# /// script # requires-python = ">=3.10" # dependencies = [ # "marimo", # "matplotlib==3.10.0", # "numpy==2.2.3", # "scipy==1.15.2", # ] # /// import marimo __generated_with = "0.11.10" app = marimo.App(width="medium", app_title="Random Variables") @app.cell def _(): import marimo as mo return (mo,) @app.cell def _(): import matplotlib.pyplot as plt import numpy as np from scipy import stats return np, plt, stats @app.cell(hide_code=True) def _(mo): mo.md( r""" # Random Variables _This notebook is a computational companion to ["Probability for Computer Scientists"](https://chrispiech.github.io/probabilityForComputerScientists/en/part2/rvs/), by Stanford professor Chris Piech._ Random variables are functions that map outcomes from a probability space to numbers. This mathematical abstraction allows us to: - Work with numerical outcomes in probability - Calculate expected values and variances - Model real-world phenomena quantitatively """ ) return @app.cell(hide_code=True) def _(mo): mo.md( r""" ## Types of Random Variables ### Discrete Random Variables - Take on countable values (finite or infinite) - Described by a probability mass function (PMF) - Example: Number of heads in 3 coin flips ### Continuous Random Variables - Take on uncountable values in an interval - Described by a probability density function (PDF) - Example: Height of a randomly selected person """ ) return @app.cell(hide_code=True) def _(mo): mo.md( r""" ## Properties of Random Variables Each random variable has several key properties: | Property | Description | Example | |----------|-------------|---------| | Meaning | Semantic description | Number of successes in n trials | | Symbol | Notation used | $X$, $Y$, $Z$ | | Support/Range | Possible values | $\{0,1,2,...,n\}$ for binomial | | Distribution | PMF or PDF | $p_X(x)$ or $f_X(x)$ | | Expectation | Weighted average | $E[X]$ | | Variance | Measure of spread | $\text{Var}(X)$ | | Standard Deviation | Square root of variance | $\sigma_X$ | | Mode | Most likely value | argmax$_x$ $p_X(x)$ | Additional properties include: - [Entropy](https://en.wikipedia.org/wiki/Entropy_(information_theory)) (measure of uncertainty) - [Median](https://en.wikipedia.org/wiki/Median) (middle value) - [Skewness](https://en.wikipedia.org/wiki/Skewness) (asymmetry measure) - [Kurtosis](https://en.wikipedia.org/wiki/Kurtosis) (tail heaviness measure) """ ) return @app.cell(hide_code=True) def _(mo): mo.md( r""" ## Probability Mass Functions (PMF) For discrete random variables, the PMF $p_X(x)$ gives the probability that $X$ equals $x$: $p_X(x) = P(X = x)$ Properties of a PMF: 1. $p_X(x) \geq 0$ for all $x$ 2. $\sum_x p_X(x) = 1$ Let's implement a PMF for rolling a fair die: """ ) return @app.cell def _(np, plt): def die_pmf(x): if x in [1, 2, 3, 4, 5, 6]: return 1 / 6 return 0 # Plot the PMF _x = np.arange(1, 7) probabilities = [die_pmf(i) for i in _x] plt.figure(figsize=(8, 2)) plt.bar(_x, probabilities) plt.title("PMF of Rolling a Fair Die") plt.xlabel("Outcome") plt.ylabel("Probability") plt.grid(True, alpha=0.3) plt.gca() return die_pmf, probabilities @app.cell(hide_code=True) def _(mo): mo.md( r""" ## Probability Density Functions (PDF) For continuous random variables, we use a PDF $f_X(x)$. The probability of $X$ falling in an interval $[a,b]$ is: $P(a \leq X \leq b) = \int_a^b f_X(x)dx$ Properties of a PDF: 1. $f_X(x) \geq 0$ for all $x$ 2. $\int_{-\infty}^{\infty} f_X(x)dx = 1$ Let's look at the normal distribution, a common continuous random variable: """ ) return @app.cell def _(np, plt, stats): # Generate points for plotting _x = np.linspace(-4, 4, 100) _pdf = stats.norm.pdf(_x, loc=0, scale=1) plt.figure(figsize=(8, 4)) plt.plot(_x, _pdf, "b-", label="PDF") plt.fill_between(_x, _pdf, where=(_x >= -1) & (_x <= 1), alpha=0.3) plt.title("Standard Normal Distribution") plt.xlabel("x") plt.ylabel("Density") plt.grid(True, alpha=0.3) plt.legend() return @app.cell(hide_code=True) def _(mo): mo.md( r""" ## Expected Value The expected value $E[X]$ is the long-run average of a random variable. For discrete random variables: $E[X] = \sum_x x \cdot p_X(x)$ For continuous random variables: $E[X] = \int_{-\infty}^{\infty} x \cdot f_X(x)dx$ Properties: 1. $E[aX + b] = aE[X] + b$ 2. $E[X + Y] = E[X] + E[Y]$ """ ) return @app.cell def _(np): def expected_value_discrete(x_values, probabilities): return sum(x * p for x, p in zip(x_values, probabilities)) # Example: Expected value of a fair die roll die_values = np.arange(1, 7) die_probs = np.ones(6) / 6 E_X = expected_value_discrete(die_values, die_probs) return E_X, die_probs, die_values, expected_value_discrete @app.cell def _(E_X): E_X return @app.cell(hide_code=True) def _(mo): mo.md( r""" ## Variance The variance $\text{Var}(X)$ measures the spread of a random variable around its mean: $\text{Var}(X) = E[(X - E[X])^2]$ This can be computed as: $\text{Var}(X) = E[X^2] - (E[X])^2$ Properties: 1. $\text{Var}(aX) = a^2Var(X)$ 2. $\text{Var}(X + b) = Var(X)$ """ ) return @app.cell def _(E_X, die_probs, die_values, np): def variance_discrete(x_values, probabilities, expected_value): squared_diff = [(x - expected_value) ** 2 for x in x_values] return sum(d * p for d, p in zip(squared_diff, probabilities)) # Example: Variance of a fair die roll var_X = variance_discrete(die_values, die_probs, E_X) std_X = np.sqrt(var_X) return std_X, var_X, variance_discrete @app.cell(hide_code=True) def _(mo, std_X, var_X): mo.md( f""" ### Examples of Variance Calculation For our fair die example: - Variance: {var_X:.2f} - Standard Deviation: {std_X:.2f} This means that on average, a roll deviates from the mean (3.5) by about {std_X:.2f} units. Let's look another example for a fair coin: """ ) return @app.cell def _(variance_discrete): # Fair coin (X = 0 or 1) coin_values = [0, 1] coin_probs = [0.5, 0.5] coin_mean = sum(x * p for x, p in zip(coin_values, coin_probs)) coin_var = variance_discrete(coin_values, coin_probs, coin_mean) return coin_mean, coin_probs, coin_values, coin_var @app.cell def _(np, stats, variance_discrete): # Standard normal (discretized for example) normal_values = np.linspace(-3, 3, 100) normal_probs = stats.norm.pdf(normal_values) normal_probs = normal_probs / sum(normal_probs) # normalize normal_mean = 0 normal_var = variance_discrete(normal_values, normal_probs, normal_mean) return normal_mean, normal_probs, normal_values, normal_var @app.cell def _(np, variance_discrete): # Uniform on [0,1] (discretized for example) uniform_values = np.linspace(0, 1, 100) uniform_probs = np.ones_like(uniform_values) / len(uniform_values) uniform_mean = 0.5 uniform_var = variance_discrete(uniform_values, uniform_probs, uniform_mean) return uniform_mean, uniform_probs, uniform_values, uniform_var @app.cell(hide_code=True) def _(coin_var, mo, normal_var, uniform_var): mo.md( rf""" Let's look at some calculated variances: - Fair coin (X = 0 or 1): $\text{{Var}}(X) = {coin_var:.4f}$ - Standard normal distribution (discretized): $\text{{Var(X)}} ≈ {normal_var:.4f}$ - Uniform distribution on $[0,1]$ (discretized): $\text{{Var(X)}} ≈ {uniform_var:.4f}$ """ ) return @app.cell(hide_code=True) def _(mo): mo.md( r""" ## Common Distributions 1. Bernoulli Distribution - Models a single success/failure experiment - $P(X = 1) = p$, $P(X = 0) = 1-p$ - $E[X] = p$, $\text{Var}(X) = p(1-p)$ 2. Binomial Distribution - Models number of successes in $n$ independent trials - $P(X = k) = \binom{n}{k}p^k(1-p)^{n-k}$ - $E[X] = np$, $\text{Var}(X) = np(1-p)$ 3. Normal Distribution - Bell-shaped curve defined by mean $\mu$ and variance $\sigma^2$ - PDF: $f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ - $E[X] = \mu$, $\text{Var}(X) = \sigma^2$ """ ) return @app.cell(hide_code=True) def _(mo): mo.md( r""" ### Example: Comparing Discrete and Continuous Distributions This example shows the relationship between a Binomial distribution (discrete) and its Normal approximation (continuous). The parameters control both distributions: - **Number of Trials**: Controls the range of possible values and the shape's width - **Success Probability**: Affects the distribution's center and skewness """ ) return @app.cell def _(mo, n_trials, p_success): mo.hstack([n_trials, p_success], justify="space-around") return @app.cell(hide_code=True) def _(mo): # Distribution parameters n_trials = mo.ui.slider(1, 20, value=10, label="Number of Trials") p_success = mo.ui.slider(0, 1, value=0.5, step=0.05, label="Success Probability") return n_trials, p_success @app.cell(hide_code=True) def _(n_trials, np, p_success, plt, stats): fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 3)) # Discrete: Binomial PMF k = np.arange(0, n_trials.value + 1) pmf = stats.binom.pmf(k, n_trials.value, p_success.value) ax1.bar(k, pmf, alpha=0.8, color="#1f77b4", label="PMF") ax1.set_title(f"Binomial PMF (n={n_trials.value}, p={p_success.value})") ax1.set_xlabel("Number of Successes") ax1.set_ylabel("Probability") ax1.grid(True, alpha=0.3) # Continuous: Normal PDF approx. mu = n_trials.value * p_success.value sigma = np.sqrt(n_trials.value * p_success.value * (1 - p_success.value)) x = np.linspace(max(0, mu - 4 * sigma), min(n_trials.value, mu + 4 * sigma), 100) pdf = stats.norm.pdf(x, mu, sigma) ax2.plot(x, pdf, "r-", linewidth=2, label="PDF") ax2.fill_between(x, pdf, alpha=0.3, color="red") ax2.set_title(f"Normal PDF (μ={mu:.1f}, σ={sigma:.1f})") ax2.set_xlabel("Continuous Approximation") ax2.set_ylabel("Density") ax2.grid(True, alpha=0.3) # Set consistent x-axis limits for better comparison ax1.set_xlim(-0.5, n_trials.value + 0.5) ax2.set_xlim(-0.5, n_trials.value + 0.5) plt.tight_layout() plt.gca() return ax1, ax2, fig, k, mu, pdf, pmf, sigma, x @app.cell(hide_code=True) def _(mo, n_trials, np, p_success): mo.md(f""" **Current Distribution Properties:** - Mean (μ) = {n_trials.value * p_success.value:.2f} - Standard Deviation (σ) = {np.sqrt(n_trials.value * p_success.value * (1 - p_success.value)):.2f} Notice how the Normal distribution (right) approximates the Binomial distribution (left) better when: 1. The number of trials is larger 2. The success probability is closer to 0.5 """) return @app.cell(hide_code=True) def _(mo): mo.md( r""" ## Practice Problems ### Problem 1: Discrete Random Variable Let $X$ be the sum when rolling two fair dice. Find: 1. The support of $X$ 2. The PMF $p_X(x)$ 3. $E[X]$ and $\text{Var}(X)$
Solution Let's solve this step by step: ```python def two_dice_pmf(x): outcomes = [(i,j) for i in range(1,7) for j in range(1,7)] favorable = [pair for pair in outcomes if sum(pair) == x] return len(favorable)/36 # Support: {2,3,...,12} # E[X] = 7 # Var(X) = 5.83 ```
### Problem 2: Continuous Random Variable For a uniform random variable on $[0,1]$, verify that: 1. The PDF integrates to 1 2. $E[X] = 1/2$ 3. $\text{Var}(X) = 1/12$ Try solving this yourself first, then check the solution below. """ ) return @app.cell def _(): # DIY return @app.cell(hide_code=True) def _(mktext, mo): mo.accordion({"Solution": mktext}, lazy=True) return @app.cell(hide_code=True) def _(mo): mktext = mo.md( r""" Let's solve each part: 1. **PDF integrates to 1**: $\int_0^1 1 \, dx = [x]_0^1 = 1 - 0 = 1$ 2. **Expected Value**: $E[X] = \int_0^1 x \cdot 1 \, dx = [\frac{x^2}{2}]_0^1 = \frac{1}{2} - 0 = \frac{1}{2}$ 3. **Variance**: $\text{Var}(X) = E[X^2] - (E[X])^2$ First calculate $E[X^2]$: $E[X^2] = \int_0^1 x^2 \cdot 1 \, dx = [\frac{x^3}{3}]_0^1 = \frac{1}{3}$ Then: $\text{Var}(X) = \frac{1}{3} - (\frac{1}{2})^2 = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}$ """ ) return (mktext,) @app.cell(hide_code=True) def _(mo): mo.md( r""" ## 🤔 Test Your Understanding Pick which of these statements about random variables you think are correct:
The probability density function can be greater than 1 ✅ Correct! Unlike PMFs, PDFs can exceed 1 as long as the total area equals 1.
The expected value of a random variable must equal one of its possible values ❌ Incorrect! For example, the expected value of a fair die is 3.5, which is not a possible outcome.
Adding a constant to a random variable changes its variance ❌ Incorrect! Adding a constant shifts the distribution but doesn't affect its spread.
""" ) return @app.cell(hide_code=True) def _(mo): mo.md( """ ## Summary You've learned: - The difference between discrete and continuous random variables - How PMFs and PDFs describe probability distributions - Methods for calculating expected values and variances - Properties of common probability distributions In the next lesson, we'll explore Probability Mass Functions in detail, focusing on their properties and applications. """ ) return if __name__ == "__main__": app.run()