
417 |
|
418 |
-
- Takes an **ordinary function** `Callable[[
|
419 |
- Outputs a function that:
|
420 |
-
- Takes a **functor** of type `Functor[
|
421 |
-
- Outputs a **functor** of type `Functor[
|
422 |
|
423 |
We can implement a similar idea in Python:
|
424 |
|
425 |
```python
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
# inc([Functor[a]) -> Functor[b]
|
430 |
-
inc = fmap(lambda x: x + 1)
|
431 |
```
|
432 |
|
433 |
-
- **`fmap`**: Lifts an ordinary function (`
|
434 |
- **`inc`**: A specific instance of `fmap` that operates on any functor. It takes a functor, applies the function `lambda x: x + 1` to every value inside it, and returns a new functor with the updated values.
|
435 |
|
436 |
Thus, **`fmap`** transforms an ordinary function into a **function that operates on functors**, and **`inc`** is a specific case where it increments the value inside the functor.
|
437 |
|
438 |
### Applying the `inc` Function to Various Functors
|
439 |
|
440 |
-
You can now apply `inc` to any functor like `Wrapper`, `
|
441 |
|
442 |
```python
|
443 |
# Applying `inc` to a Wrapper
|
444 |
wrapper = Wrapper(5)
|
445 |
inc(wrapper) # Wrapper(value=6)
|
446 |
|
447 |
-
# Applying `inc` to a
|
448 |
-
list_wrapper =
|
449 |
-
inc(list_wrapper) #
|
450 |
|
451 |
# Applying `inc` to a RoseTree
|
452 |
tree = RoseTree(1, [RoseTree(2, []), RoseTree(3, [])])
|
@@ -459,14 +469,14 @@ def _(mo):
|
|
459 |
return
|
460 |
|
461 |
|
462 |
-
@app.cell
|
463 |
-
def _(
|
464 |
-
fmap = lambda
|
465 |
-
inc = fmap(lambda x: x + 1)
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
return fmap, inc
|
471 |
|
472 |
|
@@ -492,23 +502,17 @@ def _(mo):
|
|
492 |
|
493 |
### Functor Law Verification
|
494 |
|
495 |
-
We can
|
496 |
|
497 |
-
```
|
498 |
id = lambda x: x
|
|
|
|
|
499 |
|
500 |
-
|
501 |
-
class Functor(ABC, Generic[a]):
|
502 |
-
@abstractmethod
|
503 |
-
def fmap(self, func: Callable[[a], b]) -> "Functor[b]":
|
504 |
-
return NotImplementedError
|
505 |
-
|
506 |
-
def check_functor_law(self):
|
507 |
-
return repr(self.fmap(id)) == repr(self)
|
508 |
|
509 |
-
|
510 |
-
|
511 |
-
return NotImplementedError
|
512 |
```
|
513 |
|
514 |
We can verify the functor we've defined.
|
@@ -525,42 +529,61 @@ def _():
|
|
525 |
|
526 |
|
527 |
@app.cell
|
528 |
-
def _(
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
|
|
|
|
|
|
|
|
534 |
|
535 |
|
536 |
@app.cell(hide_code=True)
|
537 |
def _(mo):
|
538 |
-
mo.md(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
539 |
return
|
540 |
|
541 |
|
542 |
@app.cell
|
543 |
-
def _(Callable, Functor, Generic,
|
544 |
@dataclass
|
545 |
-
class EvilFunctor(Functor, Generic[
|
546 |
-
value: list[
|
547 |
|
548 |
-
|
|
|
|
|
|
|
549 |
return (
|
550 |
-
|
551 |
-
if
|
552 |
else []
|
553 |
)
|
554 |
|
555 |
-
def __repr__(self):
|
556 |
-
return repr(self.value)
|
557 |
-
return (EvilFunctor,)
|
558 |
-
|
559 |
|
560 |
-
|
561 |
-
|
562 |
-
EvilFunctor([1, 2, 3, 4]).check_functor_law()
|
563 |
-
return
|
564 |
|
565 |
|
566 |
@app.cell(hide_code=True)
|
@@ -572,24 +595,18 @@ def _(mo):
|
|
572 |
We can now draft the final definition of `Functor` with some utility functions.
|
573 |
|
574 |
```Python
|
575 |
-
|
576 |
-
class Functor(ABC, Generic[a]):
|
577 |
@abstractmethod
|
578 |
-
def fmap(
|
579 |
return NotImplementedError
|
580 |
|
581 |
-
|
582 |
-
|
583 |
-
|
584 |
-
def const_fmap(self, b) -> "Functor[b]":
|
585 |
-
return self.fmap(lambda _: b)
|
586 |
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
@abstractmethod
|
591 |
-
def __repr__(self):
|
592 |
-
return NotImplementedError
|
593 |
```
|
594 |
"""
|
595 |
)
|
@@ -597,9 +614,9 @@ def _(mo):
|
|
597 |
|
598 |
|
599 |
@app.cell(hide_code=True)
|
600 |
-
def _(ABC, Callable, Generic,
|
601 |
@dataclass
|
602 |
-
class Functor(ABC, Generic[
|
603 |
"""
|
604 |
### Doc: Functor
|
605 |
|
@@ -607,45 +624,28 @@ def _(ABC, Callable, Generic, a, abstractmethod, b, dataclass, id, mo):
|
|
607 |
|
608 |
**Methods:**
|
609 |
|
610 |
-
- `fmap(
|
611 |
-
Abstract method to apply a function
|
612 |
-
|
613 |
-
- `check_functor_law() -> bool`
|
614 |
-
Verifies the identity law of functors: `fmap(id) == id`.
|
615 |
-
This ensures that applying `fmap` with the identity function does not alter the structure.
|
616 |
|
617 |
-
- `const_fmap(b) -> Functor[
|
618 |
-
Replaces all values inside
|
619 |
|
620 |
-
- `void() -> Functor[None]`
|
621 |
-
Equivalent to `const_fmap(None)`, transforming all values into `None`.
|
622 |
-
|
623 |
-
- `__repr__()`
|
624 |
-
Abstract method to define a string representation of the Functor.
|
625 |
-
|
626 |
-
**Functor Laws:**
|
627 |
-
A valid Functor implementation must satisfy:
|
628 |
-
|
629 |
-
1. **Identity Law:** `F.fmap(id) == F`
|
630 |
-
2. **Composition Law:** `F.fmap(f).fmap(g) == F.fmap(lambda x: g(f(x)))`
|
631 |
"""
|
632 |
|
|
|
633 |
@abstractmethod
|
634 |
-
def fmap(
|
635 |
return NotImplementedError
|
636 |
|
637 |
-
|
638 |
-
|
|
|
639 |
|
640 |
-
|
641 |
-
|
642 |
-
|
643 |
-
def void(self) -> "Functor[None]":
|
644 |
-
return self.const_fmap(None)
|
645 |
-
|
646 |
-
@abstractmethod
|
647 |
-
def __repr__(self):
|
648 |
-
return NotImplementedError
|
649 |
|
650 |
|
651 |
mo.md(Functor.__doc__)
|
@@ -658,13 +658,12 @@ def _(mo):
|
|
658 |
return
|
659 |
|
660 |
|
661 |
-
@app.cell
|
662 |
-
def _(
|
663 |
-
|
664 |
-
|
665 |
-
|
666 |
-
|
667 |
-
print(list_wrapper.void())
|
668 |
return
|
669 |
|
670 |
|
@@ -674,55 +673,55 @@ def _(mo):
|
|
674 |
"""
|
675 |
## Functors for Non-Iterable Types
|
676 |
|
677 |
-
In the previous examples, we implemented functors for **iterables**, like `
|
678 |
|
679 |
However, **functors are not limited to iterables**. There are cases where we want to apply the concept of functors to types that are not inherently iterable, such as types that represent optional values, computations, or other data structures.
|
680 |
|
681 |
### The Maybe Functor
|
682 |
|
683 |
-
One example is the **`Maybe`** type from Haskell, which is used to represent computations that can either result in a value
|
684 |
|
685 |
We can define the `Maybe` functor as below:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
686 |
"""
|
687 |
)
|
688 |
return
|
689 |
|
690 |
|
691 |
@app.cell
|
692 |
-
def _(
|
693 |
-
@dataclass
|
694 |
-
class Just(Generic[a]):
|
695 |
-
value: a
|
696 |
-
|
697 |
-
def __init__(self, value: a):
|
698 |
-
# If the value is already a `Just`, we extract the value, else we wrap it
|
699 |
-
self.value = value.value if isinstance(value, Just) else value
|
700 |
-
|
701 |
-
def __repr__(self):
|
702 |
-
return f"Just {self.value}"
|
703 |
-
|
704 |
-
|
705 |
@dataclass
|
706 |
-
class Maybe(Functor, Generic[
|
707 |
-
value: None |
|
708 |
|
709 |
-
|
710 |
-
|
711 |
-
return (
|
712 |
-
Maybe(Just(func(self.value.value))) if self.value else Maybe(None)
|
713 |
-
)
|
714 |
|
715 |
def __repr__(self):
|
716 |
-
return
|
717 |
-
return
|
718 |
|
719 |
|
720 |
@app.cell(hide_code=True)
|
721 |
def _(mo):
|
722 |
mo.md(
|
723 |
"""
|
724 |
-
|
725 |
-
- **`Maybe`** is a functor that can either hold a `Just` value or be `Nothing` (equivalent to `None` in Python). The `fmap` method applies a function to the value inside the `Just` wrapper, if it exists. If the value is `None` (representing `Nothing`), `fmap` simply returns `Nothing`.
|
726 |
|
727 |
By using `Maybe` as a functor, we gain the ability to apply transformations (`fmap`) to potentially absent values, without having to explicitly handle the `None` case every time.
|
728 |
|
@@ -733,23 +732,13 @@ def _(mo):
|
|
733 |
|
734 |
|
735 |
@app.cell
|
736 |
-
def _(
|
737 |
-
|
738 |
-
mint = Maybe(Just(1))
|
739 |
mnone = Maybe(None)
|
740 |
-
return mftree, mint, mnone
|
741 |
-
|
742 |
|
743 |
-
|
744 |
-
|
745 |
-
|
746 |
-
print(mftree.check_functor_law())
|
747 |
-
print(mint.check_functor_law())
|
748 |
-
print(mnone.check_functor_law())
|
749 |
-
print(mftree.fmap(inc))
|
750 |
-
print(mint.fmap(lambda x: x + 1))
|
751 |
-
print(mnone.fmap(lambda x: x + 1))
|
752 |
-
return
|
753 |
|
754 |
|
755 |
@app.cell(hide_code=True)
|
@@ -826,10 +815,10 @@ def _(mo):
|
|
826 |
Remember that we defined the `id` and `compose` function above as:
|
827 |
|
828 |
```Python
|
829 |
-
def id(x: Generic[
|
830 |
return x
|
831 |
|
832 |
-
def compose(f: Callable[[
|
833 |
return lambda x: f(g(x))
|
834 |
```
|
835 |
|
@@ -880,7 +869,11 @@ def _(mo):
|
|
880 |
- Maps any object $A$ in $C$ to $F ( A )$, in $D$.
|
881 |
- Maps morphisms $f : A → B$ in $C$ to $F ( f ) : F ( A ) → F ( B )$ in $D$.
|
882 |
|
883 |
-
|
|
|
|
|
|
|
|
|
884 |
"""
|
885 |
)
|
886 |
return
|
@@ -894,23 +887,23 @@ def _(mo):
|
|
894 |
|
895 |
Remember that a functor has two parts: it maps objects in one category to objects in another and morphisms in the first category to morphisms in the second.
|
896 |
|
897 |
-
Functors in Python are from `Py` to `func`, where `func` is the subcategory of `Py` defined on just that functor's types. E.g. the RoseTree functor goes from `Py` to `RoseTree`, where `RoseTree` is the category containing only RoseTree types, that is, `RoseTree[T]` for any type `T`. The morphisms in `RoseTree` are functions defined on RoseTree types, that is, functions `RoseTree[T]
|
898 |
|
899 |
Recall the definition of `Functor`:
|
900 |
|
901 |
```Python
|
902 |
@dataclass
|
903 |
-
class Functor(ABC, Generic[
|
904 |
```
|
905 |
|
906 |
And RoseTree:
|
907 |
|
908 |
```Python
|
909 |
@dataclass
|
910 |
-
class RoseTree(Functor, Generic[
|
911 |
```
|
912 |
|
913 |
-
**Here's the key part:** the _type constructor_ `RoseTree` takes any type `T` to a new type, `RoseTree[T]`. Also, `fmap` restricted to `RoseTree` types takes a function `
|
914 |
|
915 |
But that's it. We've defined two parts, something that takes objects in `Py` to objects in another category (that of `RoseTree` types and functions defined on `RoseTree` types), and something that takes morphisms in `Py` to morphisms in this category. So `RoseTree` is a functor.
|
916 |
|
@@ -946,50 +939,50 @@ def _(mo):
|
|
946 |
def _(mo):
|
947 |
mo.md(
|
948 |
"""
|
949 |
-
Remember that we defined the `fmap
|
950 |
```python
|
951 |
-
|
952 |
-
fmap = lambda func: lambda f: f.fmap(func)
|
953 |
id = lambda x: x
|
954 |
compose = lambda f, g: lambda x: f(g(x))
|
955 |
```
|
956 |
|
957 |
Let's prove that `fmap` is a functor.
|
958 |
|
959 |
-
First, let's define a `Category` for a specific `Functor`. We choose to define the `Category` for the `Wrapper` as `WrapperCategory` here for simplicity, but remember that `Wrapper` can be any `Functor`(i.e. `
|
960 |
|
961 |
**Notice that** in this case, we can actually view `fmap` as:
|
962 |
```python
|
963 |
-
|
964 |
-
fmap = lambda func: lambda wrapper: wrapper.fmap(func)
|
965 |
```
|
966 |
|
967 |
We define `WrapperCategory` as:
|
968 |
|
969 |
```python
|
970 |
@dataclass
|
971 |
-
class WrapperCategory
|
972 |
@staticmethod
|
973 |
-
def id(
|
974 |
-
return
|
975 |
|
976 |
@staticmethod
|
977 |
def compose(
|
978 |
-
f: Callable[[Wrapper[
|
979 |
-
g: Callable[[Wrapper[
|
980 |
-
|
981 |
-
|
|
|
982 |
```
|
983 |
|
984 |
And `Wrapper` is:
|
985 |
|
986 |
```Python
|
987 |
@dataclass
|
988 |
-
class Wrapper(Generic[
|
989 |
-
value:
|
990 |
|
991 |
-
|
992 |
-
|
|
|
993 |
```
|
994 |
"""
|
995 |
)
|
@@ -1000,36 +993,29 @@ def _(mo):
|
|
1000 |
def _(mo):
|
1001 |
mo.md(
|
1002 |
"""
|
1003 |
-
|
1004 |
|
1005 |
```python
|
1006 |
-
fmap(
|
|
|
|
|
|
|
|
|
1007 |
```
|
1008 |
-
|
1009 |
-
We can get:
|
1010 |
-
|
1011 |
-
```python
|
1012 |
-
fmap(id)
|
1013 |
-
= lambda wrapper: wrapper.fmap(id)
|
1014 |
-
= lambda wrapper: Wrapper(id(wrapper.value))
|
1015 |
-
= lambda wrapper: Wrapper(wrapper.value)
|
1016 |
-
= WrapperCategory.id()
|
1017 |
-
```
|
1018 |
-
And:
|
1019 |
```python
|
1020 |
-
fmap(compose(f, g))
|
1021 |
-
=
|
1022 |
-
=
|
1023 |
-
=
|
1024 |
-
|
1025 |
-
WrapperCategory.compose(fmap(f), fmap(g))
|
1026 |
-
=
|
1027 |
-
=
|
1028 |
-
=
|
1029 |
-
=
|
1030 |
-
=
|
1031 |
-
=
|
1032 |
-
= fmap(compose(f, g))
|
1033 |
```
|
1034 |
|
1035 |
So our `Wrapper` is a valid `Functor`.
|
@@ -1040,33 +1026,27 @@ def _(mo):
|
|
1040 |
return
|
1041 |
|
1042 |
|
1043 |
-
@app.cell
|
1044 |
-
def _(
|
1045 |
@dataclass
|
1046 |
class WrapperCategory:
|
1047 |
@staticmethod
|
1048 |
-
def id(
|
1049 |
-
return
|
1050 |
|
1051 |
@staticmethod
|
1052 |
def compose(
|
1053 |
-
f: Callable[[Wrapper[
|
1054 |
-
g: Callable[[Wrapper[
|
1055 |
-
|
1056 |
-
|
|
|
1057 |
return (WrapperCategory,)
|
1058 |
|
1059 |
|
1060 |
-
@app.cell
|
1061 |
-
def _(WrapperCategory,
|
1062 |
-
|
1063 |
-
print(fmap(id)(wrapper) == id(wrapper))
|
1064 |
-
print(
|
1065 |
-
fmap(compose(lambda x: x + 1, lambda x: x * 2))(wrapper)
|
1066 |
-
== WrapperCategory.compose(
|
1067 |
-
fmap(lambda x: x + 1), fmap(lambda x: x * 2)
|
1068 |
-
)(wrapper)
|
1069 |
-
)
|
1070 |
return
|
1071 |
|
1072 |
|
@@ -1083,24 +1063,40 @@ def _(mo):
|
|
1083 |
### Category of List Concatenation
|
1084 |
|
1085 |
First, let’s define the category of list concatenation:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1086 |
"""
|
1087 |
)
|
1088 |
return
|
1089 |
|
1090 |
|
1091 |
@app.cell
|
1092 |
-
def _(
|
1093 |
@dataclass
|
1094 |
-
class ListConcatenation(Generic[
|
1095 |
-
value: list[
|
1096 |
|
1097 |
@staticmethod
|
1098 |
-
def id() -> "ListConcatenation[
|
1099 |
return ListConcatenation([])
|
1100 |
|
1101 |
@staticmethod
|
1102 |
def compose(
|
1103 |
-
this: "ListConcatenation[
|
1104 |
) -> "ListConcatenation[a]":
|
1105 |
return ListConcatenation(this.value + other.value)
|
1106 |
return (ListConcatenation,)
|
@@ -1124,6 +1120,20 @@ def _(mo):
|
|
1124 |
### Category of Integer Addition
|
1125 |
|
1126 |
Now, let's define the category of integer addition:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1127 |
"""
|
1128 |
)
|
1129 |
return
|
@@ -1163,12 +1173,16 @@ def _(mo):
|
|
1163 |
### Defining the Length Functor
|
1164 |
|
1165 |
We now define the `length` function as a functor, mapping from the category of list concatenation to the category of integer addition:
|
|
|
|
|
|
|
|
|
1166 |
"""
|
1167 |
)
|
1168 |
return
|
1169 |
|
1170 |
|
1171 |
-
@app.cell
|
1172 |
def _(IntAddition):
|
1173 |
length = lambda l: IntAddition(len(l.value))
|
1174 |
return (length,)
|
@@ -1190,17 +1204,16 @@ def _(mo):
|
|
1190 |
|
1191 |
#### 1. **Identity Law**:
|
1192 |
The identity law states that applying the functor to the identity element of one category should give the identity element of the other category.
|
|
|
|
|
|
|
|
|
|
|
1193 |
"""
|
1194 |
)
|
1195 |
return
|
1196 |
|
1197 |
|
1198 |
-
@app.cell
|
1199 |
-
def _(IntAddition, ListConcatenation, length):
|
1200 |
-
length(ListConcatenation.id()) == IntAddition.id()
|
1201 |
-
return
|
1202 |
-
|
1203 |
-
|
1204 |
@app.cell(hide_code=True)
|
1205 |
def _(mo):
|
1206 |
mo.md("""This ensures that the length of an empty list (identity in the `ListConcatenation` category) is `0` (identity in the `IntAddition` category).""")
|
@@ -1213,22 +1226,16 @@ def _(mo):
|
|
1213 |
"""
|
1214 |
#### 2. **Composition Law**:
|
1215 |
The composition law states that the functor should preserve composition. Applying the functor to a composed element should be the same as composing the functor applied to the individual elements.
|
1216 |
-
"""
|
1217 |
-
)
|
1218 |
-
return
|
1219 |
-
|
1220 |
-
|
1221 |
-
@app.cell
|
1222 |
-
def _(ListConcatenation):
|
1223 |
-
lista = ListConcatenation([1, 2])
|
1224 |
-
listb = ListConcatenation([3, 4])
|
1225 |
-
return lista, listb
|
1226 |
-
|
1227 |
|
1228 |
-
|
1229 |
-
|
1230 |
-
|
1231 |
-
length(lista
|
|
|
|
|
|
|
|
|
|
|
1232 |
)
|
1233 |
return
|
1234 |
|
@@ -1239,6 +1246,18 @@ def _(mo):
|
|
1239 |
return
|
1240 |
|
1241 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1242 |
@app.cell(hide_code=True)
|
1243 |
def _(mo):
|
1244 |
mo.md(
|
@@ -1278,15 +1297,16 @@ def _():
|
|
1278 |
def _():
|
1279 |
from dataclasses import dataclass
|
1280 |
from typing import Callable, Generic, TypeVar
|
1281 |
-
|
|
|
1282 |
|
1283 |
|
1284 |
@app.cell(hide_code=True)
|
1285 |
def _(TypeVar):
|
1286 |
-
|
1287 |
-
|
1288 |
-
|
1289 |
-
return
|
1290 |
|
1291 |
|
1292 |
if __name__ == "__main__":
|
|
|
8 |
import marimo
|
9 |
|
10 |
__generated_with = "0.11.17"
|
11 |
+
app = marimo.App(app_title="Category Theory and Functors")
|
12 |
|
13 |
|
14 |
@app.cell(hide_code=True)
|
|
|
37 |
/// details | Notebook metadata
|
38 |
type: info
|
39 |
|
40 |
+
version: 0.1.1 | last modified: 2025-03-16 | author: [métaboulie](https://github.com/metaboulie)<br/>
|
41 |
reviewer: [Haleshot](https://github.com/Haleshot)
|
42 |
|
43 |
///
|
|
|
79 |
from dataclasses import dataclass
|
80 |
from typing import Callable, Generic, TypeVar
|
81 |
|
82 |
+
A = TypeVar("A")
|
83 |
+
B = TypeVar("B")
|
84 |
|
85 |
@dataclass
|
86 |
+
class Wrapper(Generic[A]):
|
87 |
+
value: A
|
88 |
```
|
89 |
|
90 |
Now, we can create an instance of wrapped data:
|
|
|
99 |
|
100 |
```python
|
101 |
@dataclass
|
102 |
+
class Wrapper(Functor, Generic[A]):
|
103 |
+
value: A
|
104 |
|
105 |
+
@classmethod
|
106 |
+
def fmap(cls, f: Callable[[A], B], a: "Wrapper[A]") -> "Wrapper[B]":
|
107 |
+
return Wrapper(f(a.value))
|
108 |
```
|
109 |
|
110 |
Now, we can apply transformations without unwrapping:
|
111 |
|
112 |
```python
|
113 |
+
>>> Wrapper.fmap(lambda x: x + 1, wrapper)
|
114 |
Wrapper(value=2)
|
115 |
|
116 |
+
>>> Wrapper.fmap(lambda x: [x], wrapper)
|
117 |
Wrapper(value=[1])
|
118 |
```
|
119 |
|
|
|
124 |
|
125 |
|
126 |
@app.cell
|
127 |
+
def _(A, B, Callable, Functor, Generic, dataclass, pp):
|
128 |
@dataclass
|
129 |
+
class Wrapper(Functor, Generic[A]):
|
130 |
+
value: A
|
131 |
|
132 |
+
@classmethod
|
133 |
+
def fmap(cls, f: Callable[[A], B], a: "Wrapper[A]") -> "Wrapper[B]":
|
134 |
+
return Wrapper(f(a.value))
|
|
|
|
|
135 |
|
136 |
|
137 |
wrapper = Wrapper(1)
|
138 |
+
|
139 |
+
pp(Wrapper.fmap(lambda x: x + 1, wrapper))
|
140 |
+
pp(Wrapper.fmap(lambda x: [x], wrapper))
|
141 |
return Wrapper, wrapper
|
142 |
|
143 |
|
|
|
147 |
"""
|
148 |
We can analyze the type signature of `fmap` for `Wrapper`:
|
149 |
|
150 |
+
* `f` is of type `Callable[[A], B]`
|
151 |
+
* `a` is of type `Wrapper[A]`
|
152 |
+
* The return value is of type `Wrapper[B]`
|
153 |
|
154 |
Thus, in Python's type system, we can express the type signature of `fmap` as:
|
155 |
|
156 |
```python
|
157 |
+
fmap(f: Callable[[A], B], a: Wrapper[A]) -> Wrapper[B]:
|
158 |
```
|
159 |
|
160 |
Essentially, `fmap`:
|
161 |
|
162 |
+
1. Takes a function `Callable[[A], B]` and a `Wrapper[A]` instance as input.
|
163 |
2. Applies the function to the value inside the wrapper.
|
164 |
+
3. Returns a new `Wrapper[B]` instance with the transformed value, leaving the original wrapper and its internal data unmodified.
|
165 |
|
166 |
Now, let's examine `list` as a similar kind of wrapper.
|
167 |
"""
|
|
|
175 |
"""
|
176 |
## The List Wrapper
|
177 |
|
178 |
+
We can define a `List` class to represent a wrapped list that supports `fmap`:
|
179 |
+
|
180 |
+
```python
|
181 |
+
@dataclass
|
182 |
+
class List(Functor, Generic[A]):
|
183 |
+
value: list[A]
|
184 |
+
|
185 |
+
@classmethod
|
186 |
+
def fmap(cls, f: Callable[[A], B], a: "List[A]") -> "List[B]":
|
187 |
+
return List([f(x) for x in a.value])
|
188 |
+
```
|
189 |
+
|
190 |
+
Now, we can apply transformations:
|
191 |
+
|
192 |
+
```python
|
193 |
+
>>> flist = List([1, 2, 3, 4])
|
194 |
+
>>> List.fmap(lambda x: x + 1, flist)
|
195 |
+
List(value=[2, 3, 4, 5])
|
196 |
+
>>> List.fmap(lambda x: [x], flist)
|
197 |
+
List(value=[[1], [2], [3], [4]])
|
198 |
+
```
|
199 |
"""
|
200 |
)
|
201 |
return
|
202 |
|
203 |
|
204 |
@app.cell
|
205 |
+
def _(A, B, Callable, Functor, Generic, dataclass, pp):
|
206 |
@dataclass
|
207 |
+
class List(Functor, Generic[A]):
|
208 |
+
value: list[A]
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
|
210 |
+
@classmethod
|
211 |
+
def fmap(cls, f: Callable[[A], B], a: "List[A]") -> "List[B]":
|
212 |
+
return List([f(x) for x in a.value])
|
213 |
|
|
|
|
|
214 |
|
215 |
+
flist = List([1, 2, 3, 4])
|
216 |
+
pp(List.fmap(lambda x: x + 1, flist))
|
217 |
+
pp(List.fmap(lambda x: [x], flist))
|
218 |
+
return List, flist
|
|
|
|
|
|
|
219 |
|
220 |
|
221 |
@app.cell(hide_code=True)
|
|
|
224 |
"""
|
225 |
### Extracting the Type of `fmap`
|
226 |
|
227 |
+
The type signature of `fmap` for `List` is:
|
228 |
|
229 |
```python
|
230 |
+
fmap(f: Callable[[A], B], a: List[A]) -> List[B]
|
231 |
```
|
232 |
|
233 |
Similarly, for `Wrapper`:
|
234 |
|
235 |
```python
|
236 |
+
fmap(f: Callable[[A], B], a: Wrapper[A]) -> Wrapper[B]
|
237 |
```
|
238 |
|
239 |
Both follow the same pattern, which we can generalize as:
|
240 |
|
241 |
```python
|
242 |
+
fmap(f: Callable[[A], B], a: Functor[A]) -> Functor[B]
|
243 |
```
|
244 |
|
245 |
+
where `Functor` can be `Wrapper`, `List`, or any other wrapper type that follows the same structure.
|
246 |
|
247 |
### Functors in Haskell (optional)
|
248 |
|
|
|
281 |
from typing import Callable, Generic, TypeVar
|
282 |
from abc import ABC, abstractmethod
|
283 |
|
284 |
+
A = TypeVar("A")
|
285 |
+
B = TypeVar("B")
|
286 |
|
287 |
@dataclass
|
288 |
+
class Functor(ABC, Generic[A]):
|
289 |
+
@classmethod
|
290 |
@abstractmethod
|
291 |
+
def fmap(f: Callable[[A], B], a: "Functor[A]") -> "Functor[B]":
|
292 |
raise NotImplementedError
|
293 |
```
|
294 |
|
|
|
323 |
from dataclasses import dataclass
|
324 |
from typing import Callable, Generic, TypeVar
|
325 |
|
326 |
+
A = TypeVar("A")
|
327 |
+
B = TypeVar("B")
|
328 |
|
329 |
@dataclass
|
330 |
class RoseTree(Functor, Generic[a]):
|
331 |
+
|
332 |
+
value: A
|
333 |
+
children: list["RoseTree[A]"]
|
334 |
|
335 |
+
@classmethod
|
336 |
+
def fmap(cls, f: Callable[[A], B], a: "RoseTree[A]") -> "RoseTree[B]":
|
337 |
return RoseTree(
|
338 |
+
f(a.value), [cls.fmap(f, child) for child in a.children]
|
339 |
)
|
340 |
|
341 |
def __repr__(self) -> str:
|
342 |
+
return f"Node: {self.value}, Children: {self.children}"
|
343 |
```
|
344 |
|
345 |
- The function is applied **recursively** to each node's value.
|
|
|
353 |
|
354 |
|
355 |
@app.cell(hide_code=True)
|
356 |
+
def _(A, B, Callable, Functor, Generic, dataclass, mo):
|
357 |
@dataclass
|
358 |
+
class RoseTree(Functor, Generic[A]):
|
359 |
"""
|
360 |
### Doc: RoseTree
|
361 |
|
|
|
363 |
|
364 |
**Attributes**
|
365 |
|
366 |
+
- `value (A)`: The value stored in the node.
|
367 |
+
- `children (list[RoseTree[A]])`: A list of child nodes forming the tree structure.
|
368 |
|
369 |
**Methods:**
|
370 |
|
371 |
+
- `fmap(f: Callable[[A], B], a: "RoseTree[A]") -> "RoseTree[B]"`
|
372 |
+
|
373 |
+
Applies a function to each value in the tree, producing a new `RoseTree[b]` with transformed values.
|
|
|
|
|
374 |
|
375 |
**Implementation logic:**
|
376 |
|
377 |
+
- The function `f` is applied to the root node's `value`.
|
378 |
- Each child in `children` recursively calls `fmap`, ensuring all values in the tree are mapped.
|
379 |
- The overall tree structure remains unchanged.
|
|
|
|
|
380 |
"""
|
381 |
|
382 |
+
value: A
|
383 |
+
children: list["RoseTree[A]"]
|
384 |
|
385 |
+
@classmethod
|
386 |
+
def fmap(cls, f: Callable[[A], B], a: "RoseTree[A]") -> "RoseTree[B]":
|
387 |
return RoseTree(
|
388 |
+
f(a.value), [cls.fmap(f, child) for child in a.children]
|
389 |
)
|
390 |
|
391 |
def __repr__(self) -> str:
|
392 |
+
return f"Node: {self.value}, Children: {self.children}"
|
393 |
|
394 |
|
395 |
mo.md(RoseTree.__doc__)
|
396 |
return (RoseTree,)
|
397 |
|
398 |
|
399 |
+
@app.cell
|
400 |
+
def _(RoseTree, pp):
|
401 |
+
rosetree = RoseTree(1, [RoseTree(2, []), RoseTree(3, [RoseTree(4, [])])])
|
402 |
|
403 |
+
pp(rosetree)
|
404 |
+
pp(RoseTree.fmap(lambda x: [x], rosetree))
|
405 |
+
pp(RoseTree.fmap(lambda x: RoseTree(x, []), rosetree))
|
406 |
+
return (rosetree,)
|
|
|
407 |
|
408 |
|
409 |
@app.cell(hide_code=True)
|
|
|
423 |
Translating to Python, we get:
|
424 |
|
425 |
```python
|
426 |
+
def fmap(func: Callable[[A], B]) -> Callable[[Functor[A]], Functor[B]]
|
427 |
```
|
428 |
|
429 |
This means that `fmap`:
|
430 |
|
431 |
+
- Takes an **ordinary function** `Callable[[A], B]` as input.
|
432 |
- Outputs a function that:
|
433 |
+
- Takes a **functor** of type `Functor[A]` as input.
|
434 |
+
- Outputs a **functor** of type `Functor[B]`.
|
435 |
|
436 |
We can implement a similar idea in Python:
|
437 |
|
438 |
```python
|
439 |
+
fmap = lambda f, functor: functor.__class__.fmap(f, functor)
|
440 |
+
inc = lambda functor: fmap(lambda x: x + 1, functor)
|
|
|
|
|
|
|
441 |
```
|
442 |
|
443 |
+
- **`fmap`**: Lifts an ordinary function (`f`) to the functor world, allowing the function to operate on the wrapped value inside the functor.
|
444 |
- **`inc`**: A specific instance of `fmap` that operates on any functor. It takes a functor, applies the function `lambda x: x + 1` to every value inside it, and returns a new functor with the updated values.
|
445 |
|
446 |
Thus, **`fmap`** transforms an ordinary function into a **function that operates on functors**, and **`inc`** is a specific case where it increments the value inside the functor.
|
447 |
|
448 |
### Applying the `inc` Function to Various Functors
|
449 |
|
450 |
+
You can now apply `inc` to any functor like `Wrapper`, `List`, or `RoseTree`:
|
451 |
|
452 |
```python
|
453 |
# Applying `inc` to a Wrapper
|
454 |
wrapper = Wrapper(5)
|
455 |
inc(wrapper) # Wrapper(value=6)
|
456 |
|
457 |
+
# Applying `inc` to a List
|
458 |
+
list_wrapper = List([1, 2, 3])
|
459 |
+
inc(list_wrapper) # List(value=[2, 3, 4])
|
460 |
|
461 |
# Applying `inc` to a RoseTree
|
462 |
tree = RoseTree(1, [RoseTree(2, []), RoseTree(3, [])])
|
|
|
469 |
return
|
470 |
|
471 |
|
472 |
+
@app.cell
|
473 |
+
def _(flist, pp, rosetree, wrapper):
|
474 |
+
fmap = lambda f, functor: functor.__class__.fmap(f, functor)
|
475 |
+
inc = lambda functor: fmap(lambda x: x + 1, functor)
|
476 |
+
|
477 |
+
pp(inc(wrapper))
|
478 |
+
pp(inc(flist))
|
479 |
+
pp(inc(rosetree))
|
480 |
return fmap, inc
|
481 |
|
482 |
|
|
|
502 |
|
503 |
### Functor Law Verification
|
504 |
|
505 |
+
We can define `id` and `compose` in `Python` as below:
|
506 |
|
507 |
+
```python
|
508 |
id = lambda x: x
|
509 |
+
compose = lambda f, g: lambda x: f(g(x))
|
510 |
+
```
|
511 |
|
512 |
+
We can add a helper function `check_functor_law` to verify that an instance satisfies the functor laws.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
513 |
|
514 |
+
```Python
|
515 |
+
check_functor_law = lambda functor: repr(fmap(id, functor)) == repr(functor)
|
|
|
516 |
```
|
517 |
|
518 |
We can verify the functor we've defined.
|
|
|
529 |
|
530 |
|
531 |
@app.cell
|
532 |
+
def _(fmap, id):
|
533 |
+
check_functor_law = lambda functor: repr(fmap(id, functor)) == repr(functor)
|
534 |
+
return (check_functor_law,)
|
535 |
+
|
536 |
+
|
537 |
+
@app.cell
|
538 |
+
def _(check_functor_law, flist, pp, rosetree, wrapper):
|
539 |
+
for functor in (wrapper, flist, rosetree):
|
540 |
+
pp(check_functor_law(functor))
|
541 |
+
return (functor,)
|
542 |
|
543 |
|
544 |
@app.cell(hide_code=True)
|
545 |
def _(mo):
|
546 |
+
mo.md(
|
547 |
+
"""
|
548 |
+
And here is an `EvilFunctor`. We can verify it's not a valid `Functor`.
|
549 |
+
|
550 |
+
```python
|
551 |
+
@dataclass
|
552 |
+
class EvilFunctor(Functor, Generic[A]):
|
553 |
+
value: list[A]
|
554 |
+
|
555 |
+
@classmethod
|
556 |
+
def fmap(cls, f: Callable[[A], B], a: "EvilFunctor[A]") -> "EvilFunctor[B]":
|
557 |
+
return (
|
558 |
+
cls([a.value[0]] * 2 + list(map(f, a.value[1:])))
|
559 |
+
if a.value
|
560 |
+
else []
|
561 |
+
)
|
562 |
+
```
|
563 |
+
"""
|
564 |
+
)
|
565 |
return
|
566 |
|
567 |
|
568 |
@app.cell
|
569 |
+
def _(A, B, Callable, Functor, Generic, check_functor_law, dataclass, pp):
|
570 |
@dataclass
|
571 |
+
class EvilFunctor(Functor, Generic[A]):
|
572 |
+
value: list[A]
|
573 |
|
574 |
+
@classmethod
|
575 |
+
def fmap(
|
576 |
+
cls, f: Callable[[A], B], a: "EvilFunctor[A]"
|
577 |
+
) -> "EvilFunctor[B]":
|
578 |
return (
|
579 |
+
cls([a.value[0]] * 2 + [f(x) for x in a.value[1:]])
|
580 |
+
if a.value
|
581 |
else []
|
582 |
)
|
583 |
|
|
|
|
|
|
|
|
|
584 |
|
585 |
+
pp(check_functor_law(EvilFunctor([1, 2, 3, 4])))
|
586 |
+
return (EvilFunctor,)
|
|
|
|
|
587 |
|
588 |
|
589 |
@app.cell(hide_code=True)
|
|
|
595 |
We can now draft the final definition of `Functor` with some utility functions.
|
596 |
|
597 |
```Python
|
598 |
+
@classmethod
|
|
|
599 |
@abstractmethod
|
600 |
+
def fmap(cls, f: Callable[[A], B], a: "Functor[A]") -> "Functor[B]":
|
601 |
return NotImplementedError
|
602 |
|
603 |
+
@classmethod
|
604 |
+
def const_fmap(cls, a: "Functor[A]", b: B) -> "Functor[B]":
|
605 |
+
return cls.fmap(lambda _: b, a)
|
|
|
|
|
606 |
|
607 |
+
@classmethod
|
608 |
+
def void(cls, a: "Functor[A]") -> "Functor[None]":
|
609 |
+
return cls.const_fmap(a, None)
|
|
|
|
|
|
|
610 |
```
|
611 |
"""
|
612 |
)
|
|
|
614 |
|
615 |
|
616 |
@app.cell(hide_code=True)
|
617 |
+
def _(A, ABC, B, Callable, Generic, abstractmethod, dataclass, mo):
|
618 |
@dataclass
|
619 |
+
class Functor(ABC, Generic[A]):
|
620 |
"""
|
621 |
### Doc: Functor
|
622 |
|
|
|
624 |
|
625 |
**Methods:**
|
626 |
|
627 |
+
- `fmap(f: Callable[[A], B], a: Functor[A]) -> Functor[B]`
|
628 |
+
Abstract method to apply a function to all values inside a functor.
|
|
|
|
|
|
|
|
|
629 |
|
630 |
+
- `const_fmap(a: "Functor[A]", b: B) -> Functor[B]`
|
631 |
+
Replaces all values inside a functor with a constant `b`, preserving the original structure.
|
632 |
|
633 |
+
- `void(a: "Functor[A]") -> Functor[None]`
|
634 |
+
Equivalent to `const_fmap(a, None)`, transforming all values in a functor into `None`.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
635 |
"""
|
636 |
|
637 |
+
@classmethod
|
638 |
@abstractmethod
|
639 |
+
def fmap(cls, f: Callable[[A], B], a: "Functor[A]") -> "Functor[B]":
|
640 |
return NotImplementedError
|
641 |
|
642 |
+
@classmethod
|
643 |
+
def const_fmap(cls, a: "Functor[A]", b: B) -> "Functor[B]":
|
644 |
+
return cls.fmap(lambda _: b, a)
|
645 |
|
646 |
+
@classmethod
|
647 |
+
def void(cls, a: "Functor[A]") -> "Functor[None]":
|
648 |
+
return cls.const_fmap(a, None)
|
|
|
|
|
|
|
|
|
|
|
|
|
649 |
|
650 |
|
651 |
mo.md(Functor.__doc__)
|
|
|
658 |
return
|
659 |
|
660 |
|
661 |
+
@app.cell
|
662 |
+
def _(List, RoseTree, flist, pp, rosetree):
|
663 |
+
pp(RoseTree.const_fmap(rosetree, "λ"))
|
664 |
+
pp(RoseTree.void(rosetree))
|
665 |
+
pp(List.const_fmap(flist, "λ"))
|
666 |
+
pp(List.void(flist))
|
|
|
667 |
return
|
668 |
|
669 |
|
|
|
673 |
"""
|
674 |
## Functors for Non-Iterable Types
|
675 |
|
676 |
+
In the previous examples, we implemented functors for **iterables**, like `List` and `RoseTree`, which are inherently **iterable types**. This is a natural fit for functors, as iterables can be mapped over.
|
677 |
|
678 |
However, **functors are not limited to iterables**. There are cases where we want to apply the concept of functors to types that are not inherently iterable, such as types that represent optional values, computations, or other data structures.
|
679 |
|
680 |
### The Maybe Functor
|
681 |
|
682 |
+
One example is the **`Maybe`** type from Haskell, which is used to represent computations that can either result in a value or no value (`Nothing`).
|
683 |
|
684 |
We can define the `Maybe` functor as below:
|
685 |
+
|
686 |
+
```python
|
687 |
+
@dataclass
|
688 |
+
class Maybe(Functor, Generic[A]):
|
689 |
+
value: None | A
|
690 |
+
|
691 |
+
@classmethod
|
692 |
+
def fmap(cls, f: Callable[[A], B], a: "Maybe[A]") -> "Maybe[B]":
|
693 |
+
return (
|
694 |
+
cls(None) if a.value is None else cls(f(a.value))
|
695 |
+
)
|
696 |
+
|
697 |
+
def __repr__(self):
|
698 |
+
return "Nothing" if self.value is None else repr(self.value)
|
699 |
+
```
|
700 |
"""
|
701 |
)
|
702 |
return
|
703 |
|
704 |
|
705 |
@app.cell
|
706 |
+
def _(A, B, Callable, Functor, Generic, dataclass):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
707 |
@dataclass
|
708 |
+
class Maybe(Functor, Generic[A]):
|
709 |
+
value: None | A
|
710 |
|
711 |
+
@classmethod
|
712 |
+
def fmap(cls, f: Callable[[A], B], a: "Maybe[A]") -> "Maybe[B]":
|
713 |
+
return cls(None) if a.value is None else cls(f(a.value))
|
|
|
|
|
714 |
|
715 |
def __repr__(self):
|
716 |
+
return "Nothing" if self.value is None else repr(self.value)
|
717 |
+
return (Maybe,)
|
718 |
|
719 |
|
720 |
@app.cell(hide_code=True)
|
721 |
def _(mo):
|
722 |
mo.md(
|
723 |
"""
|
724 |
+
**`Maybe`** is a functor that can either hold a value or be `Nothing` (equivalent to `None` in Python). The `fmap` method applies a function to the value inside the functor, if it exists. If the value is `None` (representing `Nothing`), `fmap` simply returns `None`.
|
|
|
725 |
|
726 |
By using `Maybe` as a functor, we gain the ability to apply transformations (`fmap`) to potentially absent values, without having to explicitly handle the `None` case every time.
|
727 |
|
|
|
732 |
|
733 |
|
734 |
@app.cell
|
735 |
+
def _(Maybe, pp):
|
736 |
+
mint = Maybe(1)
|
|
|
737 |
mnone = Maybe(None)
|
|
|
|
|
738 |
|
739 |
+
pp(Maybe.fmap(lambda x: x + 1, mint))
|
740 |
+
pp(Maybe.fmap(lambda x: x + 1, mnone))
|
741 |
+
return mint, mnone
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
742 |
|
743 |
|
744 |
@app.cell(hide_code=True)
|
|
|
815 |
Remember that we defined the `id` and `compose` function above as:
|
816 |
|
817 |
```Python
|
818 |
+
def id(x: Generic[A]) -> Generic[A]:
|
819 |
return x
|
820 |
|
821 |
+
def compose(f: Callable[[B], C], g: Callable[[A], B]) -> Callable[[A], C]:
|
822 |
return lambda x: f(g(x))
|
823 |
```
|
824 |
|
|
|
869 |
- Maps any object $A$ in $C$ to $F ( A )$, in $D$.
|
870 |
- Maps morphisms $f : A → B$ in $C$ to $F ( f ) : F ( A ) → F ( B )$ in $D$.
|
871 |
|
872 |
+
/// admonition |
|
873 |
+
|
874 |
+
Endofunctors are functors from a category to itself.
|
875 |
+
|
876 |
+
///
|
877 |
"""
|
878 |
)
|
879 |
return
|
|
|
887 |
|
888 |
Remember that a functor has two parts: it maps objects in one category to objects in another and morphisms in the first category to morphisms in the second.
|
889 |
|
890 |
+
Functors in Python are from `Py` to `func`, where `func` is the subcategory of `Py` defined on just that functor's types. E.g. the RoseTree functor goes from `Py` to `RoseTree`, where `RoseTree` is the category containing only RoseTree types, that is, `RoseTree[T]` for any type `T`. The morphisms in `RoseTree` are functions defined on RoseTree types, that is, functions `Callable[[RoseTree[T]], RoseTree[U]]` for types `T`, `U`.
|
891 |
|
892 |
Recall the definition of `Functor`:
|
893 |
|
894 |
```Python
|
895 |
@dataclass
|
896 |
+
class Functor(ABC, Generic[A])
|
897 |
```
|
898 |
|
899 |
And RoseTree:
|
900 |
|
901 |
```Python
|
902 |
@dataclass
|
903 |
+
class RoseTree(Functor, Generic[A])
|
904 |
```
|
905 |
|
906 |
+
**Here's the key part:** the _type constructor_ `RoseTree` takes any type `T` to a new type, `RoseTree[T]`. Also, `fmap` restricted to `RoseTree` types takes a function `Callable[[A], B]` to a function `Callable[[RoseTree[A]], RoseTree[B]]`.
|
907 |
|
908 |
But that's it. We've defined two parts, something that takes objects in `Py` to objects in another category (that of `RoseTree` types and functions defined on `RoseTree` types), and something that takes morphisms in `Py` to morphisms in this category. So `RoseTree` is a functor.
|
909 |
|
|
|
939 |
def _(mo):
|
940 |
mo.md(
|
941 |
"""
|
942 |
+
Remember that we defined the `fmap`, `id` and `compose` as
|
943 |
```python
|
944 |
+
fmap = lambda f, functor: functor.__class__.fmap(f, functor)
|
|
|
945 |
id = lambda x: x
|
946 |
compose = lambda f, g: lambda x: f(g(x))
|
947 |
```
|
948 |
|
949 |
Let's prove that `fmap` is a functor.
|
950 |
|
951 |
+
First, let's define a `Category` for a specific `Functor`. We choose to define the `Category` for the `Wrapper` as `WrapperCategory` here for simplicity, but remember that `Wrapper` can be any `Functor`(i.e. `List`, `RoseTree`, `Maybe` and more):
|
952 |
|
953 |
**Notice that** in this case, we can actually view `fmap` as:
|
954 |
```python
|
955 |
+
fmap = lambda f, functor: functor.fmap(f, functor)
|
|
|
956 |
```
|
957 |
|
958 |
We define `WrapperCategory` as:
|
959 |
|
960 |
```python
|
961 |
@dataclass
|
962 |
+
class WrapperCategory:
|
963 |
@staticmethod
|
964 |
+
def id(wrapper: Wrapper[A]) -> Wrapper[A]:
|
965 |
+
return Wrapper(wrapper.value)
|
966 |
|
967 |
@staticmethod
|
968 |
def compose(
|
969 |
+
f: Callable[[Wrapper[B]], Wrapper[C]],
|
970 |
+
g: Callable[[Wrapper[A]], Wrapper[B]],
|
971 |
+
wrapper: Wrapper[A]
|
972 |
+
) -> Callable[[Wrapper[A]], Wrapper[C]]:
|
973 |
+
return f(g(Wrapper(wrapper.value)))
|
974 |
```
|
975 |
|
976 |
And `Wrapper` is:
|
977 |
|
978 |
```Python
|
979 |
@dataclass
|
980 |
+
class Wrapper(Functor, Generic[A]):
|
981 |
+
value: A
|
982 |
|
983 |
+
@classmethod
|
984 |
+
def fmap(cls, f: Callable[[A], B], a: "Wrapper[A]") -> "Wrapper[B]":
|
985 |
+
return Wrapper(f(a.value))
|
986 |
```
|
987 |
"""
|
988 |
)
|
|
|
993 |
def _(mo):
|
994 |
mo.md(
|
995 |
"""
|
996 |
+
We can prove that:
|
997 |
|
998 |
```python
|
999 |
+
fmap(id, wrapper)
|
1000 |
+
= Wrapper.fmap(id, wrapper)
|
1001 |
+
= Wrapper(id(wrapper.value))
|
1002 |
+
= Wrapper(wrapper.value)
|
1003 |
+
= WrapperCategory.id(wrapper)
|
1004 |
```
|
1005 |
+
and:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1006 |
```python
|
1007 |
+
fmap(compose(f, g), wrapper)
|
1008 |
+
= Wrapper.fmap(compose(f, g), wrapper)
|
1009 |
+
= Wrapper(compose(f, g)(wrapper.value))
|
1010 |
+
= Wrapper(f(g(wrapper.value)))
|
1011 |
+
|
1012 |
+
WrapperCategory.compose(fmap(f, wrapper), fmap(g, wrapper), wrapper)
|
1013 |
+
= fmap(f, wrapper)(fmap(g, wrapper)(wrapper))
|
1014 |
+
= fmap(f, wrapper)(Wrapper.fmap(g, wrapper))
|
1015 |
+
= fmap(f, wrapper)(Wrapper(g(wrapper.value)))
|
1016 |
+
= Wrapper.fmap(f, Wrapper(g(wrapper.value)))
|
1017 |
+
= Wrapper(f(Wrapper(g(wrapper.value)).value))
|
1018 |
+
= Wrapper(f(g(wrapper.value))) # Wrapper(g(wrapper.value)).value = g(wrapper.value)
|
|
|
1019 |
```
|
1020 |
|
1021 |
So our `Wrapper` is a valid `Functor`.
|
|
|
1026 |
return
|
1027 |
|
1028 |
|
1029 |
+
@app.cell
|
1030 |
+
def _(A, B, C, Callable, Wrapper, dataclass):
|
1031 |
@dataclass
|
1032 |
class WrapperCategory:
|
1033 |
@staticmethod
|
1034 |
+
def id(wrapper: Wrapper[A]) -> Wrapper[A]:
|
1035 |
+
return Wrapper(wrapper.value)
|
1036 |
|
1037 |
@staticmethod
|
1038 |
def compose(
|
1039 |
+
f: Callable[[Wrapper[B]], Wrapper[C]],
|
1040 |
+
g: Callable[[Wrapper[A]], Wrapper[B]],
|
1041 |
+
wrapper: Wrapper[A],
|
1042 |
+
) -> Callable[[Wrapper[A]], Wrapper[C]]:
|
1043 |
+
return f(g(Wrapper(wrapper.value)))
|
1044 |
return (WrapperCategory,)
|
1045 |
|
1046 |
|
1047 |
+
@app.cell
|
1048 |
+
def _(WrapperCategory, fmap, id, pp, wrapper):
|
1049 |
+
pp(fmap(id, wrapper) == WrapperCategory.id(wrapper))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1050 |
return
|
1051 |
|
1052 |
|
|
|
1063 |
### Category of List Concatenation
|
1064 |
|
1065 |
First, let’s define the category of list concatenation:
|
1066 |
+
|
1067 |
+
```python
|
1068 |
+
@dataclass
|
1069 |
+
class ListConcatenation(Generic[A]):
|
1070 |
+
value: list[A]
|
1071 |
+
|
1072 |
+
@staticmethod
|
1073 |
+
def id() -> "ListConcatenation[A]":
|
1074 |
+
return ListConcatenation([])
|
1075 |
+
|
1076 |
+
@staticmethod
|
1077 |
+
def compose(
|
1078 |
+
this: "ListConcatenation[A]", other: "ListConcatenation[A]"
|
1079 |
+
) -> "ListConcatenation[a]":
|
1080 |
+
return ListConcatenation(this.value + other.value)
|
1081 |
+
```
|
1082 |
"""
|
1083 |
)
|
1084 |
return
|
1085 |
|
1086 |
|
1087 |
@app.cell
|
1088 |
+
def _(A, Generic, dataclass):
|
1089 |
@dataclass
|
1090 |
+
class ListConcatenation(Generic[A]):
|
1091 |
+
value: list[A]
|
1092 |
|
1093 |
@staticmethod
|
1094 |
+
def id() -> "ListConcatenation[A]":
|
1095 |
return ListConcatenation([])
|
1096 |
|
1097 |
@staticmethod
|
1098 |
def compose(
|
1099 |
+
this: "ListConcatenation[A]", other: "ListConcatenation[A]"
|
1100 |
) -> "ListConcatenation[a]":
|
1101 |
return ListConcatenation(this.value + other.value)
|
1102 |
return (ListConcatenation,)
|
|
|
1120 |
### Category of Integer Addition
|
1121 |
|
1122 |
Now, let's define the category of integer addition:
|
1123 |
+
|
1124 |
+
```python
|
1125 |
+
@dataclass
|
1126 |
+
class IntAddition:
|
1127 |
+
value: int
|
1128 |
+
|
1129 |
+
@staticmethod
|
1130 |
+
def id() -> "IntAddition":
|
1131 |
+
return IntAddition(0)
|
1132 |
+
|
1133 |
+
@staticmethod
|
1134 |
+
def compose(this: "IntAddition", other: "IntAddition") -> "IntAddition":
|
1135 |
+
return IntAddition(this.value + other.value)
|
1136 |
+
```
|
1137 |
"""
|
1138 |
)
|
1139 |
return
|
|
|
1173 |
### Defining the Length Functor
|
1174 |
|
1175 |
We now define the `length` function as a functor, mapping from the category of list concatenation to the category of integer addition:
|
1176 |
+
|
1177 |
+
```python
|
1178 |
+
length = lambda l: IntAddition(len(l.value))
|
1179 |
+
```
|
1180 |
"""
|
1181 |
)
|
1182 |
return
|
1183 |
|
1184 |
|
1185 |
+
@app.cell(hide_code=True)
|
1186 |
def _(IntAddition):
|
1187 |
length = lambda l: IntAddition(len(l.value))
|
1188 |
return (length,)
|
|
|
1204 |
|
1205 |
#### 1. **Identity Law**:
|
1206 |
The identity law states that applying the functor to the identity element of one category should give the identity element of the other category.
|
1207 |
+
|
1208 |
+
```python
|
1209 |
+
> length(ListConcatenation.id()) == IntAddition.id()
|
1210 |
+
True
|
1211 |
+
```
|
1212 |
"""
|
1213 |
)
|
1214 |
return
|
1215 |
|
1216 |
|
|
|
|
|
|
|
|
|
|
|
|
|
1217 |
@app.cell(hide_code=True)
|
1218 |
def _(mo):
|
1219 |
mo.md("""This ensures that the length of an empty list (identity in the `ListConcatenation` category) is `0` (identity in the `IntAddition` category).""")
|
|
|
1226 |
"""
|
1227 |
#### 2. **Composition Law**:
|
1228 |
The composition law states that the functor should preserve composition. Applying the functor to a composed element should be the same as composing the functor applied to the individual elements.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1229 |
|
1230 |
+
```python
|
1231 |
+
> lista = ListConcatenation([1, 2])
|
1232 |
+
> listb = ListConcatenation([3, 4])
|
1233 |
+
> length(ListConcatenation.compose(lista, listb)) == IntAddition.compose(
|
1234 |
+
> length(lista), length(listb)
|
1235 |
+
> )
|
1236 |
+
True
|
1237 |
+
```
|
1238 |
+
"""
|
1239 |
)
|
1240 |
return
|
1241 |
|
|
|
1246 |
return
|
1247 |
|
1248 |
|
1249 |
+
@app.cell
|
1250 |
+
def _(IntAddition, ListConcatenation, length, pp):
|
1251 |
+
pp(length(ListConcatenation.id()) == IntAddition.id())
|
1252 |
+
lista = ListConcatenation([1, 2])
|
1253 |
+
listb = ListConcatenation([3, 4])
|
1254 |
+
pp(
|
1255 |
+
length(ListConcatenation.compose(lista, listb))
|
1256 |
+
== IntAddition.compose(length(lista), length(listb))
|
1257 |
+
)
|
1258 |
+
return lista, listb
|
1259 |
+
|
1260 |
+
|
1261 |
@app.cell(hide_code=True)
|
1262 |
def _(mo):
|
1263 |
mo.md(
|
|
|
1297 |
def _():
|
1298 |
from dataclasses import dataclass
|
1299 |
from typing import Callable, Generic, TypeVar
|
1300 |
+
from pprint import pp
|
1301 |
+
return Callable, Generic, TypeVar, dataclass, pp
|
1302 |
|
1303 |
|
1304 |
@app.cell(hide_code=True)
|
1305 |
def _(TypeVar):
|
1306 |
+
A = TypeVar("A")
|
1307 |
+
B = TypeVar("B")
|
1308 |
+
C = TypeVar("C")
|
1309 |
+
return A, B, C
|
1310 |
|
1311 |
|
1312 |
if __name__ == "__main__":
|
functional_programming/CHANGELOG.md
CHANGED
@@ -9,3 +9,28 @@
|
|
9 |
* `0.1.0` version of notebook `05_functors`
|
10 |
|
11 |
Thank [Akshay](https://github.com/akshayka) and [Haleshot](https://github.com/Haleshot) for reviewing
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
* `0.1.0` version of notebook `05_functors`
|
10 |
|
11 |
Thank [Akshay](https://github.com/akshayka) and [Haleshot](https://github.com/Haleshot) for reviewing
|
12 |
+
|
13 |
+
## 2025-03-16
|
14 |
+
|
15 |
+
+ Use uppercased letters for `Generic` types, e.g. `A = TypeVar("A")`
|
16 |
+
+ Refactor the `Functor` class, changing `fmap` and utility methods to `classmethod`
|
17 |
+
|
18 |
+
For example:
|
19 |
+
|
20 |
+
```python
|
21 |
+
@dataclass
|
22 |
+
class Wrapper(Functor, Generic[A]):
|
23 |
+
value: A
|
24 |
+
|
25 |
+
@classmethod
|
26 |
+
def fmap(cls, f: Callable[[A], B], a: "Wrapper[A]") -> "Wrapper[B]":
|
27 |
+
return Wrapper(f(a.value))
|
28 |
+
|
29 |
+
>>> Wrapper.fmap(lambda x: x + 1, wrapper)
|
30 |
+
Wrapper(value=2)
|
31 |
+
```
|
32 |
+
|
33 |
+
+ Move the `check_functor_law` method from `Functor` class to a standard function
|
34 |
+
- Rename `ListWrapper` to `List` for simplicity
|
35 |
+
- Remove the `Just` class
|
36 |
+
+ Rewrite proofs
|