File size: 9,193 Bytes
697c77c 4545835 697c77c 4545835 5be1c1d 4545835 697c77c 4545835 697c77c 4545835 1505be8 4545835 d86024f 1505be8 4545835 697c77c 4545835 697c77c 4545835 697c77c 4545835 697c77c 4545835 697c77c 4545835 697c77c 4545835 697c77c 4545835 697c77c 4545835 697c77c 4545835 697c77c 4545835 697c77c 4545835 1505be8 5be1c1d 1505be8 5be1c1d 1505be8 5be1c1d 1505be8 4545835 d86024f 5be1c1d 697c77c 5be1c1d 697c77c d86024f 697c77c 4545835 697c77c 5be1c1d 697c77c d86024f 697c77c 4545835 697c77c 4545835 697c77c 5be1c1d 4545835 697c77c 4545835 697c77c 4545835 697c77c 1505be8 697c77c 4545835 697c77c 4545835 697c77c 4545835 5be1c1d 4545835 697c77c 5be1c1d 697c77c 1505be8 d86024f 697c77c 5be1c1d 697c77c d86024f 4545835 697c77c 4545835 697c77c 4545835 697c77c 4545835 697c77c 4545835 697c77c 4545835 697c77c 4545835 697c77c 4545835 697c77c 4545835 697c77c 4545835 697c77c 4545835 697c77c 4545835 697c77c 4545835 697c77c 5be1c1d d86024f 4545835 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
# /// script
# requires-python = ">=3.12"
# dependencies = [
# "altair==5.4.1",
# "duckdb==1.1.3",
# "hdbscan==0.8.39",
# "marimo",
# "numba==0.60.0",
# "numpy==2.0.2",
# "polars==1.17.1",
# "pyarrow==18.0.0",
# "scikit-learn==1.5.2",
# "umap-learn==0.5.7",
# ]
# ///
import marimo
__generated_with = "0.9.33"
app = marimo.App(width="medium")
@app.cell
def __():
import marimo as mo
return (mo,)
@app.cell(hide_code=True)
def __(mo):
mo.md(
r"""
# Visualizing text embeddings using MotherDuck and marimo
> Text embeddings have become a crucial tool in AI/ML applications, allowing us to convert text into numerical vectors that capture semantic meaning. These vectors are often used for semantic search, but in ~~this blog post~~ marimo app, we'll explore how to visualize and explore text embeddings interactively using MotherDuck and marimo.
This app lets you visualize and explore text embeddings from Hacker News posts about **databases**. You can:
- See how different posts cluster together based on semantic similarity
- Adjust clustering parameters in real-time
- Explore relationships between posts through an interactive visualization
!!! Info
**This marimo application based on [this blog](https://motherduck.com/blog/MotherDuck-Visualize-Embeddings-Marimo/).** We recommend looking through the blog first.
"""
)
return
@app.cell(hide_code=True)
def __(mo):
mo.md(
"""
## Connecting to MotherDuck and Loading Sample Data
This data has already been pre-computed, but you can fork and edit this notebook to run with your own data!
```sql
ATTACH IF NOT EXISTS 'md:my_db'
SELECT * FROM my_db.demo_with_embeddings;
```
"""
)
return
@app.cell
def __(mo):
_df = mo.sql(
"""
ATTACH IF NOT EXISTS 'md:my_db'
"""
)
return (my_db,)
@app.cell
def __(mo):
_df = mo.sql(
"""
-- Commented out as we have already run the embeddings for showcasing purposes.
-- CREATE OR REPLACE TABLE my_db.demo_embedding_data AS
-- SELECT DISTINCT ON (url) * -- Remove duplicate URLs
-- FROM 'hf://datasets/julien040/hacker-news-posts/story.parquet'
-- WHERE contains(title, 'database') -- Filter for posts about databases
-- AND score > 5 -- Only include popular posts
-- LIMIT 50000;
"""
)
return
@app.cell
def __(demo_with_embeddings, mo, my_db):
embeddings = mo.sql(
f"""
-- Commented out as we have already run the embeddings for showcasing purposes.
-- CREATE TABLE my_db.demo_with_embeddings AS
-- SELECT *, embedding(title) as text_embedding
-- FROM my_db.demo_embedding_data
-- LIMIT 1500;
SELECT title, text_embedding, * EXCLUDE(id, title, text_embedding, comments) FROM my_db.demo_with_embeddings;
"""
)
return (embeddings,)
@app.cell
def __(mo):
mo.md(
"""
## Making Sense of High-Dimensional Data
Text embeddings typically have hundreds of dimensions (512 in our case), making them impossible to visualize directly. We'll use two techniques to make them interpretable:
1. **Dimensionality Reduction**: Convert our 512D vectors into 2D points while preserving relationships between texts
2. **Clustering**: Group similar texts together into clusters
"""
)
return
@app.cell(hide_code=True)
def __(cluster_points, mo, reduce_dimensions):
def md_help(cls):
import inspect
return f"def {cls.__name__} {inspect.signature(cls)}:\n {cls.__doc__}"
mo.accordion(
{
"`reduce_dimensions`": md_help(reduce_dimensions),
"`cluster_points`": md_help(cluster_points),
}
)
return (md_help,)
@app.cell
def __(np):
def reduce_dimensions(np_array, metric="cosine"):
"""
Reduce the dimensions of embeddings to a 2D space.
Here we use the UMAP algorithm. UMAP preserves both local and
global structure of the high-dimensional data.
"""
import umap
reducer = umap.UMAP(
n_components=2, # Reduce to 2D for visualization
metric=metric, # Default: cosine similarity for text embeddings
n_neighbors=80, # Higher values = more global structure
min_dist=0.1, # Controls how tightly points cluster
)
return reducer.fit_transform(np_array)
def cluster_points(np_array, min_cluster_size=4, max_cluster_size=50):
"""
Cluster the embeddings.
Here we use the HDBSCAN algorithm. We first reduce dimensionality to 50D with
PCA to speed up clustering, while still preserving most of the important information.
"""
import hdbscan
from sklearn.decomposition import PCA
pca = PCA(n_components=50)
np_array = pca.fit_transform(np_array)
hdb = hdbscan.HDBSCAN(
min_samples=3, # Minimum points to form dense region
min_cluster_size=min_cluster_size, # Minimum size of a cluster
max_cluster_size=max_cluster_size, # Maximum size of a cluster
).fit(np_array)
return np.where(
hdb.labels_ == -1, "outlier", "cluster_" + hdb.labels_.astype(str)
)
return cluster_points, reduce_dimensions
@app.cell
def __(mo):
cluster_size_slider = mo.ui.range_slider(
start=1,
stop=80,
value=(4, 50),
step=1,
show_value=True,
debounce=True,
label="Cluster Size (min, max)",
)
metric_dropdown = mo.ui.dropdown(
["cosine", "euclidean", "manhattan"],
value="cosine",
label="Distance Metric",
)
return cluster_size_slider, metric_dropdown
@app.cell
def __(mo):
mo.md(
r"""
## Processing the Data
Now we'll transform our high-dimensional embeddings into something we can visualize, using `reduce_dimensions` and `cluster_points`. More details on this step [in the blog](https://motherduck.com/blog/MotherDuck-Visualize-Embeddings-Marimo/).
"""
)
return
@app.cell
def __(
cluster_points,
cluster_size_slider,
embeddings,
metric_dropdown,
mo,
reduce_dimensions,
):
with mo.status.spinner("Clustering points...") as _s:
import numba
embeddings_array = embeddings["text_embedding"].to_numpy()
hdb_labels = cluster_points(
embeddings_array,
min_cluster_size=cluster_size_slider.value[0],
max_cluster_size=cluster_size_slider.value[1],
)
_s.update("Reducing dimensionality...")
embeddings_2d = reduce_dimensions(
embeddings_array, metric=metric_dropdown.value
)
mo.show_code()
return embeddings_2d, embeddings_array, hdb_labels, numba
@app.cell
def __(cluster_size_slider, metric_dropdown, mo):
mo.hstack([cluster_size_slider, metric_dropdown])
return
@app.cell
def __(embeddings, embeddings_2d, hdb_labels, pl):
data = embeddings.lazy() # Lazy evaluation for performance
data = data.with_columns(
text_embedding_2d_1=embeddings_2d[:, 0],
text_embedding_2d_2=embeddings_2d[:, 1],
cluster=hdb_labels,
)
data = data.unique(subset=["url"], maintain_order=True) # Remove duplicate URLs
data = data.drop(["text_embedding"]) # Drop unused columns
data = data.filter(pl.col("cluster") != "outlier") # Filter out outliers
data = data.collect() # Collect the data
return (data,)
@app.cell
def __(data):
data.select(
"title", "cluster", "text_embedding_2d_1", "text_embedding_2d_2", "score"
)
return
@app.cell
def __(alt, data, mo):
chart = (
alt.Chart(data)
.mark_point()
.encode(
x=alt.X("text_embedding_2d_1").scale(zero=False),
y=alt.Y("text_embedding_2d_2").scale(zero=False),
color="cluster",
tooltip=["title", "score", "cluster"],
)
)
chart = mo.ui.altair_chart(chart)
mo.show_code()
return (chart,)
@app.cell(hide_code=True)
def __(mo):
mo.md(
r"""
## Creating an Interactive Visualization
We will plot the 2D representation of the text embeddings, colored by the clusters identified by HDBSCAN. You can select points on the chart to explore the text embeddings further. 👇
"""
)
return
@app.cell
def __(chart):
chart
return
@app.cell
def __(chart):
chart.value
return
@app.cell
def __(mo):
# Empty space for the table
mo.Html("<div style='height: 400px;'></div>")
return
@app.cell
def __():
# Data manipulation and database connections
import polars as pl
import duckdb
import pyarrow
# Visualization
import altair as alt
# ML tools for dimensionality reduction and clustering
import numpy as np
return alt, duckdb, np, pl, pyarrow
if __name__ == "__main__":
app.run()
|