File size: 10,484 Bytes
3861a8e
c515693
9192b22
368e07a
 
d8bce62
41d7759
9192b22
c515693
9192b22
c515693
 
41d7759
 
368e07a
 
 
 
 
 
 
7ccccad
5679d30
 
9e5a8ac
41d7759
5679d30
9e5a8ac
5679d30
9e5a8ac
5679d30
 
 
 
9e5a8ac
 
 
 
 
 
 
 
 
5679d30
 
41d7759
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7014951
41d7759
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9192b22
41d7759
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3861a8e
 
41d7759
 
 
 
 
3861a8e
 
41d7759
 
 
 
 
 
 
 
 
 
 
 
 
3861a8e
298f638
c515693
7014951
c515693
41d7759
 
 
 
 
 
 
 
 
 
 
bc41d77
8d8013f
f744196
 
 
 
 
 
 
 
 
c515693
8d8013f
41d7759
 
 
 
 
 
3861a8e
c515693
ca1bf30
7014951
41d7759
 
ca1bf30
7014951
c515693
ca1bf30
7014951
 
41d7759
 
 
 
3861a8e
 
 
41d7759
 
3861a8e
 
41d7759
 
 
 
 
 
 
 
 
 
 
 
 
 
f744196
 
41d7759
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d8013f
f744196
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import json
import gradio as gr
# import openai
import os
import sys
import traceback
import requests
# import markdown

my_api_key = ""    # 在这里输入你的 API 密钥
initial_prompt = "You are a helpful assistant."

API_URL = "https://api.openai.com/v1/chat/completions"

if my_api_key == "":
    my_api_key = os.environ.get('my_api_key')

if my_api_key == "empty":
    print("Please give a api key!")
    sys.exit(1)


def parse_text(text):
    lines = text.split("\n")
    count = 0
    for i, line in enumerate(lines):
        if "```" in line:
            count += 1
            items = line.split('`')
            if count % 2 == 1:
                lines[i] = f'<pre><code class="{items[-1]}">'
            else:
                lines[i] = f'</code></pre>'
        else:
            if i > 0:
                if count % 2 == 1:
                    line = line.replace("&", "&amp;")
                    line = line.replace("\"", "&quot;")
                    line = line.replace("\'", "&apos;")
                    line = line.replace("<", "&lt;")
                    line = line.replace(">", "&gt;")
                    line = line.replace(" ", "&nbsp;")
                lines[i] = '<br/>'+line
    return "".join(lines)

def predict(inputs, top_p, temperature, openai_api_key, chatbot=[], history=[], system_prompt=initial_prompt, retry=False, summary=False):  # repetition_penalty, top_k

    headers = {
        "Content-Type": "application/json",
        "Authorization": f"Bearer {openai_api_key}"
    }

    chat_counter = len(history) // 2

    print(f"chat_counter - {chat_counter}")

    messages = [compose_system(system_prompt)]
    if chat_counter:
        for data in chatbot:
            temp1 = {}
            temp1["role"] = "user"
            temp1["content"] = data[0]
            temp2 = {}
            temp2["role"] = "assistant"
            temp2["content"] = data[1]
            if temp1["content"] != "":
                messages.append(temp1)
                messages.append(temp2)
            else:
                messages[-1]['content'] = temp2['content']
    if retry and chat_counter:
        messages.pop()
    elif summary and chat_counter:
        messages.append(compose_user(
            "请帮我总结一下上述对话的内容,实现减少字数的同时,保证对话的质量。在总结中不要加入这一句话。"))
        history = ["我们刚刚聊了什么?"]
    else:
        temp3 = {}
        temp3["role"] = "user"
        temp3["content"] = inputs
        messages.append(temp3)
        chat_counter += 1
    # messages
    payload = {
        "model": "gpt-3.5-turbo",
        "messages": messages,  # [{"role": "user", "content": f"{inputs}"}],
        "temperature": temperature,  # 1.0,
        "top_p": top_p,  # 1.0,
        "n": 1,
        "stream": True,
        "presence_penalty": 0,
        "frequency_penalty": 0,
    }

    if not summary:
        history.append(inputs)
    print(f"payload is - {payload}")
    # make a POST request to the API endpoint using the requests.post method, passing in stream=True
    response = requests.post(API_URL, headers=headers,
                             json=payload, stream=True)
    #response = requests.post(API_URL, headers=headers, json=payload, stream=True)

    token_counter = 0
    partial_words = ""

    counter = 0
    chatbot.append((history[-1], ""))
    for chunk in response.iter_lines():
        if counter == 0:
            counter += 1
            continue
        counter += 1
        # check whether each line is non-empty
        if chunk:
            # decode each line as response data is in bytes
            if len(json.loads(chunk.decode()[6:])['choices'][0]["delta"]) == 0:
                break
            #print(json.loads(chunk.decode()[6:])['choices'][0]["delta"]    ["content"])
            partial_words = partial_words + \
                json.loads(chunk.decode()[6:])[
                    'choices'][0]["delta"]["content"]
            if token_counter == 0:
                history.append(" " + partial_words)
            else:
                history[-1] = parse_text(partial_words)
            chatbot[-1] = (history[-2], history[-1])
        #   chat = [(history[i], history[i + 1]) for i in range(0, len(history)     - 1, 2) ]  # convert to tuples of list
            token_counter += 1
            # resembles {chatbot: chat,     state: history}
            yield chatbot, history



def delete_last_conversation(chatbot, history):
    if chat_counter > 0:
        chat_counter -= 1
        chatbot.pop()
        history.pop()
        history.pop()
    return chatbot, history

def save_chat_history(filepath, system, history, chatbot):
    if filepath == "":
        return
    if not filepath.endswith(".json"):
        filepath += ".json"
    json_s = {"system": system, "history": history, "chatbot": chatbot}
    with open(filepath, "w") as f:
        json.dump(json_s, f)


def load_chat_history(filename):
    with open(filename, "r") as f:
        json_s = json.load(f)
    return filename, json_s["system"], json_s["history"], json_s["chatbot"]


def get_history_names(plain=False):
    # find all json files in the current directory and return their names
    files = [f for f in os.listdir() if f.endswith(".json")]
    if plain:
        return files
    else:
        return gr.Dropdown.update(choices=files)


def reset_state():
    return [], []


def compose_system(system_prompt):
    return {"role": "system", "content": system_prompt}


def compose_user(user_input):
    return {"role": "user", "content": user_input}


def reset_textbox():
    return gr.update(value='')

title = """<h1 align="center">川虎ChatGPT 🚀</h1>"""
description = """<div align=center>

由Bilibili [土川虎虎虎](https://space.bilibili.com/29125536) 开发

访问川虎ChatGPT的 [GitHub项目](https://github.com/GaiZhenbiao/ChuanhuChatGPT) 下载最新版脚本

此App使用 `gpt-3.5-turbo` 大语言模型
</div>
"""
with gr.Blocks() as demo:
    gr.HTML(title)
    keyTxt = gr.Textbox(show_label=True, placeholder=f"在这里输入你的OpenAI API-key...",
                        value=my_api_key, label="API Key", type="password").style(container=True)
    chatbot = gr.Chatbot()  # .style(color_map=("#1D51EE", "#585A5B"))
    history = gr.State([])
    TRUECOMSTANT = gr.State(True)
    FALSECONSTANT = gr.State(False)
    topic = gr.State("未命名对话历史记录")

    with gr.Row():
        with gr.Column(scale=12):
            txt = gr.Textbox(show_label=False, placeholder="在这里输入").style(
                container=False)
        with gr.Column(min_width=50, scale=1):
            submitBtn = gr.Button("🚀", variant="primary")
    with gr.Row():
        emptyBtn = gr.Button("🧹 新的对话")
        retryBtn = gr.Button("🔄 重新生成")
        delLastBtn = gr.Button("🗑️ 删除上条对话")
        reduceTokenBtn = gr.Button("♻️ 总结对话")
    systemPromptTxt = gr.Textbox(show_label=True, placeholder=f"在这里输入System Prompt...",
                                 label="System prompt", value=initial_prompt).style(container=True)
    with gr.Accordion(label="保存/加载对话历史记录(在文本框中输入文件名,点击“保存对话”按钮,历史记录文件会被存储到Python文件旁边)", open=False):
        with gr.Column():
            with gr.Row():
                with gr.Column(scale=6):
                    saveFileName = gr.Textbox(
                        show_label=True, placeholder=f"在这里输入保存的文件名...", label="设置保存文件名", value="对话历史记录").style(container=True)
                with gr.Column(scale=1):
                    saveBtn = gr.Button("💾 保存对话")
            with gr.Row():
                with gr.Column(scale=6):
                    uploadDropdown = gr.Dropdown(label="从列表中加载对话", choices=get_history_names(plain=True), multiselect=False)
                with gr.Column(scale=1):
                    refreshBtn = gr.Button("🔄 刷新")
                    uploadBtn = gr.Button("📂 读取对话")
    #inputs, top_p, temperature, top_k, repetition_penalty
    with gr.Accordion("参数", open=False):
        top_p = gr.Slider(minimum=-0, maximum=1.0, value=1.0, step=0.05,
                          interactive=True, label="Top-p (nucleus sampling)",)
        temperature = gr.Slider(minimum=-0, maximum=5.0, value=1.0,
                                step=0.1, interactive=True, label="Temperature",)
        #top_k = gr.Slider( minimum=1, maximum=50, value=4, step=1, interactive=True, label="Top-k",)
        #repetition_penalty = gr.Slider( minimum=0.1, maximum=3.0, value=1.03, step=0.01, interactive=True, label="Repetition Penalty", )
    gr.Markdown(description)


    txt.submit(predict, [txt, top_p, temperature, keyTxt,
               chatbot, history, systemPromptTxt], [chatbot, history])
    txt.submit(reset_textbox, [], [txt])
    submitBtn.click(predict, [txt, top_p, temperature, keyTxt, chatbot,
                    history, systemPromptTxt], [chatbot, history], show_progress=True)
    submitBtn.click(reset_textbox, [], [txt])
    emptyBtn.click(reset_state, outputs=[chatbot, history])
    retryBtn.click(predict, [txt, top_p, temperature, keyTxt, chatbot, history,
                   systemPromptTxt, TRUECOMSTANT], [chatbot, history], show_progress=True)
    delLastBtn.click(delete_last_conversation, [chatbot, history], [
                     chatbot, history], show_progress=True)
    reduceTokenBtn.click(predict, [txt, top_p, temperature, keyTxt, chatbot, history,
                         systemPromptTxt, FALSECONSTANT, TRUECOMSTANT], [chatbot, history], show_progress=True)
    saveBtn.click(save_chat_history, [
                  saveFileName, systemPromptTxt, history, chatbot], None, show_progress=True)
    saveBtn.click(get_history_names, None, [uploadDropdown])
    refreshBtn.click(get_history_names, None, [uploadDropdown])
    uploadBtn.click(load_chat_history, [uploadDropdown],  [saveFileName, systemPromptTxt, history, chatbot], show_progress=True)

print("川虎的温馨提示:访问 http://localhost:7860 查看界面")
# 默认开启本地服务器,默认可以直接从IP访问,默认不创建公开分享链接
demo.title = "川虎ChatGPT 🚀"
demo.queue().launch(server_name="127.0.0.1", server_port=7860, share=False) # 改为 share=True 可以创建公开分享链接