Srihari Thyagarajan commited on
Commit
d97ddf0
·
unverified ·
2 Parent(s): 61c975e 20b3f61

Merge pull request #86 from debajyotid2/add_polars_tutorials

Browse files
polars/08_working_with_columns.py ADDED
@@ -0,0 +1,605 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # /// script
2
+ # requires-python = ">=3.11"
3
+ # dependencies = [
4
+ # "polars==1.18.0",
5
+ # "marimo",
6
+ # ]
7
+ # ///
8
+
9
+ import marimo
10
+
11
+ __generated_with = "0.12.0"
12
+ app = marimo.App(width="medium")
13
+
14
+
15
+ @app.cell(hide_code=True)
16
+ def _(mo):
17
+ mo.md(
18
+ r"""
19
+ # Working with Columns
20
+
21
+ Author: [Deb Debnath](https://github.com/debajyotid2)
22
+
23
+ **Note**: The following tutorial has been adapted from the Polars [documentation](https://docs.pola.rs/user-guide/expressions/expression-expansion).
24
+ """
25
+ )
26
+ return
27
+
28
+
29
+ @app.cell(hide_code=True)
30
+ def _(mo):
31
+ mo.md(
32
+ r"""
33
+ ## Expressions
34
+
35
+ Data transformations are sometimes complicated, or involve massive computations which are time-consuming. You can make a small version of the dataset with the schema you are trying to work your transformation into. But there is a better way to do it in Polars.
36
+
37
+ A Polars expression is a lazy representation of a data transformation. "Lazy" means that the transformation is not eagerly (immediately) executed.
38
+
39
+ Expressions are modular and flexible. They can be composed to build more complex expressions. For example, to calculate speed from distance and time, you can have an expression as:
40
+ """
41
+ )
42
+ return
43
+
44
+
45
+ @app.cell
46
+ def _(pl):
47
+ speed_expr = pl.col("distance") / (pl.col("time"))
48
+ speed_expr
49
+ return (speed_expr,)
50
+
51
+
52
+ @app.cell(hide_code=True)
53
+ def _(mo):
54
+ mo.md(
55
+ r"""
56
+ ## Expression expansion
57
+
58
+ Expression expansion lets you write a single expression that can expand to multiple different expressions. So rather than repeatedly defining separate expressions, you can avoid redundancy while adhering to clean code principles (Do not Repeat Yourself - [DRY](https://en.wikipedia.org/wiki/Don%27t_repeat_yourself)). Since expressions are reusable, they aid in writing concise code.
59
+ """
60
+ )
61
+ return
62
+
63
+
64
+ @app.cell(hide_code=True)
65
+ def _(mo):
66
+ mo.md("""For the examples in this notebook, we will use a sliver of the *AI4I 2020 Predictive Maintenance Dataset*. This dataset comprises of measurements taken from sensors in industrial machinery undergoing preventive maintenance checks - basically being tested for failure conditions.""")
67
+ return
68
+
69
+
70
+ @app.cell
71
+ def _(StringIO, pl):
72
+ data_csv = """
73
+ Product ID,Type,Air temperature,Process temperature,Rotational speed,Tool wear,Machine failure,TWF,HDF,PWF,OSF,RNF
74
+ L51172,L,302.3,311.3,1614,129,0,0,1,0,0,0
75
+ M22586,M,300.8,311.9,1761,113,1,0,0,0,1,0
76
+ L51639,L,302.6,310.4,1743,191,0,1,0,0,0,1
77
+ L50250,L,300,309.1,1631,110,0,0,0,1,0,0
78
+ M20109,M,303.4,312.9,1422,63,1,0,0,0,0,0
79
+ """
80
+
81
+ data = pl.read_csv(StringIO(data_csv))
82
+ data
83
+ return data, data_csv
84
+
85
+
86
+ @app.cell(hide_code=True)
87
+ def _(mo):
88
+ mo.md(
89
+ r"""
90
+ ## Function `col`
91
+
92
+ The function `col` is used to refer to one column of a dataframe. It is one of the fundamental building blocks of expressions in Polars. `col` is also really handy in expression expansion.
93
+ """
94
+ )
95
+ return
96
+
97
+
98
+ @app.cell(hide_code=True)
99
+ def _(mo):
100
+ mo.md(
101
+ r"""
102
+ ### Explicit expansion by column name
103
+
104
+ The simplest form of expression expansion happens when you provide multiple column names to the function `col`.
105
+
106
+ Say you wish to convert all temperature values in deg. Kelvin (K) to deg. Fahrenheit (F). One way to do this would be to define individual expressions for each column as follows:
107
+ """
108
+ )
109
+ return
110
+
111
+
112
+ @app.cell
113
+ def _(data, pl):
114
+ exprs = [
115
+ ((pl.col("Air temperature") - 273.15) * 1.8 + 32).round(2),
116
+ ((pl.col("Process temperature") - 273.15) * 1.8 + 32).round(2)
117
+ ]
118
+
119
+ result = data.with_columns(exprs)
120
+ result
121
+ return exprs, result
122
+
123
+
124
+ @app.cell(hide_code=True)
125
+ def _(mo):
126
+ mo.md(r"""Expression expansion can reduce this verbosity when you list the column names you want the expression to expand to inside the `col` function. The result is the same as before.""")
127
+ return
128
+
129
+
130
+ @app.cell
131
+ def _(data, pl, result):
132
+ result_2 = data.with_columns(
133
+ (
134
+ (pl.col(
135
+ "Air temperature",
136
+ "Process temperature"
137
+ )
138
+ - 273.15) * 1.8 + 32
139
+ ).round(2)
140
+ )
141
+ result_2.equals(result)
142
+ return (result_2,)
143
+
144
+
145
+ @app.cell(hide_code=True)
146
+ def _(mo):
147
+ mo.md(r"""In this case, the expression that does the temperature conversion is expanded to a list of two expressions. The expansion of the expression is predictable and intuitive.""")
148
+ return
149
+
150
+
151
+ @app.cell(hide_code=True)
152
+ def _(mo):
153
+ mo.md(
154
+ r"""
155
+ ### Expansion by data type
156
+
157
+ Can we do better than explicitly writing the names of every columns we want transformed? Yes.
158
+
159
+ If you provide data types instead of column names, the expression is expanded to all columns that match one of the data types provided.
160
+
161
+ The example below performs the exact same computation as before:
162
+ """
163
+ )
164
+ return
165
+
166
+
167
+ @app.cell
168
+ def _(data, pl, result):
169
+ result_3 = data.with_columns(((pl.col(pl.Float64) - 273.15) * 1.8 + 32).round(2))
170
+ result_3.equals(result)
171
+ return (result_3,)
172
+
173
+
174
+ @app.cell(hide_code=True)
175
+ def _(mo):
176
+ mo.md(
177
+ r"""
178
+ However, you should be careful to ensure that the transformation is only applied to the columns you want. For ensuring this it is important to know the schema of the data beforehand.
179
+
180
+ `col` accepts multiple data types in case the columns you need have more than one data type.
181
+ """
182
+ )
183
+ return
184
+
185
+
186
+ @app.cell
187
+ def _(data, pl, result):
188
+ result_4 = data.with_columns(
189
+ (
190
+ (pl.col(
191
+ pl.Float32,
192
+ pl.Float64,
193
+ )
194
+ - 273.15) * 1.8 + 32
195
+ ).round(2)
196
+ )
197
+ result.equals(result_4)
198
+ return (result_4,)
199
+
200
+
201
+ @app.cell(hide_code=True)
202
+ def _(mo):
203
+ mo.md(
204
+ r"""
205
+ ### Expansion by pattern matching
206
+
207
+ `col` also accepts regular expressions for selecting columns by pattern matching. Regular expressions start and end with ^ and $, respectively.
208
+ """
209
+ )
210
+ return
211
+
212
+
213
+ @app.cell
214
+ def _(data, pl):
215
+ data.select(pl.col("^.*temperature$"))
216
+ return
217
+
218
+
219
+ @app.cell(hide_code=True)
220
+ def _(mo):
221
+ mo.md(r"""Regular expressions can be combined with exact column names.""")
222
+ return
223
+
224
+
225
+ @app.cell
226
+ def _(data, pl):
227
+ data.select(pl.col("^.*temperature$", "Tool wear"))
228
+ return
229
+
230
+
231
+ @app.cell(hide_code=True)
232
+ def _(mo):
233
+ mo.md(r"""**Note**: You _cannot_ mix strings (exact names, regular expressions) and data types in a `col` function.""")
234
+ return
235
+
236
+
237
+ @app.cell
238
+ def _(data, pl):
239
+ try:
240
+ data.select(pl.col("Air temperature", pl.Float64))
241
+ except TypeError as err:
242
+ print("TypeError:", err)
243
+ return
244
+
245
+
246
+ @app.cell(hide_code=True)
247
+ def _(mo):
248
+ mo.md(
249
+ r"""
250
+ ## Selecting all columns
251
+
252
+ To select all columns, you can use the `all` function.
253
+ """
254
+ )
255
+ return
256
+
257
+
258
+ @app.cell
259
+ def _(data, pl):
260
+ result_6 = data.select(pl.all())
261
+ result_6.equals(data)
262
+ return (result_6,)
263
+
264
+
265
+ @app.cell(hide_code=True)
266
+ def _(mo):
267
+ mo.md(
268
+ r"""
269
+ ## Excluding columns
270
+
271
+ There are scenarios where we might want to exclude specific columns from the ones selected by building expressions, e.g. by the `col` or `all` functions. For this purpose, we use the function `exclude`, which accepts exactly the same types of arguments as `col`:
272
+ """
273
+ )
274
+ return
275
+
276
+
277
+ @app.cell
278
+ def _(data, pl):
279
+ data.select(pl.all().exclude("^.*F$"))
280
+ return
281
+
282
+
283
+ @app.cell(hide_code=True)
284
+ def _(mo):
285
+ mo.md(r"""`exclude` can also be used after the function `col`:""")
286
+ return
287
+
288
+
289
+ @app.cell
290
+ def _(data, pl):
291
+ data.select(pl.col(pl.Int64).exclude("^.*F$"))
292
+ return
293
+
294
+
295
+ @app.cell(hide_code=True)
296
+ def _(mo):
297
+ mo.md(
298
+ r"""
299
+ ## Column renaming
300
+
301
+ When applying a transformation with an expression to a column, the data in the column gets overwritten with the transformed data. However, this might not be the intended outcome in all situations - ideally you would want to store transformed data in a new column. Applying multiple transformations to the same column at the same time without renaming leads to errors.
302
+ """
303
+ )
304
+ return
305
+
306
+
307
+ @app.cell
308
+ def _(data, pl):
309
+ from polars.exceptions import DuplicateError
310
+
311
+ try:
312
+ data.select(
313
+ (pl.col("Air temperature") - 273.15) * 1.8 + 32, # This would be named "Air temperature"...
314
+ pl.col("Air temperature") - 273.15, # And so would this.
315
+ )
316
+ except DuplicateError as err:
317
+ print("DuplicateError:", err)
318
+ return (DuplicateError,)
319
+
320
+
321
+ @app.cell(hide_code=True)
322
+ def _(mo):
323
+ mo.md(
324
+ r"""
325
+ ### Renaming a single column with `alias`
326
+
327
+ The function `alias` lets you rename a single column:
328
+ """
329
+ )
330
+ return
331
+
332
+
333
+ @app.cell
334
+ def _(data, pl):
335
+ data.select(
336
+ ((pl.col("Air temperature") - 273.15) * 1.8 + 32).round(2).alias("Air temperature [F]"),
337
+ (pl.col("Air temperature") - 273.15).round(2).alias("Air temperature [C]")
338
+ )
339
+ return
340
+
341
+
342
+ @app.cell(hide_code=True)
343
+ def _(mo):
344
+ mo.md(
345
+ r"""
346
+ ### Prefixing and suffixing column names
347
+
348
+ As `alias` renames a single column at a time, it cannot be used during expression expansion. If it is sufficient add a static prefix or a static suffix to the existing names, you can use the functions `name.prefix` and `name.suffix` with `col`:
349
+ """
350
+ )
351
+ return
352
+
353
+
354
+ @app.cell
355
+ def _(data, pl):
356
+ data.select(
357
+ ((pl.col("Air temperature") - 273.15) * 1.8 + 32).round(2).name.prefix("deg F "),
358
+ (pl.col("Process temperature") - 273.15).round(2).name.suffix(" C"),
359
+ )
360
+ return
361
+
362
+
363
+ @app.cell(hide_code=True)
364
+ def _(mo):
365
+ mo.md(
366
+ r"""
367
+ ### Dynamic name replacement
368
+
369
+ If a static prefix/suffix is not enough, use `name.map`. `name.map` requires a function that transforms column names to the desired. The transformation should lead to unique names to avoid `DuplicateError`.
370
+ """
371
+ )
372
+ return
373
+
374
+
375
+ @app.cell
376
+ def _(data, pl):
377
+ # There is also `.name.to_lowercase`, so this usage of `.map` is moot.
378
+ data.select(pl.col("^.*F$").name.map(str.lower))
379
+ return
380
+
381
+
382
+ @app.cell(hide_code=True)
383
+ def _(mo):
384
+ mo.md(
385
+ r"""
386
+ ## Programmatically generating expressions
387
+
388
+ For this example, we will first create four additional columns with the rolling mean temperatures of the two temperature columns. Such transformations are sometimes used to create additional features for machine learning models or data analysis.
389
+ """
390
+ )
391
+ return
392
+
393
+
394
+ @app.cell
395
+ def _(data, pl):
396
+ ext_temp_data = data.with_columns(
397
+ pl.col("^.*temperature$").rolling_mean(window_size=2).round(2).name.prefix("Rolling mean ")
398
+ ).select(pl.col("^.*temperature*$"))
399
+ ext_temp_data
400
+ return (ext_temp_data,)
401
+
402
+
403
+ @app.cell(hide_code=True)
404
+ def _(mo):
405
+ mo.md(r"""Now, suppose we want to calculate the difference between the rolling mean and actual temperatures. We cannot use expression expansion here as we want differences between specific columns.""")
406
+ return
407
+
408
+
409
+ @app.cell(hide_code=True)
410
+ def _(mo):
411
+ mo.md(r"""At first, you may think about using a `for` loop:""")
412
+ return
413
+
414
+
415
+ @app.cell
416
+ def _(ext_temp_data, pl):
417
+ _result = ext_temp_data
418
+ for col_name in ["Air", "Process"]:
419
+ _result = _result.with_columns(
420
+ (abs(pl.col(f"Rolling mean {col_name} temperature") - pl.col(f"{col_name} temperature")))
421
+ .round(2).alias(f"Delta {col_name} temperature")
422
+ )
423
+ _result
424
+ return (col_name,)
425
+
426
+
427
+ @app.cell(hide_code=True)
428
+ def _(mo):
429
+ mo.md(r"""Using a `for` loop is functional, but not scalable, as each expression needs to be defined in an iteration and executed serially. Instead we can use a generator in Python to programmatically create all expressions at once. In conjunction with the `with_columns` context, we can take advantage of parallel execution of computations and query optimization from Polars.""")
430
+ return
431
+
432
+
433
+ @app.cell
434
+ def _(ext_temp_data, pl):
435
+ def delta_expressions(colnames: list[str]) -> pl.Expr:
436
+ for col_name in colnames:
437
+ yield (abs(pl.col(f"Rolling mean {col_name} temperature") - pl.col(f"{col_name} temperature"))
438
+ .round(2).alias(f"Delta {col_name} temperature"))
439
+
440
+
441
+ ext_temp_data.with_columns(delta_expressions(["Air", "Process"]))
442
+ return (delta_expressions,)
443
+
444
+
445
+ @app.cell(hide_code=True)
446
+ def _(mo):
447
+ mo.md(
448
+ r"""
449
+ ## More flexible column selections
450
+
451
+ For more flexible column selections, you can use column selectors from `selectors`. Column selectors allow for more expressiveness in the way you specify selections. For example, column selectors can perform the familiar set operations of union, intersection, difference, etc. We can use the union operation with the functions `string` and `ends_with` to select all string columns and the columns whose names end with "`_high`":
452
+ """
453
+ )
454
+ return
455
+
456
+
457
+ @app.cell
458
+ def _(data):
459
+ import polars.selectors as cs
460
+
461
+ data.select(cs.string() | cs.ends_with("F"))
462
+ return (cs,)
463
+
464
+
465
+ @app.cell(hide_code=True)
466
+ def _(mo):
467
+ mo.md(r"""Likewise, you can pick columns based on the category of the type of data, offering more flexibility than the `col` function. As an example, `cs.numeric` selects numeric data types (including `pl.Float32`, `pl.Float64`, `pl.Int32`, etc.) or `cs.temporal` for all dates, times and similar data types.""")
468
+ return
469
+
470
+
471
+ @app.cell(hide_code=True)
472
+ def _(mo):
473
+ mo.md(
474
+ r"""
475
+ ### Combining selectors with set operations
476
+
477
+ Multiple selectors can be combined using set operations and the usual Python operators:
478
+
479
+
480
+ | Operator | Operation |
481
+ |:--------:|:--------------------:|
482
+ | `A | B` | Union |
483
+ | `A & B` | Intersection |
484
+ | `A - B` | Difference |
485
+ | `A ^ B` | Symmetric difference |
486
+ | `~A` | Complement |
487
+
488
+ For example, to select all failure indicator variables excluding the failure variables due to wear, we can perform a set difference between the column selectors.
489
+ """
490
+ )
491
+ return
492
+
493
+
494
+ @app.cell
495
+ def _(cs, data):
496
+ data.select(cs.contains("F") - cs.contains("W"))
497
+ return
498
+
499
+
500
+ @app.cell(hide_code=True)
501
+ def _(mo):
502
+ mo.md(
503
+ r"""
504
+ ### Resolving operator ambiguity
505
+
506
+ Expression functions can be chained on top of selectors:
507
+ """
508
+ )
509
+ return
510
+
511
+
512
+ @app.cell
513
+ def _(cs, data, pl):
514
+ ext_failure_data = data.select(cs.contains("F")).cast(pl.Boolean)
515
+ ext_failure_data
516
+ return (ext_failure_data,)
517
+
518
+
519
+ @app.cell(hide_code=True)
520
+ def _(mo):
521
+ mo.md(
522
+ r"""
523
+ However, operators that perform set operations on column selectors operate on both selectors and on expressions. For example, the operator `~` on a selector represents the set operation “complement” and on an expression represents the Boolean operation of negation.
524
+
525
+ For instance, if you want to negate the Boolean values in the columns “HDF”, “OSF”, and “RNF”, at first you would think about using the `~` operator with the column selector to choose all failure variables containing "W". Because of the operator ambiguity here, the columns that are not of interest are selected here.
526
+ """
527
+ )
528
+ return
529
+
530
+
531
+ @app.cell
532
+ def _(cs, ext_failure_data):
533
+ ext_failure_data.select((~cs.ends_with("WF")).name.prefix("No"))
534
+ return
535
+
536
+
537
+ @app.cell(hide_code=True)
538
+ def _(mo):
539
+ mo.md(r"""To resolve the operator ambiguity, we use `as_expr`:""")
540
+ return
541
+
542
+
543
+ @app.cell
544
+ def _(cs, ext_failure_data):
545
+ ext_failure_data.select((~cs.ends_with("WF").as_expr()).name.prefix("No"))
546
+ return
547
+
548
+
549
+ @app.cell(hide_code=True)
550
+ def _(mo):
551
+ mo.md(
552
+ r"""
553
+ ### Debugging selectors
554
+
555
+ The function `cs.is_selector` helps check whether a complex chain of selectors and operators ultimately results in a selector. For example, to resolve any ambiguity with the selector in the last example, we can do:
556
+ """
557
+ )
558
+ return
559
+
560
+
561
+ @app.cell
562
+ def _(cs):
563
+ cs.is_selector(~cs.ends_with("WF").as_expr())
564
+ return
565
+
566
+
567
+ @app.cell(hide_code=True)
568
+ def _(mo):
569
+ mo.md(r"""Additionally we can use `expand_selector` to see what columns a selector expands into. Note that for this function we need to provide additional context in the form of the dataframe.""")
570
+ return
571
+
572
+
573
+ @app.cell
574
+ def _(cs, ext_failure_data):
575
+ cs.expand_selector(
576
+ ext_failure_data,
577
+ cs.ends_with("WF"),
578
+ )
579
+ return
580
+
581
+
582
+ @app.cell(hide_code=True)
583
+ def _(mo):
584
+ mo.md(
585
+ r"""
586
+ ### References
587
+
588
+ 1. AI4I 2020 Predictive Maintenance Dataset [Dataset]. (2020). UCI Machine Learning Repository. ([link](https://doi.org/10.24432/C5HS5C)).
589
+ 2. Polars documentation ([link](https://docs.pola.rs/user-guide/expressions/expression-expansion/#more-flexible-column-selections))
590
+ """
591
+ )
592
+ return
593
+
594
+
595
+ @app.cell(hide_code=True)
596
+ def _():
597
+ import csv
598
+ import marimo as mo
599
+ import polars as pl
600
+ from io import StringIO
601
+ return StringIO, csv, mo, pl
602
+
603
+
604
+ if __name__ == "__main__":
605
+ app.run()
polars/09_data_types.py ADDED
@@ -0,0 +1,296 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # /// script
2
+ # requires-python = ">=3.11"
3
+ # dependencies = [
4
+ # "polars==1.18.0",
5
+ # "marimo",
6
+ # ]
7
+ # ///
8
+
9
+ import marimo
10
+
11
+ __generated_with = "0.12.0"
12
+ app = marimo.App(width="medium")
13
+
14
+
15
+ @app.cell(hide_code=True)
16
+ def _(mo):
17
+ mo.md(
18
+ r"""
19
+ # Data Types
20
+
21
+ Author: [Deb Debnath](https://github.com/debajyotid2)
22
+
23
+ **Note**: The following tutorial has been adapted from the Polars [documentation](https://docs.pola.rs/user-guide/concepts/data-types-and-structures/).
24
+ """
25
+ )
26
+ return
27
+
28
+
29
+ @app.cell(hide_code=True)
30
+ def _(mo):
31
+ mo.md(
32
+ r"""
33
+ Polars supports a variety of data types that fall broadly under the following categories:
34
+
35
+ - Numeric data types: integers and floating point numbers.
36
+ - Nested data types: lists, structs, and arrays.
37
+ - Temporal: dates, datetimes, times, and time deltas.
38
+ - Miscellaneous: strings, binary data, Booleans, categoricals, enums, and objects.
39
+
40
+ All types support missing values represented by `null` which is different from `NaN` used in floating point data types. The numeric datatypes in Polars loosely follow the type system of the Rust language, since its core functionalities are built in Rust.
41
+
42
+ [Here](https://docs.pola.rs/api/python/stable/reference/datatypes.html) is a full list of all data types Polars supports.
43
+ """
44
+ )
45
+ return
46
+
47
+
48
+ @app.cell(hide_code=True)
49
+ def _(mo):
50
+ mo.md(
51
+ r"""
52
+ ## Series
53
+
54
+ A series is a 1-dimensional data structure that can hold only one data type.
55
+ """
56
+ )
57
+ return
58
+
59
+
60
+ @app.cell
61
+ def _(pl):
62
+ s = pl.Series("emojis", ["😀", "🤣", "🥶", "💀", "🤖"])
63
+ s
64
+ return (s,)
65
+
66
+
67
+ @app.cell(hide_code=True)
68
+ def _(mo):
69
+ mo.md(r"""Unless specified, Polars infers the datatype from the supplied values.""")
70
+ return
71
+
72
+
73
+ @app.cell
74
+ def _(pl):
75
+ s1 = pl.Series("friends", ["Евгений", "अभिषेक", "秀良", "Federico", "Bob"])
76
+ s2 = pl.Series("uints", [0x00, 0x01, 0x10, 0x11], dtype=pl.UInt8)
77
+ s1.dtype, s2.dtype
78
+ return s1, s2
79
+
80
+
81
+ @app.cell(hide_code=True)
82
+ def _(mo):
83
+ mo.md(
84
+ r"""
85
+ ## Dataframe
86
+
87
+ A dataframe is a 2-dimensional data structure that contains uniquely named series and can hold multiple data types. Dataframes are more commonly used for data manipulation using the functionality of Polars.
88
+
89
+ The snippet below shows how to create a dataframe from a dictionary of lists:
90
+ """
91
+ )
92
+ return
93
+
94
+
95
+ @app.cell
96
+ def _(pl):
97
+ data = pl.DataFrame(
98
+ {
99
+ "Product ID": ["L51172", "M22586", "L51639", "L50250", "M20109"],
100
+ "Type": ["L", "M", "L", "L", "M"],
101
+ "Air temperature": [302.3, 300.8, 302.6, 300, 303.4], # (K)
102
+ "Machine Failure": [False, True, False, False, True]
103
+ }
104
+ )
105
+ data
106
+ return (data,)
107
+
108
+
109
+ @app.cell(hide_code=True)
110
+ def _(mo):
111
+ mo.md(
112
+ r"""
113
+ ### Inspecting a dataframe
114
+
115
+ Polars has various functions to explore the data in a dataframe. We will use the dataframe `data` defined above in our examples. Alongside we can also see a view of the dataframe rendered by `marimo` as the cells are executed.
116
+
117
+ ///note
118
+ We can also use `marimo`'s built in data-inspection elements/features such as [`mo.ui.dataframe`](https://docs.marimo.io/api/inputs/dataframe/#marimo.ui.dataframe) & [`mo.ui.data_explorer`](https://docs.marimo.io/api/inputs/data_explorer/). For more check out our Polars tutorials at [`marimo learn`](https://marimo-team.github.io/learn/)!
119
+ """
120
+ )
121
+ return
122
+
123
+
124
+ @app.cell(hide_code=True)
125
+ def _(mo):
126
+ mo.md(
127
+ """
128
+ #### Head
129
+
130
+ The function `head` shows the first rows of a dataframe. Unless specified, it shows the first 5 rows.
131
+ """
132
+ )
133
+ return
134
+
135
+
136
+ @app.cell
137
+ def _(data):
138
+ data.head(3)
139
+ return
140
+
141
+
142
+ @app.cell(hide_code=True)
143
+ def _(mo):
144
+ mo.md(
145
+ r"""
146
+ #### Glimpse
147
+
148
+ The function `glimpse` is an alternative to `head` to view the first few columns, but displays each line of the output corresponding to a single column. That way, it makes inspecting wider dataframes easier.
149
+ """
150
+ )
151
+ return
152
+
153
+
154
+ @app.cell
155
+ def _(data):
156
+ print(data.glimpse(return_as_string=True))
157
+ return
158
+
159
+
160
+ @app.cell(hide_code=True)
161
+ def _(mo):
162
+ mo.md(
163
+ r"""
164
+ #### Tail
165
+
166
+ The `tail` function, just like its name suggests, shows the last rows of a dataframe. Unless the number of rows is specified, it will show the last 5 rows.
167
+ """
168
+ )
169
+ return
170
+
171
+
172
+ @app.cell
173
+ def _(data):
174
+ data.tail(3)
175
+ return
176
+
177
+
178
+ @app.cell(hide_code=True)
179
+ def _(mo):
180
+ mo.md(
181
+ r"""
182
+ #### Sample
183
+
184
+ `sample` can be used to show a specified number of randomly selected rows from the dataframe. Unless the number of rows is specified, it will show a single row. `sample` does not preserve order of the rows.
185
+ """
186
+ )
187
+ return
188
+
189
+
190
+ @app.cell
191
+ def _(data):
192
+ import random
193
+
194
+ random.seed(42) # For reproducibility.
195
+
196
+ data.sample(3)
197
+ return (random,)
198
+
199
+
200
+ @app.cell(hide_code=True)
201
+ def _(mo):
202
+ mo.md(
203
+ r"""
204
+ #### Describe
205
+
206
+ The function `describe` describes the summary statistics for all columns of a dataframe.
207
+ """
208
+ )
209
+ return
210
+
211
+
212
+ @app.cell
213
+ def _(data):
214
+ data.describe()
215
+ return
216
+
217
+
218
+ @app.cell(hide_code=True)
219
+ def _(mo):
220
+ mo.md(
221
+ r"""
222
+ ## Schema
223
+
224
+ A schema is a mapping showing the datatype corresponding to every column of a dataframe. The schema of a dataframe can be viewed using the attribute `schema`.
225
+ """
226
+ )
227
+ return
228
+
229
+
230
+ @app.cell
231
+ def _(data):
232
+ data.schema
233
+ return
234
+
235
+
236
+ @app.cell(hide_code=True)
237
+ def _(mo):
238
+ mo.md(r"""Since a schema is a mapping, it can be specified in the form of a Python dictionary. Then this dictionary can be used to specify the schema of a dataframe on definition. If not specified or the entry is `None`, Polars infers the datatype from the contents of the column. Note that if the schema is not specified, it will be inferred automatically by default.""")
239
+ return
240
+
241
+
242
+ @app.cell
243
+ def _(pl):
244
+ pl.DataFrame(
245
+ {
246
+ "Product ID": ["L51172", "M22586", "L51639", "L50250", "M20109"],
247
+ "Type": ["L", "M", "L", "L", "M"],
248
+ "Air temperature": [302.3, 300.8, 302.6, 300, 303.4], # (K)
249
+ "Machine Failure": [False, True, False, False, True]
250
+ },
251
+ schema={"Product ID": pl.String, "Type": pl.String, "Air temperature": None, "Machine Failure": None},
252
+ )
253
+ return
254
+
255
+
256
+ @app.cell(hide_code=True)
257
+ def _(mo):
258
+ mo.md(r"""Sometimes the automatically inferred schema is enough for some columns, but we might wish to override the inference of only some columns. We can specify the schema for those columns using `schema_overrides`.""")
259
+ return
260
+
261
+
262
+ @app.cell
263
+ def _(pl):
264
+ pl.DataFrame(
265
+ {
266
+ "Product ID": ["L51172", "M22586", "L51639", "L50250", "M20109"],
267
+ "Type": ["L", "M", "L", "L", "M"],
268
+ "Air temperature": [302.3, 300.8, 302.6, 300, 303.4], # (K)
269
+ "Machine Failure": [False, True, False, False, True]
270
+ },
271
+ schema_overrides={"Air temperature": pl.Float32},
272
+ )
273
+ return
274
+
275
+
276
+ @app.cell(hide_code=True)
277
+ def _(mo):
278
+ mo.md(
279
+ r"""
280
+ ### References
281
+
282
+ 1. Polars documentation ([link](https://docs.pola.rs/api/python/stable/reference/datatypes.html))
283
+ """
284
+ )
285
+ return
286
+
287
+
288
+ @app.cell(hide_code=True)
289
+ def _():
290
+ import marimo as mo
291
+ import polars as pl
292
+ return mo, pl
293
+
294
+
295
+ if __name__ == "__main__":
296
+ app.run()