File size: 7,086 Bytes
3861a8e
c515693
 
368e07a
 
5679d30
c515693
368e07a
c515693
 
368e07a
 
 
 
 
 
 
 
7014951
5679d30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7014951
 
 
 
 
 
 
 
 
 
ca1bf30
298f638
3861a8e
ca1bf30
64c9bb8
c515693
7014951
 
 
 
c515693
7014951
c515693
7014951
5b344e4
7014951
c515693
7014951
c515693
7014951
 
 
 
 
5b344e4
7014951
 
c515693
7014951
 
 
 
 
 
c515693
7014951
 
2805912
7014951
298f638
7014951
 
 
3861a8e
7014951
 
 
 
298f638
3861a8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
298f638
c515693
7014951
c515693
7014951
 
c515693
 
 
5b344e4
7014951
 
3861a8e
c515693
ca1bf30
7014951
 
ca1bf30
7014951
c515693
ca1bf30
7014951
 
ca1bf30
7014951
 
3861a8e
 
 
 
 
 
 
 
c515693
7014951
c515693
7014951
ca1bf30
7014951
 
 
 
 
 
 
3861a8e
 
c515693
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import json
import gradio as gr
import openai
import os
import sys
# import markdown

my_api_key = ""    # 在这里输入你的 API 密钥
initial_prompt = "You are a helpful assistant."

if my_api_key == "":
    my_api_key = os.environ.get('my_api_key')

if my_api_key == "empty":
    print("Please give a api key!")
    sys.exit(1)

openai.api_key = my_api_key

def parse_text(text):
    lines = text.split("\n")
    for i,line in enumerate(lines):
        if "```" in line:
            items = line.split('`')
            if items[-1]:
                lines[i] = f'<pre><code class="{items[-1]}">'
            else:
                lines[i] = f'</code></pre>'
        else:
            if i>0:
                line = line.replace("<", "&lt;")
                line = line.replace(">", "&gt;")
                lines[i] = '<br/>'+line.replace(" ", "&nbsp;")
    return "".join(lines)

def get_response(system, context, raw = False):
    response = openai.ChatCompletion.create(
        model="gpt-3.5-turbo",
        messages=[system, *context],
    )
    if raw:
        return response
    else:
        statistics = f'本次对话Tokens用量【{response["usage"]["total_tokens"]} / 4096】 ( 提问+上文 {response["usage"]["prompt_tokens"]},回答 {response["usage"]["completion_tokens"]} )'
        message = response["choices"][0]["message"]["content"]

        message_with_stats = f'{message}\n\n================\n\n{statistics}'
#         message_with_stats = .markdown(message_with_stats)

        return message, parse_text(message_with_stats)

def predict(chatbot, input_sentence, system, context):
    if len(input_sentence) == 0:
        return []
    context.append({"role": "user", "content": f"{input_sentence}"})

    message, message_with_stats = get_response(system, context)

    context.append({"role": "assistant", "content": message})

    chatbot.append((input_sentence, message_with_stats))

    return chatbot, context

def retry(chatbot, system, context):
    if len(context) == 0:
        return [], []
    message, message_with_stats = get_response(system, context[:-1])
    context[-1] = {"role": "assistant", "content": message}

    chatbot[-1] = (context[-2]["content"], message_with_stats)
    return chatbot, context

def delete_last_conversation(chatbot, context):
    if len(context) == 0:
        return [], []
    chatbot = chatbot[:-1]
    context = context[:-2]
    return chatbot, context

def reduce_token(chatbot, system, context):
    context.append({"role": "user", "content": "请帮我总结一下上述对话的内容,实现减少tokens的同时,保证对话的质量。在总结中不要加入这一句话。"})

    response = get_response(system, context, raw=True)

    statistics = f'本次对话Tokens用量【{response["usage"]["completion_tokens"]+12+12+8} / 4096】'
    optmz_str = markdown.markdown( f'好的,我们之前聊了:{response["choices"][0]["message"]["content"]}\n\n================\n\n{statistics}' )
    chatbot.append(("请帮我总结一下上述对话的内容,实现减少tokens的同时,保证对话的质量。", optmz_str))

    context = []
    context.append({"role": "user", "content": "我们之前聊了什么?"})
    context.append({"role": "assistant", "content": f'我们之前聊了:{response["choices"][0]["message"]["content"]}'})
    return chatbot, context

def save_chat_history(filepath, system, context):
    if filepath == "":
        return
    history = {"system": system, "context": context}
    with open(f"{filepath}.json", "w") as f:
        json.dump(history, f)

def load_chat_history(fileobj):
    with open(fileobj.name, "r") as f:
        history = json.load(f)
    context = history["context"]
    chathistory = []
    for i in range(0, len(context), 2):
        chathistory.append((parse_text(context[i]["content"]), parse_text(context[i+1]["content"])))
    return chathistory , history["system"], context, history["system"]["content"]

def get_history_names():
    with open("history.json", "r") as f:
        history = json.load(f)
    return list(history.keys())


def reset_state():
    return [], []

def update_system(new_system_prompt):
    return {"role": "system", "content": new_system_prompt}


with gr.Blocks() as demo:
    chatbot = gr.Chatbot().style(color_map=("#1D51EE", "#585A5B"))
    context = gr.State([])
    systemPrompt = gr.State(update_system(initial_prompt))
    topic = gr.State("未命名对话历史记录")

    with gr.Row():
        with gr.Column(scale=12):
            txt = gr.Textbox(show_label=False, placeholder="在这里输入").style(container=False)
        with gr.Column(min_width=50, scale=1):
            submitBtn = gr.Button("🚀", variant="primary")
    with gr.Row():
        emptyBtn = gr.Button("🧹 新的对话")
        retryBtn = gr.Button("🔄 重新生成")
        delLastBtn = gr.Button("🗑️ 删除上条对话")
        reduceTokenBtn = gr.Button("♻️ 优化Tokens")
    newSystemPrompt = gr.Textbox(show_label=True, placeholder=f"在这里输入新的System Prompt...", label="更改 System prompt").style(container=True)
    systemPromptDisplay = gr.Textbox(show_label=True, value=initial_prompt, interactive=False, label="目前的 System prompt").style(container=True)
    with gr.Accordion(label="保存/加载对话历史记录(在文本框中输入文件名,点击“保存对话”按钮,历史记录文件会被存储到本地)", open=False):
        with gr.Column():
            with gr.Row():
                with gr.Column(scale=6):
                    saveFileName = gr.Textbox(show_label=True, placeholder=f"在这里输入保存的文件名...", label="保存对话", value="对话历史记录").style(container=True)
                with gr.Column(scale=1):
                    saveBtn = gr.Button("💾 保存对话")
                    uploadBtn = gr.UploadButton("📂 读取对话", file_count="single", file_types=["json"])

    txt.submit(predict, [chatbot, txt, systemPrompt, context], [chatbot, context], show_progress=True)
    txt.submit(lambda :"", None, txt)
    submitBtn.click(predict, [chatbot, txt, systemPrompt, context], [chatbot, context], show_progress=True)
    submitBtn.click(lambda :"", None, txt)
    emptyBtn.click(reset_state, outputs=[chatbot, context])
    newSystemPrompt.submit(update_system, newSystemPrompt, systemPrompt)
    newSystemPrompt.submit(lambda x: x, newSystemPrompt, systemPromptDisplay)
    newSystemPrompt.submit(lambda :"", None, newSystemPrompt)
    retryBtn.click(retry, [chatbot, systemPrompt, context], [chatbot, context], show_progress=True)
    delLastBtn.click(delete_last_conversation, [chatbot, context], [chatbot, context], show_progress=True)
    reduceTokenBtn.click(reduce_token, [chatbot, systemPrompt, context], [chatbot, context], show_progress=True)
    uploadBtn.upload(load_chat_history, uploadBtn, [chatbot, systemPrompt, context, systemPromptDisplay], show_progress=True)
    saveBtn.click(save_chat_history, [saveFileName, systemPrompt, context], None, show_progress=True)


demo.launch()