# /// script # requires-python = ">=3.13" # dependencies = [ # "cvxpy==1.6.0", # "marimo", # "matplotlib==3.10.0", # "numpy==2.2.2", # "wigglystuff==0.1.9", # ] # /// import marimo __generated_with = "0.11.0" app = marimo.App() @app.cell def _(): import marimo as mo return (mo,) @app.cell(hide_code=True) def _(mo): mo.md( r""" # Quadratic program A quadratic program is an optimization problem with a quadratic objective and affine equality and inequality constraints. A common standard form is the following: \[ \begin{array}{ll} \text{minimize} & (1/2)x^TPx + q^Tx\\ \text{subject to} & Gx \leq h \\ & Ax = b. \end{array} \] Here $P \in \mathcal{S}^{n}_+$, $q \in \mathcal{R}^n$, $G \in \mathcal{R}^{m \times n}$, $h \in \mathcal{R}^m$, $A \in \mathcal{R}^{p \times n}$, and $b \in \mathcal{R}^p$ are problem data and $x \in \mathcal{R}^{n}$ is the optimization variable. The inequality constraint $Gx \leq h$ is elementwise. **Why quadratic programming?** Quadratic programs are convex optimization problems that generalize both least-squares and linear programming.They can be solved efficiently and reliably, even in real-time. **An example from finance.** A simple example of a quadratic program arises in finance. Suppose we have $n$ different stocks, an estimate $r \in \mathcal{R}^n$ of the expected return on each stock, and an estimate $\Sigma \in \mathcal{S}^{n}_+$ of the covariance of the returns. Then we solve the optimization problem \[ \begin{array}{ll} \text{minimize} & (1/2)x^T\Sigma x - r^Tx\\ \text{subject to} & x \geq 0 \\ & \mathbf{1}^Tx = 1, \end{array} \] to find a nonnegative portfolio allocation $x \in \mathcal{R}^n_+$ that optimally balances expected return and variance of return. When we solve a quadratic program, in addition to a solution $x^\star$, we obtain a dual solution $\lambda^\star$ corresponding to the inequality constraints. A positive entry $\lambda^\star_i$ indicates that the constraint $g_i^Tx \leq h_i$ holds with equality for $x^\star$ and suggests that changing $h_i$ would change the optimal value. """ ) return @app.cell(hide_code=True) def _(mo): mo.md( r""" ## Example In this example, we use CVXPY to construct and solve a quadratic program. """ ) return @app.cell def _(): import cvxpy as cp import numpy as np return cp, np @app.cell(hide_code=True) def _(mo): mo.md("""First we generate synthetic data. In this problem, we don't include equality constraints, only inequality.""") return @app.cell def _(np): m = 4 n = 2 np.random.seed(1) q = np.random.randn(n) G = np.random.randn(m, n) h = G @ np.random.randn(n) return G, h, m, n, q @app.cell(hide_code=True) def _(mo, np): import wigglystuff P_widget = mo.ui.anywidget( wigglystuff.Matrix(np.array([[4.0, -1.4], [-1.4, 4]]), step=0.1) ) mo.md( f""" The quadratic form $P$ is equal to the symmetrized version of this matrix: {P_widget.center()} """ ) return P_widget, wigglystuff @app.cell def _(P_widget, np): P = 0.5 * (np.array(P_widget.matrix) + np.array(P_widget.matrix).T) return (P,) @app.cell(hide_code=True) def _(mo): mo.md(r"""Next, we specify the problem. Notice that we use the `quad_form` function from CVXPY to create the quadratic form $x^TPx$.""") return @app.cell def _(G, P, cp, h, n, q): x = cp.Variable(n) problem = cp.Problem( cp.Minimize((1 / 2) * cp.quad_form(x, P) + q.T @ x), [G @ x <= h], ) _ = problem.solve() return problem, x @app.cell(hide_code=True) def _(mo, problem, x): mo.md( f""" The optimal value is {problem.value:.04f}. A solution $x$ is {mo.as_html(list(x.value))} A dual solution is is {mo.as_html(list(problem.constraints[0].dual_value))} """ ) return @app.cell def _(G, P, h, plot_contours, q, x): plot_contours(P, G, h, q, x.value) return @app.cell(hide_code=True) def _(mo): mo.md( r""" In this plot, the gray shaded region is the feasible region (points satisfying the inequality), and the ellipses are level curves of the quadratic form. **🌊 Try it!** Try changing the entries of $P$ above with your mouse. How do the level curves and the optimal value of $x$ change? Can you explain what you see? """ ) return @app.cell(hide_code=True) def _(P, mo): mo.md( rf""" The above contour lines were generated with \[ P= \begin{{bmatrix}} {P[0, 0]:.01f} & {P[0, 1]:.01f} \\ {P[1, 0]:.01f} & {P[1, 1]:.01f} \\ \end{{bmatrix}} \] """ ) return @app.cell(hide_code=True) def _(np): def plot_contours(P, G, h, q, x_star): import matplotlib.pyplot as plt # Create a grid of x and y values. x = np.linspace(-5, 5, 400) y = np.linspace(-5, 5, 400) X, Y = np.meshgrid(x, y) # Compute the quadratic form Q(x, y) = a*x^2 + 2*b*x*y + c*y^2. # Here, a = P[0,0], b = P[0,1] (and P[1,0]), c = P[1,1] Z = ( 0.5 * (P[0, 0] * X**2 + 2 * P[0, 1] * X * Y + P[1, 1] * Y**2) + q[0] * X + q[1] * Y ) # --- Evaluate the constraints on the grid --- # We stack X and Y to get a list of (x,y) points. points = np.vstack([X.ravel(), Y.ravel()]).T # Start with all points feasible feasible = np.ones(points.shape[0], dtype=bool) # Apply the inequality constraints Gx <= h. # Each row of G and corresponding h defines a condition. for i in range(G.shape[0]): # For a given point x, the condition is: G[i,0]*x + G[i,1]*y <= h[i] feasible &= points.dot(G[i]) <= h[i] + 1e-8 # small tolerance # Reshape the boolean mask back to grid shape. feasible_grid = feasible.reshape(X.shape) # --- Plot the feasible region and contour lines--- plt.figure(figsize=(8, 6)) # Use contourf to fill the region where feasible_grid is True. # We define two levels, so that points that are True (feasible) get one # color. plt.contourf( X, Y, feasible_grid, levels=[-0.5, 0.5, 1.5], colors=["white", "gray"], alpha=0.5, ) contours = plt.contour(X, Y, Z, levels=10, cmap="viridis") plt.clabel(contours, inline=True, fontsize=8) plt.title("Feasible region and level curves") plt.xlabel("$x_1$") plt.ylabel("$y_2$") # plt.colorbar(contours, label='Q(x, y)') ax = plt.gca() # Optionally, mark and label the point x_star. ax.plot(x_star[0], x_star[1], "ko", markersize=5) ax.text( x_star[0], x_star[1], r"$\mathbf{x}^\star$", color="black", fontsize=12, verticalalignment="bottom", horizontalalignment="right", ) return plt.gca() return (plot_contours,) if __name__ == "__main__": app.run()