File size: 6,465 Bytes
8fdf34e
49612ba
 
 
 
8fdf34e
 
 
 
 
 
 
49612ba
8fdf34e
 
2c5812c
 
8fdf34e
0a2de58
1d87c8b
 
 
 
 
 
 
 
 
 
 
8fdf34e
 
 
 
 
 
0a2de58
8fdf34e
 
 
 
b741e5b
8fdf34e
 
 
 
b741e5b
8fdf34e
 
 
 
b741e5b
8fdf34e
 
 
b741e5b
 
 
0a2de58
8fdf34e
 
 
b741e5b
 
 
 
 
 
 
 
 
 
8fdf34e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a2de58
8fdf34e
 
 
 
 
03f0627
8fdf34e
 
 
 
 
 
 
 
 
 
 
 
 
b741e5b
 
 
 
 
 
8fdf34e
 
 
 
 
883ed13
8fdf34e
 
 
 
 
 
 
 
be28103
8fdf34e
 
 
 
 
 
 
c87ba04
 
8fdf34e
 
 
 
 
 
b741e5b
 
 
 
 
 
 
 
 
8fdf34e
 
 
 
 
 
 
 
 
 
 
 
 
 
be28103
 
8fdf34e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b741e5b
8fdf34e
c87ba04
8fdf34e
 
 
 
883ed13
8fdf34e
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import os
import logging

from llama_index import GPTSimpleVectorIndex
from llama_index import download_loader
from llama_index import (
    Document,
    LLMPredictor,
    PromptHelper,
    QuestionAnswerPrompt,
    RefinePrompt,
)
from langchain.llms import OpenAI
import colorama

from modules.presets import *
from modules.utils import *

def get_index_name(file_src):
    file_paths = [x.name for x in file_src]
    file_paths.sort(key=lambda x: os.path.basename(x))

    md5_hash = hashlib.md5()
    for file_path in file_paths:
        with open(file_path, "rb") as f:
            while chunk := f.read(8192):
                md5_hash.update(chunk)

    return md5_hash.hexdigest()


def get_documents(file_src):
    documents = []
    logging.debug("Loading documents...")
    logging.debug(f"file_src: {file_src}")
    for file in file_src:
        logging.info(f"loading file: {file.name}")
        if os.path.splitext(file.name)[1] == ".pdf":
            logging.debug("Loading PDF...")
            CJKPDFReader = download_loader("CJKPDFReader")
            loader = CJKPDFReader()
            text_raw = loader.load_data(file=file.name)[0].text
        elif os.path.splitext(file.name)[1] == ".docx":
            logging.debug("Loading DOCX...")
            DocxReader = download_loader("DocxReader")
            loader = DocxReader()
            text_raw = loader.load_data(file=file.name)[0].text
        elif os.path.splitext(file.name)[1] == ".epub":
            logging.debug("Loading EPUB...")
            EpubReader = download_loader("EpubReader")
            loader = EpubReader()
            text_raw = loader.load_data(file=file.name)[0].text
        else:
            logging.debug("Loading text file...")
            with open(file.name, "r", encoding="utf-8") as f:
                text_raw = f.read()
        text = add_space(text_raw)
        documents += [Document(text)]
    return documents


def construct_index(
        api_key,
        file_src,
        max_input_size=4096,
        num_outputs=1,
        max_chunk_overlap=20,
        chunk_size_limit=600,
        embedding_limit=None,
        separator=" ",
        num_children=10,
        max_keywords_per_chunk=10,
):
    os.environ["OPENAI_API_KEY"] = api_key
    chunk_size_limit = None if chunk_size_limit == 0 else chunk_size_limit
    embedding_limit = None if embedding_limit == 0 else embedding_limit
    separator = " " if separator == "" else separator

    llm_predictor = LLMPredictor(
        llm=OpenAI(model_name="gpt-3.5-turbo-0301", openai_api_key=api_key)
    )
    prompt_helper = PromptHelper(
        max_input_size,
        num_outputs,
        max_chunk_overlap,
        embedding_limit,
        chunk_size_limit,
        separator=separator,
    )
    index_name = get_index_name(file_src)
    if os.path.exists(f"./index/{index_name}.json"):
        logging.info("找到了缓存的索引文件,加载中……")
        return GPTSimpleVectorIndex.load_from_disk(f"./index/{index_name}.json")
    else:
        try:
            documents = get_documents(file_src)
            logging.debug("构建索引中……")
            index = GPTSimpleVectorIndex(
                documents, llm_predictor=llm_predictor, prompt_helper=prompt_helper
            )
            os.makedirs("./index", exist_ok=True)
            index.save_to_disk(f"./index/{index_name}.json")
            return index
        except Exception as e:
            print(e)
            return None


def chat_ai(
        api_key,
        index,
        question,
        context,
        chatbot,
        reply_language,
):
    os.environ["OPENAI_API_KEY"] = api_key

    logging.info(f"Question: {question}")

    response, chatbot_display, status_text = ask_ai(
        api_key,
        index,
        question,
        replace_today(PROMPT_TEMPLATE),
        REFINE_TEMPLATE,
        SIM_K,
        INDEX_QUERY_TEMPRATURE,
        context,
        reply_language,
    )
    if response is None:
        status_text = "查询失败,请换个问法试试"
        return context, chatbot
    response = response

    context.append({"role": "user", "content": question})
    context.append({"role": "assistant", "content": response})
    chatbot.append((question, chatbot_display))

    os.environ["OPENAI_API_KEY"] = ""
    return context, chatbot, status_text


def ask_ai(
        api_key,
        index,
        question,
        prompt_tmpl,
        refine_tmpl,
        sim_k=1,
        temprature=0,
        prefix_messages=[],
        reply_language="中文",
):
    os.environ["OPENAI_API_KEY"] = api_key

    logging.debug("Index file found")
    logging.debug("Querying index...")
    llm_predictor = LLMPredictor(
        llm=OpenAI(
            temperature=temprature,
            model_name="gpt-3.5-turbo-0301",
            prefix_messages=prefix_messages,
        )
    )

    response = None  # Initialize response variable to avoid UnboundLocalError
    qa_prompt = QuestionAnswerPrompt(prompt_tmpl.replace("{reply_language}", reply_language))
    rf_prompt = RefinePrompt(refine_tmpl.replace("{reply_language}", reply_language))
    response = index.query(
        question,
        llm_predictor=llm_predictor,
        similarity_top_k=sim_k,
        text_qa_template=qa_prompt,
        refine_template=rf_prompt,
        response_mode="compact",
    )

    if response is not None:
        logging.info(f"Response: {response}")
        ret_text = response.response
        nodes = []
        for index, node in enumerate(response.source_nodes):
            brief = node.source_text[:25].replace("\n", "")
            nodes.append(
                f"<details><summary>[{index + 1}]\t{brief}...</summary><p>{node.source_text}</p></details>"
            )
        new_response = ret_text + "\n----------\n" + "\n\n".join(nodes)
        logging.info(
            f"Response: {colorama.Fore.BLUE}{ret_text}{colorama.Style.RESET_ALL}"
        )
        os.environ["OPENAI_API_KEY"] = ""
        return ret_text, new_response, f"查询消耗了{llm_predictor.last_token_usage} tokens"
    else:
        logging.warning("No response found, returning None")
        os.environ["OPENAI_API_KEY"] = ""
        return None


def add_space(text):
    punctuations = {",": ", ", "。": "。 ", "?": "? ", "!": "! ", ":": ": ", ";": "; "}
    for cn_punc, en_punc in punctuations.items():
        text = text.replace(cn_punc, en_punc)
    return text