# /// script # requires-python = ">=3.13" # dependencies = [ # "cvxpy==1.6.0", # "marimo", # "matplotlib==3.10.0", # "numpy==2.2.2", # "scipy==1.15.1", # "wigglystuff==0.1.9", # ] # /// import marimo __generated_with = "0.11.2" app = marimo.App() @app.cell def _(): import marimo as mo return (mo,) @app.cell(hide_code=True) def _(mo): mo.md(r"""# Portfolio optimization""") return @app.cell(hide_code=True) def _(mo): mo.md( r""" In this example we show how to use CVXPY to design a financial portfolio; this is called _portfolio optimization_. In portfolio optimization we have some amount of money to invest in any of $n$ different assets. We choose what fraction $w_i$ of our money to invest in each asset $i$, $i=1, \ldots, n$. The goal is to maximize return of the portfolio while minimizing risk. """ ) return @app.cell(hide_code=True) def _(mo): mo.md( r""" ## Asset returns and risk We will only model investments held for one period. The initial prices are $p_i > 0$. The end of period prices are $p_i^+ >0$. The asset (fractional) returns are $r_i = (p_i^+-p_i)/p_i$. The portfolio (fractional) return is $R = r^Tw$. A common model is that $r$ is a random variable with mean ${\bf E}r = \mu$ and covariance ${\bf E{(r-\mu)(r-\mu)^T}} = \Sigma$. It follows that $R$ is a random variable with ${\bf E}R = \mu^T w$ and ${\bf var}(R) = w^T\Sigma w$. In real-world applications, $\mu$ and $\Sigma$ are estimated from data and models, and $w$ is chosen using a library like CVXPY. ${\bf E}R$ is the (mean) *return* of the portfolio. ${\bf var}(R)$ is the *risk* of the portfolio. Portfolio optimization has two competing objectives: high return and low risk. """ ) return @app.cell(hide_code=True) def _(mo): mo.md( r""" ## Classical (Markowitz) portfolio optimization Classical (Markowitz) portfolio optimization solves the optimization problem """ ) return @app.cell(hide_code=True) def _(mo): mo.md( r""" $$ \begin{array}{ll} \text{maximize} & \mu^T w - \gamma w^T\Sigma w\\ \text{subject to} & {\bf 1}^T w = 1, w \geq 0, \end{array} $$ """ ) return @app.cell(hide_code=True) def _(mo): mo.md( r""" where $w \in {\bf R}^n$ is the optimization variable and $\gamma >0$ is a constant called the *risk aversion parameter*. The constraint $\mathbf{1}^Tw = 1$ says the portfolio weight vector must sum to 1, and $w \geq 0$ says that we can't invest a negative amount into any asset. The objective $\mu^Tw - \gamma w^T\Sigma w$ is the *risk-adjusted return*. Varying $\gamma$ gives the optimal *risk-return trade-off*. We can get the same risk-return trade-off by fixing return and minimizing risk. """ ) return @app.cell(hide_code=True) def _(mo): mo.md( r""" ## Example In the following code we compute and plot the optimal risk-return trade-off for $10$ assets. First we generate random problem data $\mu$ and $\Sigma$. """ ) return @app.cell def _(): import numpy as np return (np,) @app.cell(hide_code=True) def _(mo, np): import wigglystuff mu_widget = mo.ui.anywidget( wigglystuff.Matrix( np.array( [ [1.6], [0.6], [0.5], [1.1], [0.9], [2.3], [1.7], [0.7], [0.9], [0.3], ] ) ) ) mo.md( rf""" The value of $\mu$ is {mu_widget.center()} _Try changing the entries of $\mu$ and see how the plots below change._ """ ) return mu_widget, wigglystuff @app.cell def _(mu_widget, np): np.random.seed(1) n = 10 mu = np.array(mu_widget.matrix) Sigma = np.random.randn(n, n) Sigma = Sigma.T.dot(Sigma) return Sigma, mu, n @app.cell(hide_code=True) def _(mo): mo.md("""Next, we solve the problem for 100 different values of $\gamma$""") return @app.cell def _(Sigma, mu, n): import cvxpy as cp w = cp.Variable(n) gamma = cp.Parameter(nonneg=True) ret = mu.T @ w risk = cp.quad_form(w, Sigma) prob = cp.Problem(cp.Maximize(ret - gamma * risk), [cp.sum(w) == 1, w >= 0]) return cp, gamma, prob, ret, risk, w @app.cell def _(cp, gamma, np, prob, ret, risk): _SAMPLES = 100 risk_data = np.zeros(_SAMPLES) ret_data = np.zeros(_SAMPLES) gamma_vals = np.logspace(-2, 3, num=_SAMPLES) for _i in range(_SAMPLES): gamma.value = gamma_vals[_i] prob.solve() risk_data[_i] = cp.sqrt(risk).value ret_data[_i] = ret.value return gamma_vals, ret_data, risk_data @app.cell(hide_code=True) def _(mo): mo.md("""Plotted below are the risk return tradeoffs for two values of $\gamma$ (blue squares), and the risk return tradeoffs for investing fully in each asset (red circles)""") return @app.cell(hide_code=True) def _(Sigma, cp, gamma_vals, mu, n, ret_data, risk_data): import matplotlib.pyplot as plt markers_on = [29, 40] fig = plt.figure() ax = fig.add_subplot(111) plt.plot(risk_data, ret_data, "g-") for marker in markers_on: plt.plot(risk_data[marker], ret_data[marker], "bs") ax.annotate( "$\\gamma = %.2f$" % gamma_vals[marker], xy=(risk_data[marker] + 0.08, ret_data[marker] - 0.03), ) for _i in range(n): plt.plot(cp.sqrt(Sigma[_i, _i]).value, mu[_i], "ro") plt.xlabel("Standard deviation") plt.ylabel("Return") plt.show() return ax, fig, marker, markers_on, plt @app.cell(hide_code=True) def _(mo): mo.md( r""" We plot below the return distributions for the two risk aversion values marked on the trade-off curve. Notice that the probability of a loss is near 0 for the low risk value and far above 0 for the high risk value. """ ) return @app.cell(hide_code=True) def _(gamma, gamma_vals, markers_on, np, plt, prob, ret, risk): import scipy.stats as spstats plt.figure() for midx, _idx in enumerate(markers_on): gamma.value = gamma_vals[_idx] prob.solve() x = np.linspace(-2, 5, 1000) plt.plot( x, spstats.norm.pdf(x, ret.value, risk.value), label="$\\gamma = %.2f$" % gamma.value, ) plt.xlabel("Return") plt.ylabel("Density") plt.legend(loc="upper right") plt.show() return midx, spstats, x if __name__ == "__main__": app.run()