Akshay Agrawal commited on
Commit
d66a745
·
unverified ·
2 Parent(s): 898d23c 731f48e

Merge pull request #14 from marimo-team/aka/reorg-python

Browse files
Python/phase_1/number_operations.py → python/001_numbers.py RENAMED
@@ -7,25 +7,20 @@
7
 
8
  import marimo
9
 
10
- __generated_with = "0.10.14"
11
  app = marimo.App()
12
 
13
 
14
- @app.cell
15
- def _():
16
- import marimo as mo
17
- return (mo,)
18
-
19
-
20
  @app.cell(hide_code=True)
21
  def _(mo):
22
  mo.md(
23
  """
24
- # 🔢 Numbers in Python
25
 
26
- Let's explore how Python handles numbers and mathematical operations!
27
 
28
  ## Number Types
 
29
  Python has several types of numbers:
30
 
31
  ```python
@@ -50,7 +45,7 @@ def _():
50
  def _(mo):
51
  mo.md(
52
  """
53
- ## Basic Mathematical Operations
54
 
55
  Python supports all standard mathematical operations.
56
 
@@ -104,15 +99,15 @@ def _(number):
104
 
105
  @app.cell
106
  def _(number):
107
- number ** 2 # Exponentiation
108
  return
109
 
110
 
111
- @app.cell
112
  def _(mo):
113
  mo.md(
114
  """
115
- ## Type Conversion
116
 
117
  You can convert between different number types. Try changing these values!
118
  """
@@ -134,7 +129,7 @@ def _(decimal_number):
134
 
135
  @app.cell
136
  def _(number):
137
- float(number) # Convert to float
138
  return
139
 
140
 
@@ -142,7 +137,7 @@ def _(number):
142
  def _(mo):
143
  mo.md(
144
  """
145
- ## Built-in Math Functions
146
  Python provides many useful built-in functions for working with numbers:
147
  """
148
  )
@@ -177,51 +172,74 @@ def _():
177
  def _(mo):
178
  mo.md(
179
  """
180
- ## Advanced Math Operations
 
 
 
 
 
181
 
182
- For more complex mathematical operations, Python's `math` module is your friend:
183
 
184
- ```python
185
- import math
 
 
186
 
187
- # Square root
188
- math.sqrt(16) # 4.0
189
 
190
- # Trigonometry
191
- math.sin(math.pi/2) # 1.0
192
- math.cos(0) # 1.0
 
193
 
194
- # Constants
195
- math.pi # 3.141592653589793
196
- math.e # 2.718281828459045
197
 
198
- # Logarithms
199
- math.log10(100) # 2.0
200
- math.log(math.e) # 1.0
201
- ```
202
- """
203
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
204
  return
205
 
206
 
207
  @app.cell(hide_code=True)
208
  def _(mo):
209
- callout_text = mo.md("""
210
- ## Master the Numbers!
211
-
212
- Next Steps:
213
 
214
  - Practice different mathematical operations
215
-
216
  - Experiment with type conversions
217
-
218
  - Try out the math module functions
219
 
220
  Keep calculating! 🧮✨
221
  """)
 
222
 
223
- mo.callout(callout_text, kind="success")
224
- return (callout_text,)
 
 
 
225
 
226
 
227
  if __name__ == "__main__":
 
7
 
8
  import marimo
9
 
10
+ __generated_with = "0.10.19"
11
  app = marimo.App()
12
 
13
 
 
 
 
 
 
 
14
  @app.cell(hide_code=True)
15
  def _(mo):
16
  mo.md(
17
  """
18
+ # 🔢 Numbers
19
 
20
+ This tutorial provides a brief overview of working with numbers.
21
 
22
  ## Number Types
23
+
24
  Python has several types of numbers:
25
 
26
  ```python
 
45
  def _(mo):
46
  mo.md(
47
  """
48
+ ## Basic mathematical operations
49
 
50
  Python supports all standard mathematical operations.
51
 
 
99
 
100
  @app.cell
101
  def _(number):
102
+ number**2 # Exponentiation
103
  return
104
 
105
 
106
+ @app.cell(hide_code=True)
107
  def _(mo):
108
  mo.md(
109
  """
110
+ ## Type conversion
111
 
112
  You can convert between different number types. Try changing these values!
113
  """
 
129
 
130
  @app.cell
131
  def _(number):
132
+ float(number) # Convert to "float" or decimal
133
  return
134
 
135
 
 
137
  def _(mo):
138
  mo.md(
139
  """
140
+ ## Built-in math functions
141
  Python provides many useful built-in functions for working with numbers:
142
  """
143
  )
 
172
  def _(mo):
173
  mo.md(
174
  """
175
+ ## Advanced operations
176
+
177
+ For more complex mathematical operations, use Python's [math module](https://docs.python.org/3/library/math.html).
178
+ """
179
+ )
180
+ return
181
 
 
182
 
183
+ @app.cell
184
+ def _():
185
+ import math
186
+ return (math,)
187
 
 
 
188
 
189
+ @app.cell
190
+ def _(math):
191
+ math.sqrt(16)
192
+ return
193
 
 
 
 
194
 
195
+ @app.cell
196
+ def _(math):
197
+ math.sin(math.pi/2)
198
+ return
199
+
200
+
201
+ @app.cell
202
+ def _(math):
203
+ math.cos(0)
204
+ return
205
+
206
+
207
+ @app.cell
208
+ def _(math):
209
+ math.pi, math.e
210
+ return
211
+
212
+
213
+ @app.cell
214
+ def _(math):
215
+ math.log10(100)
216
+ return
217
+
218
+
219
+ @app.cell
220
+ def _(math):
221
+ math.log(math.e)
222
  return
223
 
224
 
225
  @app.cell(hide_code=True)
226
  def _(mo):
227
+ mo.md("""
228
+ ## Next steps:
 
 
229
 
230
  - Practice different mathematical operations
 
231
  - Experiment with type conversions
 
232
  - Try out the math module functions
233
 
234
  Keep calculating! 🧮✨
235
  """)
236
+ return
237
 
238
+
239
+ @app.cell
240
+ def _():
241
+ import marimo as mo
242
+ return (mo,)
243
 
244
 
245
  if __name__ == "__main__":
Python/phase_1/string_manipulation.py → python/002_strings.py RENAMED
@@ -7,14 +7,8 @@
7
 
8
  import marimo
9
 
10
- __generated_with = "0.10.12"
11
- app = marimo.App()
12
-
13
-
14
- @app.cell
15
- def _():
16
- import marimo as mo
17
- return (mo,)
18
 
19
 
20
  @app.cell(hide_code=True)
@@ -23,15 +17,25 @@ def _(mo):
23
  """
24
  # 🎭 Strings
25
 
26
- Dive into the world of Python strings where text comes to life!
27
 
28
  ## Creating strings
29
- In Python, strings are containers for text. You can create them in two simple
30
- ways:
31
 
32
  ```python
33
- greeting = "Hello, Python!" # using double quotes
34
- name = 'Alice' # using single quotes
 
 
 
 
 
 
 
 
 
 
 
35
  ```
36
 
37
  Below is an example string.
@@ -42,7 +46,8 @@ def _(mo):
42
 
43
  @app.cell
44
  def _():
45
- text = "Python is amazing"
 
46
  return (text,)
47
 
48
 
@@ -63,6 +68,7 @@ def _(mo):
63
 
64
  @app.cell
65
  def _(text):
 
66
  len(text)
67
  return
68
 
@@ -93,7 +99,8 @@ def _(mo):
93
 
94
  @app.cell
95
  def _(text):
96
- text.find('is')
 
97
  return
98
 
99
 
@@ -109,7 +116,7 @@ def _(text):
109
  return
110
 
111
 
112
- @app.cell
113
  def _(mo):
114
  mo.md(
115
  """
@@ -118,7 +125,7 @@ def _(mo):
118
  Modern Python uses f-strings to insert values into strings. For example,
119
  check out how the next cell greets you (and notice the `f''''`)!
120
 
121
- Try changing the value of `my_name`, and watch how the greeting changes.
122
  """
123
  )
124
  return
@@ -126,7 +133,7 @@ def _(mo):
126
 
127
  @app.cell
128
  def _():
129
- my_name = ''
130
  return (my_name,)
131
 
132
 
@@ -140,7 +147,7 @@ def _(my_name):
140
  def _(mo):
141
  mo.md(
142
  """
143
- ## Working with Parts of Strings
144
  You can access any part of a string using its position (index):
145
  """
146
  )
@@ -181,48 +188,73 @@ def _(mo):
181
  """
182
  ## Other helpful string methods
183
 
184
- Finally, here are some other helpful string methods. Feel free to try them out on your own strings!
 
 
 
185
 
186
- ```python
187
- sentence = " python is fun "
188
 
189
- # Remove extra spaces
190
- print(sentence.strip()) # "python is fun"
 
 
 
191
 
192
- # Split into a list of words
193
- print(sentence.split()) # ['python', 'is', 'fun']
194
 
195
- # Replace words
196
- print(sentence.replace('fun', 'awesome'))
 
 
 
197
 
198
- # Check what kind of text you have
199
- print("123".isdigit()) # True - only numbers?
200
- print("abc".isalpha()) # True - only letters?
201
- print("Python3".isalnum()) # True - letters or numbers?
202
- ```
203
- """
204
- )
205
  return
206
 
207
 
208
- @app.cell(hide_code=True)
209
- def _(mo):
210
- callout_text = mo.md("""
211
- ## Your String Journey Begins!
212
 
213
- Next Steps:
214
 
215
- - Try combining different string methods
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
216
 
217
- - Practice with f-strings
 
 
 
 
218
 
219
- - Experiment with string slicing
 
 
 
220
 
221
- You're doing great! 🐍✨
222
- """)
223
 
224
- mo.callout(callout_text, kind="success")
225
- return (callout_text,)
 
 
226
 
227
 
228
  if __name__ == "__main__":
 
7
 
8
  import marimo
9
 
10
+ __generated_with = "0.10.19"
11
+ app = marimo.App(width="medium")
 
 
 
 
 
 
12
 
13
 
14
  @app.cell(hide_code=True)
 
17
  """
18
  # 🎭 Strings
19
 
20
+ This notebook introduces **strings**, which are containers for text.
21
 
22
  ## Creating strings
23
+ Create strings by wrapping text in quotes:
 
24
 
25
  ```python
26
+ # Use double quotes
27
+ greeting = "Hello, Python!"
28
+
29
+ # or single quotes
30
+ name = 'Alice'
31
+
32
+ # or triple quotes
33
+ multiline_string = \"""
34
+ Dear, Alice,
35
+ Nice to meet you.
36
+ Sincerely,
37
+ Bob.
38
+ \"""
39
  ```
40
 
41
  Below is an example string.
 
46
 
47
  @app.cell
48
  def _():
49
+ text = "Python is amazing!"
50
+ text
51
  return (text,)
52
 
53
 
 
68
 
69
  @app.cell
70
  def _(text):
71
+ # the `len` method returns the number of characters in the string.
72
  len(text)
73
  return
74
 
 
99
 
100
  @app.cell
101
  def _(text):
102
+ # Returns the index of "is" in the string
103
+ text.find("is")
104
  return
105
 
106
 
 
116
  return
117
 
118
 
119
+ @app.cell(hide_code=True)
120
  def _(mo):
121
  mo.md(
122
  """
 
125
  Modern Python uses f-strings to insert values into strings. For example,
126
  check out how the next cell greets you (and notice the `f''''`)!
127
 
128
+ **Try it!** Enter your name in `my_name` below, then run the cell.
129
  """
130
  )
131
  return
 
133
 
134
  @app.cell
135
  def _():
136
+ my_name = ""
137
  return (my_name,)
138
 
139
 
 
147
  def _(mo):
148
  mo.md(
149
  """
150
+ ## Working with parts of strings
151
  You can access any part of a string using its position (index):
152
  """
153
  )
 
188
  """
189
  ## Other helpful string methods
190
 
191
+ Finally, here are some other helpful string methods. Feel free to try them out on your own strings by modifying the value of `sentence` below.
192
+ """
193
+ )
194
+ return
195
 
 
 
196
 
197
+ @app.cell
198
+ def _():
199
+ sentence = " python is fun "
200
+ sentence
201
+ return (sentence,)
202
 
 
 
203
 
204
+ @app.cell
205
+ def _(sentence):
206
+ # Remove extra spaces
207
+ sentence.strip()
208
+ return
209
 
210
+
211
+ @app.cell
212
+ def _(sentence):
213
+ # Split into a list of words
214
+ sentence.split()
 
 
215
  return
216
 
217
 
218
+ @app.cell
219
+ def _(sentence):
220
+ sentence.replace("fun", "awesome")
221
+ return
222
 
 
223
 
224
+ @app.cell
225
+ def _():
226
+ "123".isdigit(), "abc".isdigit()
227
+ return
228
+
229
+
230
+ @app.cell
231
+ def _():
232
+ "123".isalpha(), "abc".isalpha()
233
+ return
234
+
235
+
236
+ @app.cell
237
+ def _():
238
+ "Python3".isalnum()
239
+ return
240
+
241
 
242
+ @app.cell(hide_code=True)
243
+ def _(mo):
244
+ mo.md(
245
+ r"""
246
+ ## Next steps
247
 
248
+ For a full primer on strings, check out the [official documentation](https://docs.python.org/3/library/string.html).
249
+ """
250
+ )
251
+ return
252
 
 
 
253
 
254
+ @app.cell
255
+ def _():
256
+ import marimo as mo
257
+ return (mo,)
258
 
259
 
260
  if __name__ == "__main__":
Python/phase_1/collections.py → python/003_collections.py RENAMED
@@ -7,23 +7,17 @@
7
 
8
  import marimo
9
 
10
- __generated_with = "0.10.14"
11
- app = marimo.App()
12
-
13
-
14
- @app.cell
15
- def _():
16
- import marimo as mo
17
- return (mo,)
18
 
19
 
20
  @app.cell(hide_code=True)
21
  def _(mo):
22
  mo.md(
23
  """
24
- # 📦 Collections in Python
25
 
26
- Explore Python's built-in collection types the essential data structures!
27
 
28
  ## Lists
29
  Lists are ordered, mutable sequences. Create them using square brackets:
@@ -31,7 +25,7 @@ def _(mo):
31
  ```python
32
  fruits = ["apple", "banana", "orange"]
33
  numbers = [1, 2, 3, 4, 5]
34
- mixed = [1, "hello", 3.14, True] # Can contain different types
35
  ```
36
 
37
  Below is an example list we'll use to explore operations.
@@ -50,7 +44,7 @@ def _():
50
  def _(mo):
51
  mo.md(
52
  """
53
- ## List Operations
54
 
55
  Here are common operations you can perform on lists.
56
 
@@ -68,7 +62,7 @@ def _(sample_list):
68
 
69
  @app.cell
70
  def _(sample_list):
71
- extended_list = sample_list + [6] # concatenate two lists
72
  extended_list
73
  return (extended_list,)
74
 
@@ -122,7 +116,6 @@ def _():
122
  tuple2 = (4, 5, 6)
123
 
124
  tuple3 = tuple1 + tuple2
125
-
126
  tuple3
127
  return tuple1, tuple2, tuple3
128
 
@@ -141,11 +134,7 @@ def _(mo):
141
 
142
  @app.cell
143
  def _():
144
- person = {
145
- "name": "John Doe",
146
- "age": 25,
147
- "city": "New York"
148
- }
149
  return (person,)
150
 
151
 
@@ -187,24 +176,21 @@ def _():
187
 
188
  @app.cell
189
  def _(numbers_set):
190
- numbers_set.add(4) # Add new element
191
- numbers_set
192
  return
193
 
194
 
195
  @app.cell
196
  def _():
197
- set1 = {1, 2, 3}
198
- set2 = {3, 4, 5}
199
- set1.intersection(set2) # Find common elements
200
- return set1, set2
201
 
202
 
203
  @app.cell(hide_code=True)
204
  def _(mo):
205
  mo.md(
206
  """
207
- ## Collection Methods and Operations
208
 
209
  Here are some common operations across collections:
210
 
@@ -234,20 +220,20 @@ def _(mo):
234
 
235
  @app.cell(hide_code=True)
236
  def _(mo):
237
- callout_text = mo.md("""
238
- ## Collection Mastery Awaits!
239
-
240
- Next Steps:
241
 
242
- - Practice list and dictionary comprehensions
243
- - Experiment with nested collections
244
- - Try combining different collection types
 
245
 
246
- Keep organizing data! 🗃️✨
247
- """)
248
 
249
- mo.callout(callout_text, kind="success")
250
- return (callout_text,)
 
 
251
 
252
 
253
  if __name__ == "__main__":
 
7
 
8
  import marimo
9
 
10
+ __generated_with = "0.10.19"
11
+ app = marimo.App(width="medium")
 
 
 
 
 
 
12
 
13
 
14
  @app.cell(hide_code=True)
15
  def _(mo):
16
  mo.md(
17
  """
18
+ # 📦 Collections
19
 
20
+ A "collection" is a type of variable that holds multiple values.
21
 
22
  ## Lists
23
  Lists are ordered, mutable sequences. Create them using square brackets:
 
25
  ```python
26
  fruits = ["apple", "banana", "orange"]
27
  numbers = [1, 2, 3, 4, 5]
28
+ mixed = [1, "hello", 3.14, True]
29
  ```
30
 
31
  Below is an example list we'll use to explore operations.
 
44
  def _(mo):
45
  mo.md(
46
  """
47
+ ## List operations
48
 
49
  Here are common operations you can perform on lists.
50
 
 
62
 
63
  @app.cell
64
  def _(sample_list):
65
+ extended_list = sample_list + [6] # Concatenate two lists
66
  extended_list
67
  return (extended_list,)
68
 
 
116
  tuple2 = (4, 5, 6)
117
 
118
  tuple3 = tuple1 + tuple2
 
119
  tuple3
120
  return tuple1, tuple2, tuple3
121
 
 
134
 
135
  @app.cell
136
  def _():
137
+ person = {"name": "John Doe", "age": 25, "city": "New York"}
 
 
 
 
138
  return (person,)
139
 
140
 
 
176
 
177
  @app.cell
178
  def _(numbers_set):
179
+ numbers_set | {4} # Add a new element
 
180
  return
181
 
182
 
183
  @app.cell
184
  def _():
185
+ {1, 2, 3} & {3, 4, 5} # Find common elements
186
+ return
 
 
187
 
188
 
189
  @app.cell(hide_code=True)
190
  def _(mo):
191
  mo.md(
192
  """
193
+ ## Collection methods and operations
194
 
195
  Here are some common operations across collections:
196
 
 
220
 
221
  @app.cell(hide_code=True)
222
  def _(mo):
223
+ mo.md(
224
+ r"""
225
+ ## Documentation
 
226
 
227
+ See the official [Python tutorial on data structures](https://docs.python.org/3/tutorial/datastructures.html) for more in-depth information.
228
+ """
229
+ )
230
+ return
231
 
 
 
232
 
233
+ @app.cell
234
+ def _():
235
+ import marimo as mo
236
+ return (mo,)
237
 
238
 
239
  if __name__ == "__main__":
Python/phase_2/conditional_logic.py → python/004_conditional_logic.py RENAMED
@@ -7,23 +7,18 @@
7
 
8
  import marimo
9
 
10
- __generated_with = "0.10.14"
11
  app = marimo.App()
12
 
13
 
14
- @app.cell
15
- def _():
16
- import marimo as mo
17
- return (mo,)
18
-
19
-
20
  @app.cell(hide_code=True)
21
  def _(mo):
22
  mo.md(
23
  """
24
- # 🔄 Conditional Logic in Python
25
 
26
- Learn how to make decisions in your code with Python's conditional statements!
 
27
 
28
  ## If Statements
29
  The foundation of decision-making in Python:
@@ -41,21 +36,43 @@ def _(mo):
41
  return
42
 
43
 
 
 
 
 
 
 
44
  @app.cell
45
  def _():
46
  number = 42
47
  return (number,)
48
 
49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
  @app.cell
51
- def _(number):
52
- if number > 50:
53
- result = "Greater than 50"
54
  elif number == 42:
55
- result = "Found the answer!"
56
  else:
57
- result = "Less than 50"
58
- result
59
  return (result,)
60
 
61
 
@@ -63,27 +80,27 @@ def _(number):
63
  def _(mo):
64
  mo.md(
65
  r"""
66
- ## Interactive Decision Making
67
- Try changing the conditions below and see how the results change (powered by marimo's UI elements!):
68
  """
69
  )
70
  return
71
 
72
 
73
- @app.cell
74
  def _(mo, threshold, value):
75
- mo.hstack([value, threshold])
76
  return
77
 
78
 
79
- @app.cell
80
  def _(mo):
81
  value = mo.ui.number(value=25, start=0, stop=100, label="Enter a number")
82
  threshold = mo.ui.slider(value=50, start=0, stop=100, label="Set threshold")
83
  return threshold, value
84
 
85
 
86
- @app.cell
87
  def _(mo, threshold, value):
88
  if value.value > threshold.value:
89
  decision = f"{value.value} is greater than {threshold.value}"
@@ -95,9 +112,11 @@ def _(mo, threshold, value):
95
  mo.hstack(
96
  [
97
  mo.md(f"**Decision**: {decision}"),
98
- mo.md(f"**Condition Status**: {'✅' if value.value >= threshold.value else '❌'}")
 
 
99
  ],
100
- justify="space-between"
101
  )
102
  return (decision,)
103
 
@@ -106,7 +125,7 @@ def _(mo, threshold, value):
106
  def _(mo):
107
  mo.md(
108
  r"""
109
- ## Boolean Operations
110
  Python uses boolean operators to combine conditions:
111
 
112
  - `and`: Both conditions must be True
@@ -119,36 +138,50 @@ def _(mo):
119
  return
120
 
121
 
122
- @app.cell
 
 
 
 
 
 
 
 
 
 
 
123
  def _(age, has_id, mo):
124
- mo.hstack([age, has_id])
125
  return
126
 
127
 
128
- @app.cell
129
  def _(mo):
130
  age = mo.ui.number(value=18, start=0, stop=120, label="Age")
131
  has_id = mo.ui.switch(value=True, label="Has ID")
132
  return age, has_id
133
 
134
 
135
- @app.cell
136
  def _(age, has_id, mo):
137
  can_vote = age.value >= 18 and has_id.value
138
 
139
  explanation = f"""
140
- ### Voting Eligibility Check
141
 
142
  Current Status:
143
 
144
  - Age: {age.value} years old
145
 
146
- - Has ID: {'Yes' if has_id.value else 'No'}
147
 
148
- - Can Vote: {'Yes ✅' if can_vote else 'No ❌'}
149
 
150
- Reason: {'Both age and ID requirements met' if can_vote
151
- else 'Missing ' + ('required age' if age.value < 18 else 'valid ID')}
 
 
 
152
  """
153
 
154
  mo.md(explanation)
@@ -157,20 +190,27 @@ def _(age, has_id, mo):
157
 
158
  @app.cell(hide_code=True)
159
  def _(mo):
160
- _text = mo.md("""
161
- - Try different combinations of age and ID status
162
- - Notice how both conditions must be True to allow voting
163
- - Experiment with edge cases (exactly 18, no ID, etc.)
164
- """)
165
- mo.accordion({"💡 Experiment Tips": _text})
166
  return
167
 
168
 
 
 
 
 
 
 
 
 
 
 
 
 
169
  @app.cell(hide_code=True)
170
  def _(mo):
171
  mo.md(
172
  """
173
- ## Complex Conditions
174
  Combine multiple conditions for more sophisticated logic:
175
  ```python
176
  # Multiple conditions
@@ -189,13 +229,13 @@ def _(mo):
189
  return
190
 
191
 
192
- @app.cell
193
  def _(humidity, mo, temp, wind):
194
  mo.hstack([temp, humidity, wind])
195
  return
196
 
197
 
198
- @app.cell
199
  def _(mo):
200
  temp = mo.ui.number(value=25, start=-20, stop=50, label="Temperature (°C)")
201
  humidity = mo.ui.slider(value=60, start=0, stop=100, label="Humidity (%)")
@@ -203,30 +243,31 @@ def _(mo):
203
  return humidity, temp, wind
204
 
205
 
206
- @app.cell
207
  def _(humidity, mo, temp, wind):
208
  def get_weather_advice():
209
  conditions = []
210
-
211
  if temp.value > 30:
212
  conditions.append("🌡️ High temperature")
213
  elif temp.value < 10:
214
  conditions.append("❄️ Cold temperature")
215
-
216
  if humidity.value > 80:
217
  conditions.append("💧 High humidity")
218
  elif humidity.value < 30:
219
  conditions.append("🏜️ Low humidity")
220
-
221
  if wind.value > 30:
222
  conditions.append("💨 Strong winds")
223
-
224
  return conditions
225
-
 
226
  conditions = get_weather_advice()
227
-
228
  message = f"""
229
- ### Weather Analysis
230
 
231
  Current Conditions:
232
 
@@ -236,7 +277,7 @@ def _(humidity, mo, temp, wind):
236
 
237
  - Wind Speed: {wind.value} km/h
238
 
239
- Alerts: {', '.join(conditions) if conditions else 'No special alerts'}
240
  """
241
 
242
  mo.md(message)
@@ -245,22 +286,22 @@ def _(humidity, mo, temp, wind):
245
 
246
  @app.cell(hide_code=True)
247
  def _(mo):
248
- callout_text = mo.md("""
249
- ## Your Logic Journey Continues!
250
-
251
- Next Steps:
252
 
253
  - Practice combining multiple conditions
254
-
255
  - Explore nested if statements
256
-
257
- - Try creating your own complex decision trees (pun on an ML algorithm!)
258
 
259
  Keep coding! 🎯✨
260
  """)
 
261
 
262
- mo.callout(callout_text, kind="success")
263
- return (callout_text,)
 
 
 
264
 
265
 
266
  if __name__ == "__main__":
 
7
 
8
  import marimo
9
 
10
+ __generated_with = "0.10.19"
11
  app = marimo.App()
12
 
13
 
 
 
 
 
 
 
14
  @app.cell(hide_code=True)
15
  def _(mo):
16
  mo.md(
17
  """
18
+ # 🔄 Conditional logic
19
 
20
+ This tutorial teaches you how to how to make **decisions** in your code, using
21
+ Python's conditional statements.
22
 
23
  ## If Statements
24
  The foundation of decision-making in Python:
 
36
  return
37
 
38
 
39
+ @app.cell(hide_code=True)
40
+ def _(mo):
41
+ mo.md("""**Try it!** Try changing the value of `42` below, and see how the output changes.""")
42
+ return
43
+
44
+
45
  @app.cell
46
  def _():
47
  number = 42
48
  return (number,)
49
 
50
 
51
+ @app.cell(hide_code=True)
52
+ def _(mo):
53
+ mo.md(
54
+ r"""
55
+ Compare numbers using operators like
56
+
57
+ - `>`
58
+ - `>=`
59
+ - `<`
60
+ - `<=`
61
+ - `==` (note the two equal signs!)
62
+ """
63
+ )
64
+ return
65
+
66
+
67
  @app.cell
68
+ def _(mo, number):
69
+ if number > 42:
70
+ result = "Greater than 42"
71
  elif number == 42:
72
+ result = "Equal to 42!"
73
  else:
74
+ result = "Less than 42"
75
+ mo.md(result)
76
  return (result,)
77
 
78
 
 
80
  def _(mo):
81
  mo.md(
82
  r"""
83
+ ### Interactive decision making
84
+ **Try it!** Try changing the conditions below and see how the results change:
85
  """
86
  )
87
  return
88
 
89
 
90
+ @app.cell(hide_code=True)
91
  def _(mo, threshold, value):
92
+ mo.hstack([value, threshold], justify="start")
93
  return
94
 
95
 
96
+ @app.cell(hide_code=True)
97
  def _(mo):
98
  value = mo.ui.number(value=25, start=0, stop=100, label="Enter a number")
99
  threshold = mo.ui.slider(value=50, start=0, stop=100, label="Set threshold")
100
  return threshold, value
101
 
102
 
103
+ @app.cell(hide_code=True)
104
  def _(mo, threshold, value):
105
  if value.value > threshold.value:
106
  decision = f"{value.value} is greater than {threshold.value}"
 
112
  mo.hstack(
113
  [
114
  mo.md(f"**Decision**: {decision}"),
115
+ mo.md(
116
+ f"**Threshold cleared?**: {'✅' if value.value >= threshold.value else '❌'}"
117
+ ),
118
  ],
119
+ justify="space-around",
120
  )
121
  return (decision,)
122
 
 
125
  def _(mo):
126
  mo.md(
127
  r"""
128
+ ## Boolean operations
129
  Python uses boolean operators to combine conditions:
130
 
131
  - `and`: Both conditions must be True
 
138
  return
139
 
140
 
141
+ @app.cell(hide_code=True)
142
+ def _(mo):
143
+ _text = mo.md("""
144
+ - Try different combinations of age and ID status
145
+ - Notice how both conditions must be True to allow voting
146
+ - Experiment with edge cases (exactly 18, no ID, etc.)
147
+ """)
148
+ mo.accordion({"💡 Experiment Tips": _text})
149
+ return
150
+
151
+
152
+ @app.cell(hide_code=True)
153
  def _(age, has_id, mo):
154
+ mo.hstack([age, has_id], justify="start")
155
  return
156
 
157
 
158
+ @app.cell(hide_code=True)
159
  def _(mo):
160
  age = mo.ui.number(value=18, start=0, stop=120, label="Age")
161
  has_id = mo.ui.switch(value=True, label="Has ID")
162
  return age, has_id
163
 
164
 
165
+ @app.cell(hide_code=True)
166
  def _(age, has_id, mo):
167
  can_vote = age.value >= 18 and has_id.value
168
 
169
  explanation = f"""
170
+ ### Voting eligibility check
171
 
172
  Current Status:
173
 
174
  - Age: {age.value} years old
175
 
176
+ - Has ID: {"Yes" if has_id.value else "No"}
177
 
178
+ - Can Vote: {"Yes ✅" if can_vote else "No ❌"}
179
 
180
+ Reason: {
181
+ "Both age and ID requirements met"
182
+ if can_vote
183
+ else "Missing " + ("required age" if age.value < 18 else "valid ID")
184
+ }
185
  """
186
 
187
  mo.md(explanation)
 
190
 
191
  @app.cell(hide_code=True)
192
  def _(mo):
193
+ mo.md(r"""**Try it!** Write Python code that computes whether an individual can vote.""")
 
 
 
 
 
194
  return
195
 
196
 
197
+ @app.cell
198
+ def _():
199
+ my_age = 18
200
+ return (my_age,)
201
+
202
+
203
+ @app.cell
204
+ def _():
205
+ has_an_id = False
206
+ return (has_an_id,)
207
+
208
+
209
  @app.cell(hide_code=True)
210
  def _(mo):
211
  mo.md(
212
  """
213
+ ## Complex conditions
214
  Combine multiple conditions for more sophisticated logic:
215
  ```python
216
  # Multiple conditions
 
229
  return
230
 
231
 
232
+ @app.cell(hide_code=True)
233
  def _(humidity, mo, temp, wind):
234
  mo.hstack([temp, humidity, wind])
235
  return
236
 
237
 
238
+ @app.cell(hide_code=True)
239
  def _(mo):
240
  temp = mo.ui.number(value=25, start=-20, stop=50, label="Temperature (°C)")
241
  humidity = mo.ui.slider(value=60, start=0, stop=100, label="Humidity (%)")
 
243
  return humidity, temp, wind
244
 
245
 
246
+ @app.cell(hide_code=True)
247
  def _(humidity, mo, temp, wind):
248
  def get_weather_advice():
249
  conditions = []
250
+
251
  if temp.value > 30:
252
  conditions.append("🌡️ High temperature")
253
  elif temp.value < 10:
254
  conditions.append("❄️ Cold temperature")
255
+
256
  if humidity.value > 80:
257
  conditions.append("💧 High humidity")
258
  elif humidity.value < 30:
259
  conditions.append("🏜️ Low humidity")
260
+
261
  if wind.value > 30:
262
  conditions.append("💨 Strong winds")
263
+
264
  return conditions
265
+
266
+
267
  conditions = get_weather_advice()
268
+
269
  message = f"""
270
+ ### Weather analysis
271
 
272
  Current Conditions:
273
 
 
277
 
278
  - Wind Speed: {wind.value} km/h
279
 
280
+ Alerts: {", ".join(conditions) if conditions else "No special alerts"}
281
  """
282
 
283
  mo.md(message)
 
286
 
287
  @app.cell(hide_code=True)
288
  def _(mo):
289
+ mo.md("""
290
+ ## Next steps
 
 
291
 
292
  - Practice combining multiple conditions
 
293
  - Explore nested if statements
294
+ - Try creating your own complex decision trees
 
295
 
296
  Keep coding! 🎯✨
297
  """)
298
+ return
299
 
300
+
301
+ @app.cell
302
+ def _():
303
+ import marimo as mo
304
+ return (mo,)
305
 
306
 
307
  if __name__ == "__main__":
Python/phase_2/loop_structures.py → python/005_loops.py RENAMED
@@ -7,38 +7,32 @@
7
 
8
  import marimo
9
 
10
- __generated_with = "0.10.14"
11
  app = marimo.App()
12
 
13
 
14
- @app.cell
15
- def _():
16
- import marimo as mo
17
- return (mo,)
18
-
19
-
20
  @app.cell(hide_code=True)
21
  def _(mo):
22
  mo.md(
23
  """
24
- # 🔄 Loops in Python
25
 
26
- Let's explore how Python helps us repeat tasks efficiently with loops!
27
 
28
- ## Types of Loops
29
- Python has two main types of loops:
30
 
31
  ```python
32
- # For loop - when you know how many times to repeat
33
  for i in range(5):
34
  print(i)
35
 
36
- # While loop - when you don't know how many repetitions
37
  while condition:
38
  do_something()
39
  ```
40
 
41
- Let's start with a simple list to explore loops.
42
  """
43
  )
44
  return
@@ -54,7 +48,7 @@ def _():
54
  def _(mo):
55
  mo.md(
56
  """
57
- ## For Loop Basics
58
 
59
  The for loop is perfect for iterating over sequences.
60
  Try changing the `sample_fruits` list above and see how the output changes.
@@ -65,122 +59,128 @@ def _(mo):
65
 
66
  @app.cell
67
  def _(sample_fruits):
68
- def _print_fruits():
69
- for _fruit in sample_fruits:
70
- print(f"I like {_fruit}s!")
71
- _print_fruits()
72
  return
73
 
74
 
75
  @app.cell(hide_code=True)
76
  def _(mo):
77
- mo.md("""
78
- ## Using enumerate()
 
79
 
80
- When you need both the item and its position, use enumerate():
81
- """)
 
82
  return
83
 
84
 
85
  @app.cell
86
  def _(sample_fruits):
87
- def _print_enumerated():
88
- for _idx, _fruit in enumerate(sample_fruits):
89
- print(f"{_idx + 1}. {_fruit}")
90
- _print_enumerated()
91
  return
92
 
93
 
94
  @app.cell(hide_code=True)
95
  def _(mo):
96
- mo.md("""
97
- ## Range in Loops
 
 
 
 
 
 
98
 
99
- range() is a powerful function for generating sequences of numbers:
100
- """)
 
 
 
 
101
  return
102
 
103
 
104
  @app.cell
105
  def _():
106
- def _demonstrate_range():
107
- print("range(5):", list(range(5)))
108
- print("range(2, 5):", list(range(2, 5)))
109
- print("range(0, 10, 2):", list(range(0, 10, 2)))
110
- _demonstrate_range()
111
  return
112
 
113
 
114
  @app.cell(hide_code=True)
115
  def _(mo):
116
- mo.md("""## While Loop Basics
 
 
117
 
118
- While loops continue as long as a condition is `True`.""")
 
 
119
  return
120
 
121
 
122
  @app.cell
123
  def _():
124
- def _count_up():
125
- _count = 0
126
- while _count < 5:
127
- print(f"Count is {_count}")
128
- _count += 1
129
- _count_up()
130
  return
131
 
132
 
133
  @app.cell(hide_code=True)
134
  def _(mo):
135
- mo.md("""
136
- ## Loop Control Statements
 
137
 
138
  Python provides several ways to control loop execution:
139
 
140
- - `break`: Exit the loop immediately
141
 
142
- - `continue`: Skip to the next iteration
143
 
144
- - `else`: Execute when loop completes normally
145
- """)
 
146
  return
147
 
148
 
149
  @app.cell
150
  def _():
151
- def _demonstrate_break():
152
- for _i in range(1, 6):
153
- if _i == 4:
154
- break
155
- print(_i)
156
- print("Loop ended early!")
157
- _demonstrate_break()
158
  return
159
 
160
 
161
  @app.cell
162
  def _():
163
- def _demonstrate_continue():
164
- for _i in range(1, 6):
165
- if _i == 3:
166
- continue
167
- print(_i)
168
- _demonstrate_continue()
169
  return
170
 
171
 
172
  @app.cell(hide_code=True)
173
  def _(mo):
174
- mo.md("""
175
- ## Practical Loop Patterns
 
176
 
177
  Here are some common patterns you'll use with loops:
178
 
179
  ```python
180
  # Pattern 1: Accumulator
181
- sum = 0
182
  for num in [1, 2, 3, 4, 5]:
183
- sum += num
184
 
185
  # Pattern 2: Search
186
  found = False
@@ -195,26 +195,27 @@ def _(mo):
195
  if condition:
196
  filtered.append(item)
197
  ```
198
- """)
 
199
  return
200
 
201
 
202
  @app.cell(hide_code=True)
203
  def _(mo):
204
- callout_text = mo.md("""
205
- ## Loop Like a Pro!
206
-
207
- Next Steps:
208
 
209
- - Practice using different types of loops
210
- - Experiment with loop control statements
211
- - Try combining loops with lists and conditions
 
212
 
213
- Keep iterating! 🔄✨
214
- """)
215
 
216
- mo.callout(callout_text, kind="success")
217
- return (callout_text,)
 
 
218
 
219
 
220
  if __name__ == "__main__":
 
7
 
8
  import marimo
9
 
10
+ __generated_with = "0.10.19"
11
  app = marimo.App()
12
 
13
 
 
 
 
 
 
 
14
  @app.cell(hide_code=True)
15
  def _(mo):
16
  mo.md(
17
  """
18
+ # 🔄 Loops
19
 
20
+ Let's learn how Python helps us repeat tasks efficiently with loops.
21
 
22
+ A "loop" is a way to execute a block of code multiple times. Python has two
23
+ main types of loops:
24
 
25
  ```python
26
+ # For loop: when you know how many times to repeat
27
  for i in range(5):
28
  print(i)
29
 
30
+ # While loop: when you don't know how many repetitions
31
  while condition:
32
  do_something()
33
  ```
34
 
35
+ Let's start with a simple list to explore loops. Feel free to modify this list and see how the subsequent outputs change.
36
  """
37
  )
38
  return
 
48
  def _(mo):
49
  mo.md(
50
  """
51
+ ## The for loop
52
 
53
  The for loop is perfect for iterating over sequences.
54
  Try changing the `sample_fruits` list above and see how the output changes.
 
59
 
60
  @app.cell
61
  def _(sample_fruits):
62
+ for _fruit in sample_fruits:
63
+ print(f"I like {_fruit}s!")
 
 
64
  return
65
 
66
 
67
  @app.cell(hide_code=True)
68
  def _(mo):
69
+ mo.md(
70
+ """
71
+ ### Getting the position of an item
72
 
73
+ When you need both the item and its position, use `enumerate()`:
74
+ """
75
+ )
76
  return
77
 
78
 
79
  @app.cell
80
  def _(sample_fruits):
81
+ for _idx, _fruit in enumerate(sample_fruits):
82
+ print(f"{_idx + 1}. {_fruit}")
 
 
83
  return
84
 
85
 
86
  @app.cell(hide_code=True)
87
  def _(mo):
88
+ mo.md(
89
+ """
90
+ ### Iterating over a range of numbers
91
+
92
+ `range()` is a powerful function for generating sequences of numbers:
93
+ """
94
+ )
95
+ return
96
 
97
+
98
+ @app.cell
99
+ def _():
100
+ print("range(5):", list(range(5)))
101
+ print("range(2, 5):", list(range(2, 5)))
102
+ print("range(0, 10, 2):", list(range(0, 10, 2)))
103
  return
104
 
105
 
106
  @app.cell
107
  def _():
108
+ for _i in range(5):
109
+ print(_i)
 
 
 
110
  return
111
 
112
 
113
  @app.cell(hide_code=True)
114
  def _(mo):
115
+ mo.md(
116
+ """
117
+ ## The `while` loop
118
 
119
+ While loops continue as long as a condition is `True`.
120
+ """
121
+ )
122
  return
123
 
124
 
125
  @app.cell
126
  def _():
127
+ _count = 0
128
+ while _count < 5:
129
+ print(f"The count is {_count}")
130
+ _count += 1
 
 
131
  return
132
 
133
 
134
  @app.cell(hide_code=True)
135
  def _(mo):
136
+ mo.md(
137
+ """
138
+ ## Controlling loop execution
139
 
140
  Python provides several ways to control loop execution:
141
 
142
+ - `break`: exit the loop immediately
143
 
144
+ - `continue`: skip to the next iteration
145
 
146
+ These can be used with both `for` and `while` loops.
147
+ """
148
+ )
149
  return
150
 
151
 
152
  @app.cell
153
  def _():
154
+ for _i in range(1, 6):
155
+ if _i == 4:
156
+ print("Breaking out of the loop.")
157
+ break
158
+ print(_i)
 
 
159
  return
160
 
161
 
162
  @app.cell
163
  def _():
164
+ for _i in range(1, 6):
165
+ if _i == 3:
166
+ continue
167
+ print(_i)
 
 
168
  return
169
 
170
 
171
  @app.cell(hide_code=True)
172
  def _(mo):
173
+ mo.md(
174
+ """
175
+ ## Practical loop patterns
176
 
177
  Here are some common patterns you'll use with loops:
178
 
179
  ```python
180
  # Pattern 1: Accumulator
181
+ value = 0
182
  for num in [1, 2, 3, 4, 5]:
183
+ value += num
184
 
185
  # Pattern 2: Search
186
  found = False
 
195
  if condition:
196
  filtered.append(item)
197
  ```
198
+ """
199
+ )
200
  return
201
 
202
 
203
  @app.cell(hide_code=True)
204
  def _(mo):
205
+ mo.md(
206
+ r"""
207
+ ## Next steps
 
208
 
209
+ Check out the official [Python docs on loops and control flow](https://docs.python.org/3/tutorial/controlflow.html).
210
+ """
211
+ )
212
+ return
213
 
 
 
214
 
215
+ @app.cell
216
+ def _():
217
+ import marimo as mo
218
+ return (mo,)
219
 
220
 
221
  if __name__ == "__main__":
Python/phase_3/dictionaries.py → python/006_dictionaries.py RENAMED
@@ -7,31 +7,25 @@
7
 
8
  import marimo
9
 
10
- __generated_with = "0.10.14"
11
  app = marimo.App()
12
 
13
 
14
- @app.cell
15
- def _():
16
- import marimo as mo
17
- return (mo,)
18
-
19
-
20
  @app.cell(hide_code=True)
21
  def _(mo):
22
  mo.md(
23
  """
24
- # 📚 Python Dictionaries
25
 
26
- Welcome to the world of Python dictionaries where data gets organized with keys!
27
 
28
- ## Creating Dictionaries
29
- Dictionaries are collections of key-value pairs. Here's how to create them:
30
 
31
  ```python
32
- simple_dict = {"name": "Alice", "age": 25} # direct creation
33
- empty_dict = dict() # empty dictionary
34
- from_pairs = dict([("a", 1), ("b", 2)]) # from key-value pairs
35
  ```
36
 
37
  Below is a sample dictionary we'll use to explore operations.
@@ -47,7 +41,7 @@ def _():
47
  "type": "programming language",
48
  "year": 1991,
49
  "creator": "Guido van Rossum",
50
- "is_awesome": True
51
  }
52
  return (sample_dict,)
53
 
@@ -56,10 +50,23 @@ def _():
56
  def _(mo):
57
  mo.md(
58
  """
59
- ## Basic Dictionary Operations
60
 
61
  Let's explore how to work with dictionaries.
62
- Try modifying the `sample_dict` above and watch how the results change!
 
 
 
 
 
 
 
 
 
 
 
 
 
63
  """
64
  )
65
  return
@@ -67,48 +74,54 @@ def _(mo):
67
 
68
  @app.cell
69
  def _(sample_dict):
70
- # Accessing values of the dictionary
71
- def access_dict():
72
- print(f"Name: {sample_dict['name']}")
73
- print(f"Year: {sample_dict['year']}")
74
- access_dict()
75
- return (access_dict,)
 
 
76
 
77
 
78
  @app.cell
79
  def _(sample_dict):
80
- # Safe access with get()
81
- def safe_access():
82
- print(f"Version: {sample_dict.get('version', 'Not specified')}")
83
- print(f"Type: {sample_dict.get('type', 'Unknown')}")
84
- safe_access()
85
- return (safe_access,)
86
 
87
 
88
  @app.cell(hide_code=True)
89
  def _(mo):
90
- mo.md("""
91
- ## Dictionary Methods
 
 
 
 
 
 
 
92
 
93
- Python dictionaries come with powerful built-in methods:
94
- """)
 
95
  return
96
 
97
 
98
  @app.cell
99
  def _(sample_dict):
100
- # Viewing dictionary components
101
- def view_components():
102
- print("Keys:", list(sample_dict.keys()))
103
- print("Values:", list(sample_dict.values()))
104
- print("Items:", list(sample_dict.items()))
105
- view_components()
106
- return (view_components,)
 
107
 
108
 
109
  @app.cell
110
  def _():
111
- # Modifying dictionaries
112
  def demonstrate_modification():
113
  _dict = {"a": 1, "b": 2}
114
  print("Original:", _dict)
@@ -120,42 +133,45 @@ def _():
120
  # Removing
121
  _removed = _dict.pop("b")
122
  print(f"Removed {_removed}, Now:", _dict)
 
 
123
  demonstrate_modification()
124
  return (demonstrate_modification,)
125
 
126
 
127
  @app.cell(hide_code=True)
128
  def _(mo):
129
- mo.md("""
130
- ## Dictionary Comprehension
 
131
 
132
  Create dictionaries efficiently with dictionary comprehensions:
133
- """)
 
134
  return
135
 
136
 
137
  @app.cell
138
  def _():
139
- # Dictionary comprehension examples
140
- def demonstrate_comprehension():
141
- # Squares dictionary
142
- _squares = {x: x**2 for x in range(5)}
143
- print("Squares:", _squares)
144
 
145
- # Filtered dictionary
146
- _even_squares = {x: x**2 for x in range(5) if x % 2 == 0}
147
- print("Even squares:", _even_squares)
148
- demonstrate_comprehension()
149
- return (demonstrate_comprehension,)
150
 
151
 
152
  @app.cell(hide_code=True)
153
  def _(mo):
154
- mo.md("""
155
- ## Nested Dictionaries
 
156
 
157
  Dictionaries can contain other dictionaries, creating complex data structures:
158
- """)
 
159
  return
160
 
161
 
@@ -166,45 +182,35 @@ def _():
166
  "alice": {
167
  "age": 25,
168
  "email": "[email protected]",
169
- "interests": ["python", "data science"]
170
  },
171
  "bob": {
172
  "age": 30,
173
  "email": "[email protected]",
174
- "interests": ["web dev", "gaming"]
175
- }
176
  }
177
  }
178
  return (nested_data,)
179
 
180
 
181
  @app.cell
182
- def _(nested_data):
183
- # Accessing nested data
184
- def access_nested():
185
- print("Alice's age:", nested_data["users"]["alice"]["age"])
186
- print("Bob's interests:", nested_data["users"]["bob"]["interests"])
187
-
188
- # Safe nested access
189
- def _get_nested(data, *keys, default=None):
190
- _current = data
191
- for _key in keys:
192
- if isinstance(_current, dict):
193
- _current = _current.get(_key, default)
194
- else:
195
- return default
196
- return _current
197
-
198
- print("\nSafe access example:")
199
- print("Charlie's age:", _get_nested(nested_data, "users", "charlie", "age", default="Not found"))
200
- access_nested()
201
- return (access_nested,)
202
 
203
 
204
  @app.cell(hide_code=True)
205
  def _(mo):
206
- mo.md("""
207
- ## Common Dictionary Patterns
 
208
 
209
  Here are some useful patterns when working with dictionaries:
210
 
@@ -227,27 +233,15 @@ def _(mo):
227
  cache[arg] = compute_result(arg)
228
  return cache[arg]
229
  ```
230
- """)
 
231
  return
232
 
233
 
234
- @app.cell(hide_code=True)
235
- def _(mo):
236
- callout_text = mo.md("""
237
- ## Master the Dictionary!
238
-
239
- Next Steps:
240
-
241
- - Practice different dictionary methods
242
- - Try creating nested data structures
243
- - Experiment with dictionary comprehensions
244
- - Build something using common patterns
245
-
246
- Keep organizing your data! 🗂️✨
247
- """)
248
-
249
- mo.callout(callout_text, kind="success")
250
- return (callout_text,)
251
 
252
 
253
  if __name__ == "__main__":
 
7
 
8
  import marimo
9
 
10
+ __generated_with = "0.10.19"
11
  app = marimo.App()
12
 
13
 
 
 
 
 
 
 
14
  @app.cell(hide_code=True)
15
  def _(mo):
16
  mo.md(
17
  """
18
+ # 📚 Dictionaries
19
 
20
+ Dictionaries are collections of key-value pairs, with each key associated with a value. The keys are unique, meaning they show up only once.
21
 
22
+ ## Creating dictionaries
23
+ Here are a few ways to create dictionaries:
24
 
25
  ```python
26
+ simple_dict = {"name": "Alice", "age": 25}
27
+ empty_dict = dict()
28
+ from_pairs = dict([("a", 1), ("b", 2)])
29
  ```
30
 
31
  Below is a sample dictionary we'll use to explore operations.
 
41
  "type": "programming language",
42
  "year": 1991,
43
  "creator": "Guido van Rossum",
44
+ "is_awesome": True,
45
  }
46
  return (sample_dict,)
47
 
 
50
  def _(mo):
51
  mo.md(
52
  """
53
+ ## Operations
54
 
55
  Let's explore how to work with dictionaries.
56
+
57
+ **Try it!** Try modifying the `sample_dict` above and watch how the results change!
58
+ """
59
+ )
60
+ return
61
+
62
+
63
+ @app.cell(hide_code=True)
64
+ def _(mo):
65
+ mo.md(
66
+ r"""
67
+ ### Accessing values by key
68
+
69
+ Access values by key using square brackets, like below
70
  """
71
  )
72
  return
 
74
 
75
  @app.cell
76
  def _(sample_dict):
77
+ sample_dict['name'], sample_dict['year']
78
+ return
79
+
80
+
81
+ @app.cell(hide_code=True)
82
+ def _(mo):
83
+ mo.md(r"""If you're not sure if a dictionary has a given key, use `get()`:""")
84
+ return
85
 
86
 
87
  @app.cell
88
  def _(sample_dict):
89
+ sample_dict.get("version", "Not specified"), sample_dict.get("type", "Unknown")
90
+ return
 
 
 
 
91
 
92
 
93
  @app.cell(hide_code=True)
94
  def _(mo):
95
+ mo.md(
96
+ """
97
+ ## Enumerating dictionary contents
98
+
99
+ Python dictionaries come with helpful methods to enumerate keys, values, and pairs.
100
+ """
101
+ )
102
+ return
103
+
104
 
105
+ @app.cell
106
+ def _(sample_dict):
107
+ print(list(sample_dict.keys()))
108
  return
109
 
110
 
111
  @app.cell
112
  def _(sample_dict):
113
+ print(list(sample_dict.values()))
114
+ return
115
+
116
+
117
+ @app.cell
118
+ def _(sample_dict):
119
+ print(list(sample_dict.items()))
120
+ return
121
 
122
 
123
  @app.cell
124
  def _():
 
125
  def demonstrate_modification():
126
  _dict = {"a": 1, "b": 2}
127
  print("Original:", _dict)
 
133
  # Removing
134
  _removed = _dict.pop("b")
135
  print(f"Removed {_removed}, Now:", _dict)
136
+
137
+
138
  demonstrate_modification()
139
  return (demonstrate_modification,)
140
 
141
 
142
  @app.cell(hide_code=True)
143
  def _(mo):
144
+ mo.md(
145
+ """
146
+ ## Dictionary comprehension
147
 
148
  Create dictionaries efficiently with dictionary comprehensions:
149
+ """
150
+ )
151
  return
152
 
153
 
154
  @app.cell
155
  def _():
156
+ print({x: x**2 for x in range(5)})
157
+ return
158
+
 
 
159
 
160
+ @app.cell
161
+ def _():
162
+ print({x: x**2 for x in range(5) if x % 2 == 0})
163
+ return
 
164
 
165
 
166
  @app.cell(hide_code=True)
167
  def _(mo):
168
+ mo.md(
169
+ """
170
+ ## Nested dictionaries
171
 
172
  Dictionaries can contain other dictionaries, creating complex data structures:
173
+ """
174
+ )
175
  return
176
 
177
 
 
182
  "alice": {
183
  "age": 25,
184
  "email": "[email protected]",
185
+ "interests": ["python", "data science"],
186
  },
187
  "bob": {
188
  "age": 30,
189
  "email": "[email protected]",
190
+ "interests": ["web dev", "gaming"],
191
+ },
192
  }
193
  }
194
  return (nested_data,)
195
 
196
 
197
  @app.cell
198
+ def _(mo, nested_data):
199
+ mo.md(f"Alice's age: {nested_data["users"]["alice"]["age"]}")
200
+ return
201
+
202
+
203
+ @app.cell
204
+ def _(mo, nested_data):
205
+ mo.md(f"Bob's interests: {nested_data["users"]["bob"]["interests"]}")
206
+ return
 
 
 
 
 
 
 
 
 
 
 
207
 
208
 
209
  @app.cell(hide_code=True)
210
  def _(mo):
211
+ mo.md(
212
+ """
213
+ ## Common dictionary patterns
214
 
215
  Here are some useful patterns when working with dictionaries:
216
 
 
233
  cache[arg] = compute_result(arg)
234
  return cache[arg]
235
  ```
236
+ """
237
+ )
238
  return
239
 
240
 
241
+ @app.cell
242
+ def _():
243
+ import marimo as mo
244
+ return (mo,)
 
 
 
 
 
 
 
 
 
 
 
 
 
245
 
246
 
247
  if __name__ == "__main__":
Python/phase_3/advanced_collections.py → python/007_advanced_collections.py RENAMED
@@ -7,27 +7,22 @@
7
 
8
  import marimo
9
 
10
- __generated_with = "0.10.14"
11
  app = marimo.App()
12
 
13
 
14
- @app.cell
15
- def _():
16
- import marimo as mo
17
- return (mo,)
18
-
19
-
20
  @app.cell(hide_code=True)
21
  def _(mo):
22
  mo.md(
23
  """
24
- # 🔄 Advanced Collections in Python
25
 
26
- Let's dive deep into advanced collection handling in Python!
27
 
28
- ## Lists of Dictionaries
29
- A common pattern in data handling is working with lists of dictionaries -
30
- perfect for representing structured data like records or entries.
 
31
  """
32
  )
33
  return
@@ -48,10 +43,10 @@ def _():
48
  def _(mo):
49
  mo.md(
50
  """
51
- ## Working with Lists of Dictionaries
52
-
53
  Let's explore common operations on structured data.
54
- Try modifying the `users_data` above and see how the results change!
 
 
55
  """
56
  )
57
  return
@@ -60,18 +55,22 @@ def _(mo):
60
  @app.cell
61
  def _(users_data):
62
  # Finding users with specific skills
63
- python_users = [user["name"] for user in users_data if "Python" in user["skills"]]
 
 
64
  print("Python developers:", python_users)
65
  return (python_users,)
66
 
67
 
68
  @app.cell(hide_code=True)
69
  def _(mo):
70
- mo.md("""
71
- ## Nested Data Structures
 
72
 
73
  Python collections can be nested in various ways to represent complex data:
74
- """)
 
75
  return
76
 
77
 
@@ -110,11 +109,13 @@ def _(project_data):
110
 
111
  @app.cell(hide_code=True)
112
  def _(mo):
113
- mo.md("""
114
- ## Data Transformation
 
115
 
116
  Let's explore how to transform and reshape collection data:
117
- """)
 
118
  return
119
 
120
 
@@ -148,10 +149,11 @@ def _(sales_data):
148
 
149
  @app.cell(hide_code=True)
150
  def _(mo):
151
- mo.md("""
152
- ## Collection Utilities
 
153
 
154
- Python's collections module provides specialized container datatypes:
155
 
156
  ```python
157
  from collections import defaultdict, Counter, deque
@@ -169,7 +171,8 @@ def _(mo):
169
  history = deque(maxlen=10) # Only keeps last 10 items
170
  history.append(item)
171
  ```
172
- """)
 
173
  return
174
 
175
 
@@ -191,20 +194,21 @@ def _():
191
 
192
  @app.cell(hide_code=True)
193
  def _(mo):
194
- callout_text = mo.md("""
195
- ## Level Up Your Collections!
196
-
197
- Next Steps:
198
 
199
- - Practice transforming complex data structures
200
- - Experiment with different collection types
201
- - Try combining multiple data structures
 
 
202
 
203
- Keep organizing! 📊✨
204
- """)
205
 
206
- mo.callout(callout_text, kind="success")
207
- return (callout_text,)
 
 
208
 
209
 
210
  if __name__ == "__main__":
 
7
 
8
  import marimo
9
 
10
+ __generated_with = "0.10.19"
11
  app = marimo.App()
12
 
13
 
 
 
 
 
 
 
14
  @app.cell(hide_code=True)
15
  def _(mo):
16
  mo.md(
17
  """
18
+ # 🔄 Advanced collections
19
 
20
+ This tutorials hows advanced patterns for working with collections.
21
 
22
+ ## Lists of dictionaries
23
+
24
+ A common pattern in data handling is working with lists of dictionaries:
25
+ this is helpful for representing structured data like records or entries.
26
  """
27
  )
28
  return
 
43
  def _(mo):
44
  mo.md(
45
  """
 
 
46
  Let's explore common operations on structured data.
47
+
48
+ **Try it!** Try modifying the `users_data` above and see how the results
49
+ change!
50
  """
51
  )
52
  return
 
55
  @app.cell
56
  def _(users_data):
57
  # Finding users with specific skills
58
+ python_users = [
59
+ user["name"] for user in users_data if "Python" in user["skills"]
60
+ ]
61
  print("Python developers:", python_users)
62
  return (python_users,)
63
 
64
 
65
  @app.cell(hide_code=True)
66
  def _(mo):
67
+ mo.md(
68
+ """
69
+ ## Nested data structures
70
 
71
  Python collections can be nested in various ways to represent complex data:
72
+ """
73
+ )
74
  return
75
 
76
 
 
109
 
110
  @app.cell(hide_code=True)
111
  def _(mo):
112
+ mo.md(
113
+ """
114
+ ### Example: data transformation
115
 
116
  Let's explore how to transform and reshape collection data:
117
+ """
118
+ )
119
  return
120
 
121
 
 
149
 
150
  @app.cell(hide_code=True)
151
  def _(mo):
152
+ mo.md(
153
+ """
154
+ ## More collection utilities
155
 
156
+ Python's `collections` module provides specialized container datatypes:
157
 
158
  ```python
159
  from collections import defaultdict, Counter, deque
 
171
  history = deque(maxlen=10) # Only keeps last 10 items
172
  history.append(item)
173
  ```
174
+ """
175
+ )
176
  return
177
 
178
 
 
194
 
195
  @app.cell(hide_code=True)
196
  def _(mo):
197
+ mo.md(
198
+ """
199
+ ## Next steps
 
200
 
201
+ For a reference on the `collections` module, see [the official Python
202
+ docs](https://docs.python.org/3/library/collections.html).
203
+ """
204
+ )
205
+ return
206
 
 
 
207
 
208
+ @app.cell
209
+ def _():
210
+ import marimo as mo
211
+ return (mo,)
212
 
213
 
214
  if __name__ == "__main__":
Python/phase_4/function_design.py → python/008_functions.py RENAMED
@@ -7,57 +7,69 @@
7
 
8
  import marimo
9
 
10
- __generated_with = "0.10.16"
11
  app = marimo.App()
12
 
13
 
14
- @app.cell
15
- def _():
16
- import marimo as mo
17
- return (mo,)
18
-
19
-
20
  @app.cell(hide_code=True)
21
  def _(mo):
22
  mo.md(
23
  """
24
- # 🧩 Function Design in Python
25
 
26
- Dive into the world of Python functions — where code becomes modular and powerful!
27
 
28
- ## Function Basics
29
- Functions help you:
30
 
31
- - Break down complex problems
 
 
 
 
 
 
 
 
 
 
32
 
33
- - Create reusable code blocks
34
 
35
- - Improve code readability (good practice)
 
 
 
36
 
37
- ```python
38
- def function_name(parameters):
39
- '''Docstring explaining the function'''
40
- # Function body
41
- return result
42
- ```
 
 
43
  """
44
  )
45
  return
46
 
47
 
48
  @app.cell
49
- def _():
50
- # Example function with parameter
51
- def greet(name):
52
- return f"Hello, {name}!"
53
 
54
- name = "Python Learner"
55
- return greet, name
56
 
 
 
 
 
 
57
 
58
- @app.cell
59
- def _(greet, name):
60
- greet(name)
 
 
61
  return
62
 
63
 
@@ -65,7 +77,7 @@ def _(greet, name):
65
  def _(mo):
66
  mo.md(
67
  """
68
- ## Default Parameters
69
  Make your functions more flexible by providing default values.
70
  """
71
  )
@@ -74,21 +86,30 @@ def _(mo):
74
 
75
  @app.cell
76
  def _():
77
- # Function with default parameter
78
  def create_profile(name, age=18):
79
  return f"{name} is {age} years old"
 
 
80
 
 
 
81
  # Example usage
82
  example_name = "Alex"
83
  example_profile = create_profile(example_name)
84
  example_profile
85
- return create_profile, example_name, example_profile
 
 
 
 
 
 
86
 
87
 
88
  @app.cell
89
  def _():
90
- # Show closure over values
91
  base_multiplier = 2
 
92
  def multiplier(x):
93
  """
94
  Create a function that multiplies input by a base value.
@@ -97,49 +118,12 @@ def _():
97
  values from their surrounding scope.
98
  """
99
  return x * base_multiplier
100
-
101
- # Example of using the closure
102
- sample_numbers = [1, 2, 3, 4, 5]
103
- multiplied_numbers = [multiplier(num) for num in sample_numbers]
104
- print(multiplied_numbers)
105
- return base_multiplier, multiplied_numbers, multiplier, sample_numbers
106
 
107
 
108
  @app.cell
109
- def _():
110
- def calculate(a, b):
111
- """
112
- Perform multiple calculations on two numbers.
113
-
114
- Args:
115
- a (int): First number
116
- b (int): Second number
117
-
118
- Returns:
119
- dict: Results of various calculations
120
- """
121
- return {
122
- "sum": a + b,
123
- "product": a * b,
124
- "difference": a - b,
125
- "max": max(a, b)
126
- }
127
-
128
- # Example usage with concrete values
129
- first_number = 10
130
- second_number = 5
131
- result = calculate(first_number, second_number)
132
- return calculate, first_number, result, second_number
133
-
134
-
135
- @app.cell(hide_code=True)
136
- def _(mo, result):
137
- mo.md(f"""
138
- ## Function Results
139
-
140
- Calculation Results:
141
- {result}
142
- """)
143
  return
144
 
145
 
@@ -147,16 +131,10 @@ def _(mo, result):
147
  def _(mo):
148
  mo.md(
149
  """
150
- ## Multiple Return Values
151
- Python allows returning multiple values easily:
152
-
153
- ```python
154
- def multiple_returns():
155
- return value1, value2, value3
156
 
157
- # Unpacking returns
158
- x, y, z = multiple_returns()
159
- ```
160
  """
161
  )
162
  return
@@ -182,47 +160,26 @@ def _():
182
  return "Mild", "Comfortable clothing", "Low"
183
  else:
184
  return "Hot", "Stay hydrated", "High"
 
185
 
186
- # Example temperature analysis
187
- temperature = 25
188
- status, recommendation, warning_level = weather_analysis(temperature)
189
- return (
190
- recommendation,
191
- status,
192
- temperature,
193
- warning_level,
194
- weather_analysis,
195
- )
196
 
 
 
 
 
197
 
198
- @app.cell(hide_code=True)
199
- def _(mo, recommendation, status, warning_level):
200
- mo.md(f"""
201
- ## Function Results
202
-
203
- Calculation Results:
204
- {status}, {recommendation}, {warning_level}
205
- """)
206
- return
207
-
208
-
209
- @app.cell(hide_code=True)
210
- def _(mo):
211
- callout_text = mo.md("""
212
- ## Your Function Design Journey!
213
-
214
- Next Steps:
215
-
216
- - Practice creating functions
217
-
218
- - Experiment with default parameters
219
 
220
- - Explore multiple return values
 
 
 
 
221
 
222
- """)
223
 
224
- mo.callout(callout_text, kind="success")
225
- return (callout_text,)
 
 
226
 
227
 
228
  if __name__ == "__main__":
 
7
 
8
  import marimo
9
 
10
+ __generated_with = "0.10.19"
11
  app = marimo.App()
12
 
13
 
 
 
 
 
 
 
14
  @app.cell(hide_code=True)
15
  def _(mo):
16
  mo.md(
17
  """
18
+ # 🧩 Functions
19
 
20
+ This tutorial is about an important topic: **functions.**
21
 
22
+ A function is a reusable block of code, similar in spirit to a mathematical function. Each function has a **name**, and accepts some number of **arguments**. These arguments are used in the function "body" (its block of code), and each function can **return** values.
 
23
 
24
+ **Example.** Below is an example function.
25
+ """
26
+ )
27
+ return
28
+
29
+
30
+ @app.cell
31
+ def _():
32
+ def greet(your_name):
33
+ return f"Hello, {your_name}!"
34
+ return (greet,)
35
 
 
36
 
37
+ @app.cell(hide_code=True)
38
+ def _(mo):
39
+ mo.md(r"""The keyword `def` starts the function definition. The function's **name** is `greet`. It accepts one **argument** called `your_name`. It then creates a string and **returns** it.""")
40
+ return
41
 
42
+
43
+ @app.cell(hide_code=True)
44
+ def _(mo):
45
+ mo.md(
46
+ """
47
+ In the next cell, we **call** the function with a value and assign its return value to a variable.
48
+
49
+ **Try it!** Try changing the input to the function.
50
  """
51
  )
52
  return
53
 
54
 
55
  @app.cell
56
+ def _(greet):
57
+ greeting = greet(your_name="<your name here>")
58
+ greeting
59
+ return (greeting,)
60
 
 
 
61
 
62
+ @app.cell(hide_code=True)
63
+ def _(mo):
64
+ mo.md(
65
+ """
66
+ **Why use functions?** Functions help you:
67
 
68
+ - Break down complex problems
69
+ - Create reusable code blocks
70
+ - Improve code readability
71
+ """
72
+ )
73
  return
74
 
75
 
 
77
  def _(mo):
78
  mo.md(
79
  """
80
+ ## Default parameters
81
  Make your functions more flexible by providing default values.
82
  """
83
  )
 
86
 
87
  @app.cell
88
  def _():
 
89
  def create_profile(name, age=18):
90
  return f"{name} is {age} years old"
91
+ return (create_profile,)
92
+
93
 
94
+ @app.cell
95
+ def _(create_profile):
96
  # Example usage
97
  example_name = "Alex"
98
  example_profile = create_profile(example_name)
99
  example_profile
100
+ return example_name, example_profile
101
+
102
+
103
+ @app.cell(hide_code=True)
104
+ def _(mo):
105
+ mo.md("""You can also create functions that reference variables outside the function body. This is called 'closing over' variables""")
106
+ return
107
 
108
 
109
  @app.cell
110
  def _():
 
111
  base_multiplier = 2
112
+
113
  def multiplier(x):
114
  """
115
  Create a function that multiplies input by a base value.
 
118
  values from their surrounding scope.
119
  """
120
  return x * base_multiplier
121
+ return base_multiplier, multiplier
 
 
 
 
 
122
 
123
 
124
  @app.cell
125
+ def _(multiplier):
126
+ print([multiplier(num) for num in [1, 2, 3]])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
127
  return
128
 
129
 
 
131
  def _(mo):
132
  mo.md(
133
  """
134
+ ## Returning multiple values
 
 
 
 
 
135
 
136
+ Functions can return multiple values: just separate the values to return by
137
+ commas. Check out the next cell for an example.
 
138
  """
139
  )
140
  return
 
160
  return "Mild", "Comfortable clothing", "Low"
161
  else:
162
  return "Hot", "Stay hydrated", "High"
163
+ return (weather_analysis,)
164
 
 
 
 
 
 
 
 
 
 
 
165
 
166
+ @app.cell
167
+ def _():
168
+ temperature = 25
169
+ return (temperature,)
170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
171
 
172
+ @app.cell
173
+ def _(temperature, weather_analysis):
174
+ status, recommendation, warning_level = weather_analysis(temperature)
175
+ status, recommendation, warning_level
176
+ return recommendation, status, warning_level
177
 
 
178
 
179
+ @app.cell
180
+ def _():
181
+ import marimo as mo
182
+ return (mo,)
183
 
184
 
185
  if __name__ == "__main__":
Python/phase_4/modular_programming.py → python/009_modules.py RENAMED
@@ -7,29 +7,21 @@
7
 
8
  import marimo
9
 
10
- __generated_with = "0.10.16"
11
  app = marimo.App()
12
 
13
 
14
- @app.cell
15
- def _():
16
- import marimo as mo
17
- return (mo,)
18
-
19
-
20
  @app.cell(hide_code=True)
21
  def _(mo):
22
  mo.md(
23
  """
24
- # 🧩 Modular Programming in Python
25
 
26
- Unlock the power of organized, reusable, and maintainable code!
 
27
 
28
- ## Why Modular Programming?
29
- - Break complex problems into smaller, manageable pieces
30
- - Improve code readability
31
- - Enhance code reusability
32
- - Easier debugging and maintenance
33
  """
34
  )
35
  return
@@ -39,8 +31,9 @@ def _(mo):
39
  def _(mo):
40
  mo.md(
41
  """
42
- ## Standard Library Imports
43
- Python's standard library provides powerful, pre-built modules:
 
44
 
45
  ```python
46
  # String manipulation
@@ -56,15 +49,20 @@ def _(mo):
56
  import math
57
  ```
58
 
59
- For more details, check the [Python Standard Library Documentation](https://docs.python.org/3/library/)
60
  """
61
  )
62
  return
63
 
64
 
 
 
 
 
 
 
65
  @app.cell
66
  def _():
67
- # importing and using standard library modules
68
  import string
69
  import os
70
  import datetime
@@ -108,8 +106,9 @@ def _():
108
  def _(mo):
109
  mo.md(
110
  """
111
- ## Import Strategies
112
- Multiple ways to import and use modules:
 
113
 
114
  ```python
115
  # Import entire module
@@ -160,8 +159,16 @@ def _():
160
  def _(mo):
161
  mo.md(
162
  """
163
- ## Code Reusability
164
- Create functions that can be used across different parts of your project
 
 
 
 
 
 
 
 
165
  """
166
  )
167
  return
@@ -169,64 +176,8 @@ def _(mo):
169
 
170
  @app.cell
171
  def _():
172
- def generate_reusable_functions():
173
- """
174
- Demonstrate different types of reusable functions
175
- """
176
-
177
- def process_text(text):
178
- '''Reusable text processing function'''
179
- return text.strip().lower()
180
-
181
- def normalize_number(value, min_val=0, max_val=100):
182
- '''Normalize a number to a specific range'''
183
- return max(min_val, min(max_val, value))
184
-
185
- def validate_input(value, type_check=str, min_length=1):
186
- '''Validate input based on type and minimum length'''
187
- if not isinstance(value, type_check):
188
- return False
189
- return len(str(value)) >= min_length
190
-
191
- # usage
192
- return {
193
- "Text Processing": {
194
- "Example 1": process_text(" John Doe "),
195
- "Example 2": process_text(" [email protected] ")
196
- },
197
- "Number Normalization": {
198
- "Oversized Input": normalize_number(150),
199
- "Negative Input": normalize_number(-10, min_val=-20, max_val=50)
200
- },
201
- "Input Validation": {
202
- "Username Validation": validate_input("john"),
203
- "Age Validation": validate_input(25, type_check=int)
204
- }
205
- }
206
-
207
- # Run the reusable functions demonstration
208
- reusable_function_examples = generate_reusable_functions()
209
- reusable_function_examples
210
- return generate_reusable_functions, reusable_function_examples
211
-
212
-
213
- @app.cell(hide_code=True)
214
- def _(mo):
215
- callout_text = mo.md("""
216
- ## Your Modular Programming Journey!
217
-
218
- Next Steps:
219
-
220
- - Explore Python's standard library
221
-
222
- - Practice different import strategies
223
-
224
- - Design reusable functions
225
-
226
- """)
227
-
228
- mo.callout(callout_text, kind="success")
229
- return (callout_text,)
230
 
231
 
232
  if __name__ == "__main__":
 
7
 
8
  import marimo
9
 
10
+ __generated_with = "0.10.19"
11
  app = marimo.App()
12
 
13
 
 
 
 
 
 
 
14
  @app.cell(hide_code=True)
15
  def _(mo):
16
  mo.md(
17
  """
18
+ # 🧩 Using modules
19
 
20
+ A `module` in Python is a Python file that defines functions and variables. Modules can be `imported` into other Python files, letting you reuse their
21
+ functions and variables.
22
 
23
+ We have already seen some modules in previous tutorials, including the `math`
24
+ module. Python comes with many other modules built-in.
 
 
 
25
  """
26
  )
27
  return
 
31
  def _(mo):
32
  mo.md(
33
  """
34
+ ## The Python standard library
35
+
36
+ Python's "standard library" provides many modules, for many kinds of tasks.
37
 
38
  ```python
39
  # String manipulation
 
49
  import math
50
  ```
51
 
52
+ See the [Python standard library documentation](https://docs.python.org/3/library/) for a full reference
53
  """
54
  )
55
  return
56
 
57
 
58
+ @app.cell(hide_code=True)
59
+ def _(mo):
60
+ mo.md("""### Example""")
61
+ return
62
+
63
+
64
  @app.cell
65
  def _():
 
66
  import string
67
  import os
68
  import datetime
 
106
  def _(mo):
107
  mo.md(
108
  """
109
+ ## Import syntax
110
+
111
+ You can import entire modules, and access their functions and variables using dot notation (`math.sqrt`). Or you can import specific members:
112
 
113
  ```python
114
  # Import entire module
 
159
  def _(mo):
160
  mo.md(
161
  """
162
+ ## Third-party packages
163
+
164
+ In addition to Python's standard library, there are hundreds of thousands of
165
+ modules available for free on the Python Package index.
166
+
167
+ These are distributed as Python "packages", and include packages for
168
+ manipulating arrays of numbers, creating web applications, and more. `marimo`
169
+ itself is a third-party package!
170
+
171
+ For installing packages on your machine, we recommend using the [`uv` package manager](https://docs.astral.sh/uv/).
172
  """
173
  )
174
  return
 
176
 
177
  @app.cell
178
  def _():
179
+ import marimo as mo
180
+ return (mo,)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
181
 
182
 
183
  if __name__ == "__main__":
Python/phase_5/error_management.py → python/010_exceptions.py RENAMED
@@ -7,44 +7,78 @@
7
 
8
  import marimo
9
 
10
- __generated_with = "0.10.16"
11
  app = marimo.App()
12
 
13
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  @app.cell
15
  def _():
16
- import marimo as mo
17
- return (mo,)
18
 
19
 
20
  @app.cell(hide_code=True)
21
  def _(mo):
22
  mo.md(
23
  """
24
- # 🛡️ Error Management in Python
 
 
 
 
 
 
 
25
 
26
- Welcome to the world of Python error handling - where bugs become learning opportunities!
27
 
28
- ## Why Error Handling Matters
29
- Imagine your code as a superhero navigating through the treacherous landscape of potential problems.
30
- Error handling is like your hero's shield, protecting your program from unexpected challenges.
 
 
31
 
32
- ```python
33
- # Without error handling
34
- result = 10 / 0 # 💥 Boom! Unhandled ZeroDivisionError
35
 
36
- # With error handling
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
  try:
38
- result = 10 / 0
39
- except ZeroDivisionError:
40
- result = "Oops! Can't divide by zero 🛑"
41
  ```
42
  """
43
  )
44
  return
45
 
46
 
47
- @app.cell
48
  def _(error_types):
49
  error_types
50
  return
@@ -54,6 +88,7 @@ def _(error_types):
54
  def _(mo):
55
  # Choose error type
56
  error_types = mo.ui.dropdown(
 
57
  options=[
58
  "ZeroDivisionError",
59
  "TypeError",
@@ -61,7 +96,7 @@ def _(mo):
61
  "IndexError",
62
  "KeyError"
63
  ],
64
- label="Select an Error Type to Explore"
65
  )
66
  return (error_types,)
67
 
@@ -122,58 +157,12 @@ def _(error_types, mo):
122
  return (error_explanations,)
123
 
124
 
125
- @app.cell
126
- def _(division_input, divisor_input, mo):
127
- mo.hstack([division_input, divisor_input])
128
- return
129
-
130
-
131
  @app.cell(hide_code=True)
132
  def _(mo):
133
- # Try-Except work help
134
- division_input = mo.ui.number(
135
- value=10,
136
- label="Number to Divide",
137
- start=-100,
138
- stop=100
139
- )
140
- divisor_input = mo.ui.number(
141
- value=0,
142
- label="Divisor",
143
- start=-100,
144
- stop=100
145
- )
146
- return division_input, divisor_input
147
-
148
-
149
- @app.cell
150
- def _(division_input, divisor_input, mo):
151
- # Safe division function with appropriate error handling
152
- def safe_divide(numerator, denominator):
153
- try:
154
- _result = numerator / denominator
155
- return f"Result: {_result}"
156
- except ZeroDivisionError:
157
- return "🚫 Cannot divide by zero!"
158
- except Exception as e:
159
- return f"Unexpected error: {e}"
160
-
161
- # Display result with explanation
162
- _result = safe_divide(division_input.value, divisor_input.value)
163
-
164
- mo.hstack([
165
- mo.md(f"**Division**: {division_input.value} ÷ {divisor_input.value}"),
166
- mo.md(f"**Result**: {_result}")
167
- ])
168
- return (safe_divide,)
169
-
170
-
171
- @app.cell
172
- def _(mo):
173
- # Multiple Exception Handling
174
  mo.md(
175
  """
176
- ## Multiple Exception Handling
 
177
  Catch and handle different types of errors specifically:
178
 
179
  ```python
@@ -188,64 +177,28 @@ def _(mo):
188
  return "No division by zero!"
189
  except ValueError:
190
  return "Conversion error!"
 
 
 
 
 
191
  ```
192
  """
193
  )
194
  return
195
 
196
 
197
- @app.cell
198
- def _(error_chain_input):
199
- error_chain_input
200
- return
201
-
202
-
203
- @app.cell
204
- def _(mo):
205
- # Try it out
206
- error_chain_input = mo.ui.text(
207
- label="Try to break the code",
208
- placeholder="Enter something tricky..."
209
- )
210
- return (error_chain_input,)
211
-
212
-
213
- @app.cell
214
- def _(error_chain_input, mo):
215
- # Error chain demonstration
216
- def tricky_function(input_str):
217
- try:
218
- # Simulating a error scenario
219
- number = int(input_str)
220
- result = 100 / number
221
- return f"Success! Result: {result}"
222
- except ValueError:
223
- return "❌ Could not convert to number"
224
- except ZeroDivisionError:
225
- return "❌ Cannot divide by zero"
226
- except Exception as e:
227
- return f"🤯 Unexpected error: {type(e).__name__}"
228
-
229
- result = tricky_function(error_chain_input.value)
230
-
231
- mo.hstack([
232
- mo.md(f"**Input**: {error_chain_input.value}"),
233
- mo.md(f"**Result**: {result}")
234
- ])
235
- return result, tricky_function
236
-
237
-
238
- @app.cell
239
  def _(finally_input):
240
  finally_input
241
  return
242
 
243
 
244
- @app.cell
245
  def _(mo):
246
  # Finally Block Demonstration
247
  finally_input = mo.ui.switch(
248
- label="Simulate Resource Management",
249
  value=True
250
  )
251
  return (finally_input,)
@@ -256,7 +209,7 @@ def _(finally_input, mo):
256
  def simulate_resource_management():
257
  try:
258
  # Simulating a resource-intensive operation
259
- if finally_input.value:
260
  return "🟢 Resource processing successful"
261
  else:
262
  raise Exception("Simulated failure")
@@ -265,12 +218,13 @@ def _(finally_input, mo):
265
  finally:
266
  return "📦 Resource cleanup completed"
267
 
 
268
  _result = simulate_resource_management()
269
 
270
  mo.md(f"""
271
- ### Resource Management Simulation
272
 
273
- **Scenario**: {'Normal operation' if finally_input.value else 'Error scenario'}
274
 
275
  **Result**: {_result}
276
 
@@ -279,22 +233,10 @@ def _(finally_input, mo):
279
  return (simulate_resource_management,)
280
 
281
 
282
- @app.cell(hide_code=True)
283
- def _(mo):
284
- callout_text = mo.md("""
285
- ## Your Error Handling Journey Continues!
286
-
287
- Next Steps:
288
-
289
- - Practice creating custom exceptions
290
- - Explore context managers
291
- - Build robust error-handling strategies
292
-
293
- You're becoming a Python error-handling ninja! 🥷🐍
294
- """)
295
-
296
- mo.callout(callout_text, kind="success")
297
- return (callout_text,)
298
 
299
 
300
  if __name__ == "__main__":
 
7
 
8
  import marimo
9
 
10
+ __generated_with = "0.10.19"
11
  app = marimo.App()
12
 
13
 
14
+ @app.cell(hide_code=True)
15
+ def _(mo):
16
+ mo.md(
17
+ """
18
+ # 🛡️ Handling errors
19
+
20
+ Sometimes things go wrong in programs. When that happens, Python raises `exceptions` to tell you what went amiss. For example, maybe you divided by 0:
21
+ """
22
+ )
23
+ return
24
+
25
+
26
  @app.cell
27
  def _():
28
+ 1 / 0
29
+ return
30
 
31
 
32
  @app.cell(hide_code=True)
33
  def _(mo):
34
  mo.md(
35
  """
36
+ That's a lot of red! The outputs above are Python telling you that
37
+ something went wrong — in this case, we tried dividing a number by 0.
38
+
39
+ Python provides tools to catch and handle exceptions: the `try/except`
40
+ block. This is demonstrated in the next couple cells.
41
+ """
42
+ )
43
+ return
44
 
 
45
 
46
+ @app.cell
47
+ def _():
48
+ # Try changing the value of divisor below, and see how the output changes.
49
+ divisor = 0
50
+ return (divisor,)
51
 
 
 
 
52
 
53
+ @app.cell
54
+ def _(divisor):
55
+ try:
56
+ print(1 / divisor)
57
+ except ZeroDivisionError as e:
58
+ print("Something went wrong!", e)
59
+ return
60
+
61
+
62
+ @app.cell(hide_code=True)
63
+ def _(mo):
64
+ mo.md(
65
+ """
66
+ Python has many types of Exceptions besides `ZeroDivisionError`. If you
67
+ don't know what kind of exception you're handling, catch the generic
68
+ `Exception` type:
69
+
70
+ ```python
71
  try:
72
+ ...
73
+ except Exception:
74
+ ...
75
  ```
76
  """
77
  )
78
  return
79
 
80
 
81
+ @app.cell(hide_code=True)
82
  def _(error_types):
83
  error_types
84
  return
 
88
  def _(mo):
89
  # Choose error type
90
  error_types = mo.ui.dropdown(
91
+ value="ZeroDivisionError",
92
  options=[
93
  "ZeroDivisionError",
94
  "TypeError",
 
96
  "IndexError",
97
  "KeyError"
98
  ],
99
+ label="Learn about ..."
100
  )
101
  return (error_types,)
102
 
 
157
  return (error_explanations,)
158
 
159
 
 
 
 
 
 
 
160
  @app.cell(hide_code=True)
161
  def _(mo):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
162
  mo.md(
163
  """
164
+ ## Handling multiple exception types
165
+
166
  Catch and handle different types of errors specifically:
167
 
168
  ```python
 
177
  return "No division by zero!"
178
  except ValueError:
179
  return "Conversion error!"
180
+ finally:
181
+ # The `finally` block always runs, regardless if there
182
+ # was an error or not
183
+ ...
184
+
185
  ```
186
  """
187
  )
188
  return
189
 
190
 
191
+ @app.cell(hide_code=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
192
  def _(finally_input):
193
  finally_input
194
  return
195
 
196
 
197
+ @app.cell(hide_code=True)
198
  def _(mo):
199
  # Finally Block Demonstration
200
  finally_input = mo.ui.switch(
201
+ label="Throw an error?",
202
  value=True
203
  )
204
  return (finally_input,)
 
209
  def simulate_resource_management():
210
  try:
211
  # Simulating a resource-intensive operation
212
+ if not finally_input.value:
213
  return "🟢 Resource processing successful"
214
  else:
215
  raise Exception("Simulated failure")
 
218
  finally:
219
  return "📦 Resource cleanup completed"
220
 
221
+
222
  _result = simulate_resource_management()
223
 
224
  mo.md(f"""
225
+ ### Example: the finally clause
226
 
227
+ **Scenario**: {"Normal operation" if not finally_input.value else "An exception was raised"}
228
 
229
  **Result**: {_result}
230
 
 
233
  return (simulate_resource_management,)
234
 
235
 
236
+ @app.cell
237
+ def _():
238
+ import marimo as mo
239
+ return (mo,)
 
 
 
 
 
 
 
 
 
 
 
 
240
 
241
 
242
  if __name__ == "__main__":
{Python → python}/README.md RENAMED
File without changes