# /// script # requires-python = ">=3.12" # dependencies = [ # "altair==5.5.0", # "beautifulsoup4==4.13.3", # "httpx==0.28.1", # "marimo", # "nest-asyncio==1.6.0", # "numba==0.61.0", # "numpy==2.1.3", # "polars==1.24.0", # ] # /// import marimo __generated_with = "0.11.17" app = marimo.App(width="medium") @app.cell(hide_code=True) def _(mo): mo.md( r""" # User-Defined Functions _By [PΓ©ter Ferenc Gyarmati](http://github.com/peter-gy)_. Throughout the previous chapters, you've seen how Polars provides a comprehensive set of built-in expressions for flexible data transformation. But what happens when you need something *more*? Perhaps your project has unique requirements, or you need to integrate functionality from an external Python library. This is where User-Defined Functions (UDFs) come into play, allowing you to extend Polars with your own custom logic. In this chapter, we'll weigh the performance trade-offs of UDFs, pinpoint situations where they're truly beneficial, and explore different ways to effectively incorporate them into your Polars workflows. We'll walk through a complete, practical example. """ ) return @app.cell(hide_code=True) def _(mo): mo.md( r""" ## βοΈ The Cost of UDFs > Performance vs. Flexibility Polars' built-in expressions are highly optimized for speed and parallel processing. User-defined functions (UDFs), however, introduce a significant performance overhead because they rely on standard Python code, which often runs in a single thread and bypasses Polars' logical optimizations. Therefore, always prioritize native Polars operations *whenever possible*. However, UDFs become inevitable when you need to: - **Integrate external libraries:** Use functionality not directly available in Polars. - **Implement custom logic:** Handle complex transformations that can't be easily expressed with Polars' built-in functions. Let's dive into a real-world project where UDFs were the only way to get the job done, demonstrating a scenario where native Polars expressions simply weren't sufficient. """ ) return @app.cell(hide_code=True) def _(mo): mo.md( r""" ## π Project Overview > Scraping and Analyzing Observable Notebook Statistics If you're into data visualization, you've probably seen [D3.js](https://d3js.org/) and [Observable Plot](https://observablehq.com/plot/). Both have extensive galleries showcasing amazing visualizations. Each gallery item is a standalone [Observable notebook](https://observablehq.com/documentation/notebooks/), with metrics like stars, comments, and forks β indicators of popularity. But getting and analyzing these statistics directly isn't straightforward. We'll need to scrape the web. """ ) return @app.cell(hide_code=True) def _(mo): mo.hstack( [ mo.image( "https://minio.peter.gy/static/assets/marimo/learn/polars/14_d3-gallery.png?0", width=600, caption="Screenshot of https://observablehq.com/@d3/gallery", ), mo.image( "https://minio.peter.gy/static/assets/marimo/learn/polars/14_plot-gallery.png?0", width=600, caption="Screenshot of https://observablehq.com/@observablehq/plot-gallery", ), ] ) return @app.cell(hide_code=True) def _(mo): mo.md(r"""Our goal is to use Polars UDFs to fetch the HTML content of these gallery pages. Then, we'll use the `BeautifulSoup` Python library to parse the HTML and extract the relevant metadata. After some data wrangling with native Polars expressions, we'll have a DataFrame listing each visualization notebook. Then, we'll use another UDF to retrieve the number of likes, forks, and comments for each notebook. Finally, we will create our own high-performance UDF to implement a custom notebook ranking scheme. This will involve multiple steps, showcasing different UDF approaches.""") return @app.cell(hide_code=True) def _(mo): mo.mermaid(''' graph LR; url_df --> |"UDF: Fetch HTML"| html_df html_df --> |"UDF: Parse with BeautifulSoup"| parsed_html_df parsed_html_df --> |"Native Polars: Extract Data"| notebooks_df notebooks_df --> |"UDF: Get Notebook Stats"| notebook_stats_df notebook_stats_df --> |"Numba UDF: Compute Popularity"| notebook_popularity_df ''') return @app.cell(hide_code=True) def _(mo): mo.md(r"""Our starting point, `url_df`, is a simple DataFrame with a single `url` column containing the URLs of the D3 and Observable Plot gallery notebooks.""") return @app.cell(hide_code=True) def _(pl): url_df = pl.from_dict( { "url": [ "https://observablehq.com/@d3/gallery", "https://observablehq.com/@observablehq/plot-gallery", ] } ) url_df return (url_df,) @app.cell(hide_code=True) def _(mo): mo.md( r""" ## π Element-Wise UDFs > Processing Value by Value The most common way to use UDFs is to apply them element-wise. This means our custom function will execute for *each individual row* in a specified column. Our first task is to fetch the HTML content for each URL in `url_df`. We'll define a Python function that takes a `url` (a string) as input, uses the `httpx` library (an HTTP client) to fetch the content, and returns the HTML as a string. We then integrate this function into Polars using the [`map_elements`](https://docs.pola.rs/api/python/stable/reference/expressions/api/polars.Expr.map_elements.html) expression. You'll notice we have to explicitly specify the `return_dtype`. This is *crucial*. Polars doesn't automatically know what our custom function will return. We're responsible for defining the function's logic and, therefore, its output type. By providing the `return_dtype`, we help Polars maintain its internal representation of the DataFrame's schema, enabling query optimization. Think of it as giving Polars a "heads-up" about the data type it should expect. """ ) return @app.cell(hide_code=True) def _(httpx, pl, url_df): html_df = url_df.with_columns( html=pl.col("url").map_elements( lambda url: httpx.get(url).text, return_dtype=pl.String, ) ) html_df return (html_df,) @app.cell(hide_code=True) def _(mo): mo.md( r""" Now, `html_df` holds the HTML for each URL. We need to parse it. Again, a UDF is the way to go. Parsing HTML with native Polars expressions would be a nightmare! Instead, we'll use the [`beautifulsoup4`](https://pypi.org/project/beautifulsoup4/) library, a standard tool for this. These Observable pages are built with [Next.js](https://nextjs.org/), which helpfully serializes page properties as JSON within the HTML. This simplifies our UDF: we'll extract the raw JSON from the `<script id="__NEXT_DATA__" type="application/json">` tag. We'll use [`map_elements`](https://docs.pola.rs/api/python/stable/reference/expressions/api/polars.Expr.map_elements.html) again. For clarity, we'll define this UDF as a named function, `extract_nextjs_data`, since it's a bit more complex than a simple HTTP request. """ ) return @app.cell(hide_code=True) def _(BeautifulSoup): def extract_nextjs_data(html: str) -> str: soup = BeautifulSoup(html, "html.parser") script_tag = soup.find("script", id="__NEXT_DATA__") return script_tag.text return (extract_nextjs_data,) @app.cell(hide_code=True) def _(extract_nextjs_data, html_df, pl): parsed_html_df = html_df.select( "url", next_data=pl.col("html").map_elements( extract_nextjs_data, return_dtype=pl.String, ), ) parsed_html_df return (parsed_html_df,) @app.cell(hide_code=True) def _(mo): mo.md(r"""With some data wrangling of the raw JSON (using *native* Polars expressions!), we get `notebooks_df`, containing the metadata for each notebook.""") return @app.cell(hide_code=True) def _(parsed_html_df, pl): notebooks_df = ( parsed_html_df.select( "url", # We extract the content of every cell present in the gallery notebooks cell=pl.col("next_data") .str.json_path_match("$.props.pageProps.initialNotebook.nodes") .str.json_decode() .list.eval(pl.element().struct.field("value")), ) # We want one row per cell .explode("cell") # Only keep categorized notebook listing cells starting with H3 .filter(pl.col("cell").str.starts_with("### ")) # Split up the cells into [heading, description, config] sections .with_columns(pl.col("cell").str.split("\n\n")) .select( gallery_url="url", # Text after the '### ' heading, ignore '<!--' comments' category=pl.col("cell").list.get(0).str.extract(r"###\s+(.*?)(?:\s+<!--.*?-->|$)"), # Paragraph after heading description=pl.col("cell") .list.get(1) .str.strip_chars(" ") .str.replace_all("](/", "](https://observablehq.com/", literal=True), # Parsed notebook config from ${preview([{...}])} notebooks=pl.col("cell") .list.get(2) .str.strip_prefix("${previews([") .str.strip_suffix("]})}") .str.strip_chars(" \n") .str.split("},") # Simple regex-based attribute extraction from JS/JSON objects like # ```js # { # path: "@d3/spilhaus-shoreline-map", # "thumbnail": "66a87355e205d820...", # title: "Spilhaus shoreline map", # "author": "D3" # } # ``` .list.eval( pl.struct( *( pl.element() .str.extract(f'(?:"{key}"|{key})\s*:\s*"([^"]*)"') .alias(key) for key in ["path", "thumbnail", "title"] ) ) ), ) .explode("notebooks") .unnest("notebooks") .filter(pl.col("path").is_not_null()) # Final projection to end up with directly usable values .select( pl.concat_str( [ pl.lit("https://static.observableusercontent.com/thumbnail/"), "thumbnail", pl.lit(".jpg"), ], ).alias("notebook_thumbnail_src"), "category", "title", "description", pl.concat_str( [pl.lit("https://observablehq.com"), "path"], separator="/" ).alias("notebook_url"), ) ) notebooks_df return (notebooks_df,) @app.cell(hide_code=True) def _(mo): mo.md( r""" ## π¦ Batch-Wise UDFs > Processing Entire Series `map_elements` calls the UDF for *each row*. Fine for our tiny, two-rows-tall `url_df`. But `notebooks_df` has almost 400 rows! Individual HTTP requests for each would be painfully slow. We want stats for each notebook in `notebooks_df`. To avoid sequential requests, we'll use Polars' [`map_batches`](https://docs.pola.rs/api/python/stable/reference/expressions/api/polars.Expr.map_batches.html). This lets us process an *entire Series* (a column) at once. Our UDF, `fetch_html_batch`, will take a *Series* of URLs and use `asyncio` to make concurrent requests β a huge performance boost. """ ) return @app.cell(hide_code=True) def _(Iterable, asyncio, httpx, mo): async def _fetch_html_batch(urls: Iterable[str]) -> tuple[str, ...]: async with httpx.AsyncClient(timeout=15) as client: res = await asyncio.gather(*(client.get(url) for url in urls)) return tuple((r.text for r in res)) @mo.cache def fetch_html_batch(urls: Iterable[str]) -> tuple[str, ...]: return asyncio.run(_fetch_html_batch(urls)) return (fetch_html_batch,) @app.cell(hide_code=True) def _(mo): mo.callout( mo.md(""" Since `fetch_html_batch` is a pure Python function and performs multiple network requests, it's a good candidate for caching. We use [`mo.cache`](https://docs.marimo.io/api/caching/#marimo.cache) to avoid redundant requests to the same URL. This is a simple way to improve performance without modifying the core logic. """ ), kind="info", ) return @app.cell(hide_code=True) def _(mo, notebooks_df): category = mo.ui.dropdown( notebooks_df.sort("category").get_column("category"), value="Maps", ) return (category,) @app.cell(hide_code=True) def _(category, extract_nextjs_data, fetch_html_batch, notebooks_df, pl): notebook_stats_df = ( # Setting filter upstream to limit number of concurrent HTTP requests notebooks_df.filter(category=category.value) .with_columns( notebook_html=pl.col("notebook_url") .map_batches(fetch_html_batch, return_dtype=pl.List(pl.String)) .explode() ) .with_columns( notebook_data=pl.col("notebook_html") .map_elements( extract_nextjs_data, return_dtype=pl.String, ) .str.json_path_match("$.props.pageProps.initialNotebook") .str.json_decode() ) .drop("notebook_html") .with_columns( *[ pl.col("notebook_data").struct.field(key).alias(key) for key in ["likes", "forks", "comments", "license"] ] ) .drop("notebook_data") .with_columns(pl.col("comments").list.len()) .select( pl.exclude("description", "notebook_url"), "description", "notebook_url", ) .sort("likes", descending=True) ) return (notebook_stats_df,) @app.cell(hide_code=True) def _(mo, notebook_stats_df): notebooks = mo.ui.table(notebook_stats_df, selection='single', initial_selection=[2], page_size=5) notebook_height = mo.ui.slider(start=400, stop=2000, value=825, step=25, show_value=True, label='Notebook Height') return notebook_height, notebooks @app.cell(hide_code=True) def _(): def nb_iframe(notebook_url: str, height=825) -> str: embed_url = notebook_url.replace( "https://observablehq.com", "https://observablehq.com/embed" ) return f'<iframe width="100%" height="{height}" frameborder="0" src="{embed_url}?cell=*"></iframe>' return (nb_iframe,) @app.cell(hide_code=True) def _(mo): mo.md(r"""Now that we have access to notebook-level statistics, we can rank the visualizations by the number of likes they received & display them interactively.""") return @app.cell(hide_code=True) def _(mo): mo.callout("π‘ Explore the visualizations by paging through the table below and selecting any of its rows.") return @app.cell(hide_code=True) def _(category, mo, nb_iframe, notebook_height, notebooks): notebook = notebooks.value.to_dicts()[0] mo.vstack( [ mo.hstack([category, notebook_height]), notebooks, mo.md(f"{notebook['description']}"), mo.md('---'), mo.md(nb_iframe(notebook["notebook_url"], notebook_height.value)), ] ) return (notebook,) @app.cell(hide_code=True) def _(mo): mo.md( r""" ## βοΈ Row-Wise UDFs > Accessing All Columns at Once Sometimes, you need to work with *all* columns of a row at once. This is where [`map_rows`](https://docs.pola.rs/api/python/stable/reference/dataframe/api/polars.DataFrame.map_rows.html) comes in. It operates directly on the DataFrame, passing each row to your UDF *as a tuple*. Below, `create_notebook_summary` takes a row from `notebook_stats_df` (as a tuple) and returns a formatted Markdown string summarizing the notebook's key stats. We're essentially reducing the DataFrame to a single column. While this *could* be done with native Polars expressions, it would be much more cumbersome. This example demonstrates a case where a row-wise UDF simplifies the code, even if the underlying operation isn't inherently complex. """ ) return @app.cell(hide_code=True) def _(): def create_notebook_summary(row: tuple) -> str: ( thumbnail_src, category, title, likes, forks, comments, license, description, notebook_url, ) = row return ( f""" ### [{title}]({notebook_url}) <div style="display: grid; grid-template-columns: 1fr 1fr; gap: 12px; margin: 12px 0;"> <div>β <strong>Likes:</strong> {likes}</div> <div>βοΈ <strong>Forks:</strong> {forks}</div> <div>π¬ <strong>Comments:</strong> {comments}</div> <div>βοΈ <strong>License:</strong> {license}</div> </div> <a href="{notebook_url}" target="_blank"> <img src="{thumbnail_src}" style="height: 300px;" /> <a/> """.strip('\n') ) return (create_notebook_summary,) @app.cell(hide_code=True) def _(create_notebook_summary, notebook_stats_df, pl): notebook_summary_df = notebook_stats_df.map_rows( create_notebook_summary, return_dtype=pl.String, ).rename({"map": "summary"}) notebook_summary_df.head(1) return (notebook_summary_df,) @app.cell(hide_code=True) def _(mo): mo.callout("π‘ You can explore individual notebook statistics through the carousel. Discover the visualization's source code by clicking the notebook title or the thumbnail.") return @app.cell(hide_code=True) def _(mo, notebook_summary_df): mo.carousel( [ mo.lazy(mo.md(summary)) for summary in notebook_summary_df.get_column("summary") ] ) return @app.cell(hide_code=True) def _(mo): mo.md( r""" ## π Higher-performance UDFs > Leveraging Numba to Make Python Fast Python code doesn't *always* mean slow code. While UDFs *often* introduce performance overhead, there are exceptions. NumPy's universal functions ([`ufuncs`](https://numpy.org/doc/stable/reference/ufuncs.html)) and generalized universal functions ([`gufuncs`](https://numpy.org/neps/nep-0005-generalized-ufuncs.html)) provide high-performance operations on NumPy arrays, thanks to low-level implementations. But NumPy's built-in functions are predefined. We can't easily use them for *custom* logic. Enter [`numba`](https://numba.pydata.org/). Numba is a just-in-time (JIT) compiler that translates Python functions into optimized machine code *at runtime*. It provides decorators like [`numba.guvectorize`](https://numba.readthedocs.io/en/stable/user/vectorize.html#the-guvectorize-decorator) that let us create our *own* high-performance `gufuncs` β *without* writing low-level code! """ ) return @app.cell(hide_code=True) def _(mo): mo.md( r""" Let's create a custom popularity metric to rank notebooks, considering likes, forks, *and* comments (not just likes). We'll define `weighted_popularity_numba`, decorated with `@numba.guvectorize`. The decorator arguments specify that we're taking three integer vectors of length `n` and returning a float vector of length `n`. The weighted popularity score for each notebook is calculated using the following formula: $$ \begin{equation} \text{score}_i = w_l \cdot l_i^{f} + w_f \cdot f_i^{f} + w_c \cdot c_i^{f} \end{equation} $$ with: """ ) return @app.cell(hide_code=True) def _(mo, non_linear_factor, weight_comments, weight_forks, weight_likes): mo.md(rf""" | Symbol | Description | |--------|-------------| | $\text{{score}}_i$ | Popularity score for the *i*-th notebook | | $w_l = {weight_likes.value}$ | Weight for likes | | $l_i$ | Number of likes for the *i*-th notebook | | $w_f = {weight_forks.value}$ | Weight for forks | | $f_i$ | Number of forks for the *i*-th notebook | | $w_c = {weight_comments.value}$ | Weight for comments | | $c_i$ | Number of comments for the *i*-th notebook | | $f = {non_linear_factor.value}$ | Non-linear factor (exponent) | """) return @app.cell(hide_code=True) def _(mo): weight_likes = mo.ui.slider( start=0.1, stop=1, value=0.5, step=0.1, show_value=True, label="β Weight for Likes", ) weight_forks = mo.ui.slider( start=0.1, stop=1, value=0.3, step=0.1, show_value=True, label="βοΈ Weight for Forks", ) weight_comments = mo.ui.slider( start=0.1, stop=1, value=0.5, step=0.1, show_value=True, label="π¬ Weight for Comments", ) non_linear_factor = mo.ui.slider( start=1, stop=2, value=1.2, step=0.1, show_value=True, label="π’ Non-Linear Factor", ) return non_linear_factor, weight_comments, weight_forks, weight_likes @app.cell(hide_code=True) def _( non_linear_factor, np, numba, weight_comments, weight_forks, weight_likes, ): w_l = weight_likes.value w_f = weight_forks.value w_c = weight_comments.value nlf = non_linear_factor.value @numba.guvectorize( [(numba.int64[:], numba.int64[:], numba.int64[:], numba.float64[:])], "(n), (n), (n) -> (n)", ) def weighted_popularity_numba( likes: np.ndarray, forks: np.ndarray, comments: np.ndarray, out: np.ndarray, ): for i in range(likes.shape[0]): out[i] = ( w_l * (likes[i] ** nlf) + w_f * (forks[i] ** nlf) + w_c * (comments[i] ** nlf) ) return nlf, w_c, w_f, w_l, weighted_popularity_numba @app.cell(hide_code=True) def _(mo): mo.md(r"""We apply our JIT-compiled UDF using `map_batches`, as before. The key is that we're passing entire columns directly to `weighted_popularity_numba`. Polars and Numba handle the conversion to NumPy arrays behind the scenes. This direct integration is a major benefit of using `guvectorize`.""") return @app.cell(hide_code=True) def _(notebook_stats_df, pl, weighted_popularity_numba): notebook_popularity_df = ( notebook_stats_df.select( pl.col("notebook_thumbnail_src").alias("thumbnail"), "title", "likes", "forks", "comments", popularity=pl.struct(["likes", "forks", "comments"]).map_batches( lambda obj: weighted_popularity_numba( obj.struct.field("likes"), obj.struct.field("forks"), obj.struct.field("comments"), ), return_dtype=pl.Float64, ), url="notebook_url", ) ) return (notebook_popularity_df,) @app.cell(hide_code=True) def _(mo): mo.callout("π‘ Adjust the hyperparameters of the popularity ranking UDF. How do the weights and non-linear factor affect the notebook rankings?") return @app.cell(hide_code=True) def _( mo, non_linear_factor, notebook_popularity_df, weight_comments, weight_forks, weight_likes, ): mo.vstack( [ mo.hstack([weight_likes, weight_forks]), mo.hstack([weight_comments, non_linear_factor]), notebook_popularity_df, ] ) return @app.cell(hide_code=True) def _(mo): mo.md(r"""As the slope chart below demonstrates, this new ranking strategy significantly changes the notebook order, as it considers forks and comments, not just likes.""") return @app.cell(hide_code=True) def _(alt, notebook_popularity_df, pl): notebook_ranks_df = ( notebook_popularity_df.sort("likes", descending=True) .with_row_index("rank_by_likes") .with_columns(pl.col("rank_by_likes") + 1) .sort("popularity", descending=True) .with_row_index("rank_by_popularity") .with_columns(pl.col("rank_by_popularity") + 1) .select("thumbnail", "title", "rank_by_popularity", "rank_by_likes") .unpivot( ["rank_by_popularity", "rank_by_likes"], index="title", variable_name="strategy", value_name="rank", ) ) # Slope chart to visualize rank differences by strategy lines = notebook_ranks_df.plot.line( x="strategy:O", y="rank:Q", color="title:N", ) points = notebook_ranks_df.plot.point( x="strategy:O", y="rank:Q", color=alt.Color("title:N", legend=None), fill="title:N", ) (points + lines).properties(width=400) return lines, notebook_ranks_df, points @app.cell(hide_code=True) def _(mo): mo.md( r""" ## β±οΈ Quantifying the Overhead > UDF Performance Comparison To truly understand the performance implications of using UDFs, let's conduct a benchmark. We'll create a DataFrame with random numbers and perform the same numerical operation using four different methods: 1. **Native Polars:** Using Polars' built-in expressions. 2. **`map_elements`:** Applying a Python function element-wise. 3. **`map_batches`:** **Applying** a Python function to the entire Series. 4. **`map_batches` with Numba:** Applying a JIT-compiled function to batches, similar to a generalized universal function. We'll use a simple, but non-trivial, calculation: `result = (x * 2.5 + 5) / (x + 1)`. This involves multiplication, addition, and division, giving us a realistic representation of a common numerical operation. We'll use the `timeit` module, to accurately measure execution times over multiple trials. """ ) return @app.cell(hide_code=True) def _(mo): mo.callout("π‘ Tweak the benchmark parameters to explore how execution times change with different sample sizes and trial counts. Do you notice anything surprising as you decrease the number of samples?") return @app.cell(hide_code=True) def _(benchmark_plot, mo, num_samples, num_trials): mo.vstack( [ mo.hstack([num_samples, num_trials]), mo.md( f"""--- Performance comparison over **{num_trials.value:,} trials** with **{num_samples.value:,} samples**. > Lower execution times are better. """ ), benchmark_plot, ] ) return @app.cell(hide_code=True) def _(mo): mo.md( r""" As anticipated, the `Batch-Wise UDF (Python)` and `Element-Wise UDF` exhibit significantly worse performance, essentially acting as pure-Python for-each loops. However, when Python serves as an interface to lower-level, high-performance libraries, we observe substantial improvements. The `Batch-Wise UDF (NumPy)` lags behind both `Batch-Wise UDF (Numba)` and `Native Polars`, but it still represents a considerable improvement over pure-Python UDFs due to its vectorized computations. Numba's Just-In-Time (JIT) compilation delivers a dramatic performance boost, achieving speeds comparable to native Polars expressions. This demonstrates that UDFs, particularly when combined with tools like Numba, don't inevitably lead to bottlenecks in numerical computations. """ ) return @app.cell(hide_code=True) def _(mo): num_samples = mo.ui.slider( start=1_000, stop=1_000_000, value=250_000, step=1000, show_value=True, debounce=True, label="Number of Samples", ) num_trials = mo.ui.slider( start=50, stop=1_000, value=100, step=50, show_value=True, debounce=True, label="Number of Trials", ) return num_samples, num_trials @app.cell(hide_code=True) def _(np, num_samples, pl): rng = np.random.default_rng(42) sample_df = pl.from_dict({"x": rng.random(num_samples.value)}) return rng, sample_df @app.cell(hide_code=True) def _(np, num_trials, numba, pl, sample_df, timeit): def run_native(): sample_df.with_columns( result_native=(pl.col("x") * 2.5 + 5) / (pl.col("x") + 1) ) def _calculate_elementwise(x: float) -> float: return (x * 2.5 + 5) / (x + 1) def run_map_elements(): sample_df.with_columns( result_map_elements=pl.col("x").map_elements( _calculate_elementwise, return_dtype=pl.Float64, ) ) def _calculate_batchwise_numpy(x_series: pl.Series) -> pl.Series: x_array = x_series.to_numpy() result_array = (x_array * 2.5 + 5) / (x_array + 1) return pl.Series(result_array) def run_map_batches_numpy(): sample_df.with_columns( result_map_batches_numpy=pl.col("x").map_batches( _calculate_batchwise_numpy, return_dtype=pl.Float64, ) ) def _calculate_batchwise_python(x_series: pl.Series) -> pl.Series: x_array = x_series.to_list() result_array = [_calculate_elementwise(x) for x in x_array] return pl.Series(result_array) def run_map_batches_python(): sample_df.with_columns( result_map_batches_python=pl.col("x").map_batches( _calculate_batchwise_python, return_dtype=pl.Float64, ) ) @numba.guvectorize([(numba.float64[:], numba.float64[:])], "(n) -> (n)") def _calculate_batchwise_numba(x: np.ndarray, out: np.ndarray): for i in range(x.shape[0]): out[i] = (x[i] * 2.5 + 5) / (x[i] + 1) def run_map_batches_numba(): sample_df.with_columns( result_map_batches_numba=pl.col("x").map_batches( _calculate_batchwise_numba, return_dtype=pl.Float64, ) ) def time_method(callable_name: str, number=num_trials.value) -> float: fn = globals()[callable_name] return timeit.timeit(fn, number=number) return ( run_map_batches_numba, run_map_batches_numpy, run_map_batches_python, run_map_elements, run_native, time_method, ) @app.cell(hide_code=True) def _(alt, pl, time_method): benchmark_df = pl.from_dicts( [ { "title": "Native Polars", "callable_name": "run_native", }, { "title": "Element-Wise UDF", "callable_name": "run_map_elements", }, { "title": "Batch-Wise UDF (NumPy)", "callable_name": "run_map_batches_numpy", }, { "title": "Batch-Wise UDF (Python)", "callable_name": "run_map_batches_python", }, { "title": "Batch-Wise UDF (Numba)", "callable_name": "run_map_batches_numba", }, ] ).with_columns( time=pl.col("callable_name").map_elements( time_method, return_dtype=pl.Float64 ) ) benchmark_plot = benchmark_df.plot.bar( x=alt.X("title:N", title="Method", sort="-y"), y=alt.Y("time:Q", title="Execution Time (s)", axis=alt.Axis(format=".3f")), ).properties(width=400) return benchmark_df, benchmark_plot @app.cell(hide_code=True) def _(): import asyncio import timeit from typing import Iterable import altair as alt import httpx import marimo as mo import nest_asyncio import numba import numpy as np from bs4 import BeautifulSoup import polars as pl # Fixes RuntimeError: asyncio.run() cannot be called from a running event loop nest_asyncio.apply() return ( BeautifulSoup, Iterable, alt, asyncio, httpx, mo, nest_asyncio, np, numba, pl, timeit, ) if __name__ == "__main__": app.run()