|
import spaces |
|
import os |
|
import random |
|
import argparse |
|
|
|
import torch |
|
import gradio as gr |
|
import numpy as np |
|
|
|
import ChatTTS |
|
|
|
print("loading ChatTTS model...") |
|
chat = ChatTTS.Chat() |
|
chat.load_models() |
|
|
|
|
|
|
|
def generate_seed(): |
|
new_seed = random.randint(1, 100000000) |
|
return { |
|
"__type__": "update", |
|
"value": new_seed |
|
} |
|
|
|
@spaces.GPU |
|
def generate_audio(text, temperature, top_P, top_K, audio_seed_input, text_seed_input, refine_text_flag): |
|
|
|
torch.manual_seed(audio_seed_input) |
|
rand_spk = torch.randn(768) |
|
params_infer_code = { |
|
'spk_emb': rand_spk, |
|
'temperature': temperature, |
|
'top_P': top_P, |
|
'top_K': top_K, |
|
} |
|
params_refine_text = {'prompt': '[oral_2][laugh_0][break_6]'} |
|
|
|
torch.manual_seed(text_seed_input) |
|
|
|
if refine_text_flag: |
|
text = chat.infer(text, |
|
skip_refine_text=False, |
|
refine_text_only=True, |
|
params_refine_text=params_refine_text, |
|
params_infer_code=params_infer_code |
|
) |
|
|
|
wav = chat.infer(text, |
|
skip_refine_text=True, |
|
params_refine_text=params_refine_text, |
|
params_infer_code=params_infer_code |
|
) |
|
|
|
audio_data = np.array(wav[0]).flatten() |
|
sample_rate = 24000 |
|
text_data = text[0] if isinstance(text, list) else text |
|
|
|
return [(sample_rate, audio_data), text_data] |
|
|
|
|
|
with gr.Blocks() as demo: |
|
|
|
gr.Markdown("# ChatTTS Free") |
|
|
|
default_text = "ChatTTS is a text-to-speech model designed specifically for dialogue scenario such as Large Language Model assistant. It supports both English and Chinese languages. 它支持英文和中文两种语言,生成的语音效果自然、非常逼真、非常牛。" |
|
text_input = gr.Textbox(label="Input Text", lines=4, placeholder="Please Input Text...", value=default_text) |
|
|
|
with gr.Row(): |
|
refine_text_checkbox = gr.Checkbox(label="Refine text", value=True, visible=False) |
|
temperature_slider = gr.Slider(minimum=0.00001, maximum=1.0, step=0.00001, value=0.3, label="Audio temperature", visible=False) |
|
top_p_slider = gr.Slider(minimum=0.1, maximum=0.9, step=0.05, value=0.7, label="top_P", visible=False) |
|
top_k_slider = gr.Slider(minimum=1, maximum=20, step=1, value=20, label="top_K", visible=False) |
|
|
|
with gr.Row(): |
|
audio_seed_input = gr.Number(value=42, label="Audio Seed", visible=False) |
|
generate_audio_seed = gr.Button("\U0001F3B2", visible=False) |
|
text_seed_input = gr.Number(value=42, label="Text Seed", visible=False) |
|
generate_text_seed = gr.Button("\U0001F3B2", visible=False) |
|
|
|
generate_button = gr.Button("Generate") |
|
|
|
text_output = gr.Textbox(label="Output Text", interactive=False) |
|
audio_output = gr.Audio(label="Output Audio",autoplay=True) |
|
|
|
generate_audio_seed.click(generate_seed, |
|
inputs=[], |
|
outputs=audio_seed_input) |
|
|
|
generate_text_seed.click(generate_seed, |
|
inputs=[], |
|
outputs=text_seed_input) |
|
|
|
generate_button.click(generate_audio, |
|
inputs=[text_input, temperature_slider, top_p_slider, top_k_slider, audio_seed_input, text_seed_input, refine_text_checkbox], |
|
outputs=[audio_output, text_output]) |
|
|
|
parser = argparse.ArgumentParser(description='ChatTTS Online') |
|
parser.add_argument('--server_name', type=str, default='0.0.0.0', help='Server name') |
|
parser.add_argument('--server_port', type=int, default=8080, help='Server port') |
|
args = parser.parse_args() |
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
demo.launch(share=True, show_api=False) |