Tuchuanhuhuhu commited on
Commit
2af553a
·
1 Parent(s): ed27351

为xmbot加入图片压缩功能,防止上传的图像过大

Browse files
Files changed (3) hide show
  1. config_example.json +2 -0
  2. modules/config.py +5 -2
  3. modules/models.py +35 -20
config_example.json CHANGED
@@ -2,6 +2,8 @@
2
  // 你的OpenAI API Key,一般必填,
3
  // 若缺省填为 "openai_api_key": "" 则必须再在图形界面中填入API Key
4
  "openai_api_key": "",
 
 
5
  "language": "auto",
6
  // 如果使用代理,请取消注释下面的两行,并替换代理URL
7
  // "https_proxy": "http://127.0.0.1:1079",
 
2
  // 你的OpenAI API Key,一般必填,
3
  // 若缺省填为 "openai_api_key": "" 则必须再在图形界面中填入API Key
4
  "openai_api_key": "",
5
+ // 你的xmbot API Key,与OpenAI API Key不同
6
+ "xmbot_api_key": "",
7
  "language": "auto",
8
  // 如果使用代理,请取消注释下面的两行,并替换代理URL
9
  // "https_proxy": "http://127.0.0.1:1079",
modules/config.py CHANGED
@@ -31,7 +31,7 @@ if os.path.exists("config.json"):
31
  config = json.load(f)
32
  else:
33
  config = {}
34
-
35
  language = config.get("language", "auto")
36
 
37
  if os.path.exists("api_key.txt"):
@@ -64,9 +64,12 @@ if os.environ.get("dockerrun") == "yes":
64
  dockerflag = True
65
 
66
  ## 处理 api-key 以及 允许的用户列表
67
- my_api_key = config.get("openai_api_key", "") # 在这里输入你的 API 密钥
68
  my_api_key = os.environ.get("my_api_key", my_api_key)
69
 
 
 
 
70
  ## 多账户机制
71
  multi_api_key = config.get("multi_api_key", False) # 是否开启多账户机制
72
  if multi_api_key:
 
31
  config = json.load(f)
32
  else:
33
  config = {}
34
+
35
  language = config.get("language", "auto")
36
 
37
  if os.path.exists("api_key.txt"):
 
64
  dockerflag = True
65
 
66
  ## 处理 api-key 以及 允许的用户列表
67
+ my_api_key = config.get("openai_api_key", "")
68
  my_api_key = os.environ.get("my_api_key", my_api_key)
69
 
70
+ xmbot_api_key = config.get("xmbot_api_key", "")
71
+ os.environ["XMBOT_API_KEY"] = xmbot_api_key
72
+
73
  ## 多账户机制
74
  multi_api_key = config.get("multi_api_key", False) # 是否开启多账户机制
75
  if multi_api_key:
modules/models.py CHANGED
@@ -9,6 +9,9 @@ import sys
9
  import requests
10
  import urllib3
11
  import platform
 
 
 
12
 
13
  from tqdm import tqdm
14
  import colorama
@@ -328,15 +331,6 @@ class LLaMA_Client(BaseLLMModel):
328
  data_args=data_args,
329
  pipeline_args=pipeline_args,
330
  )
331
- # Chats
332
- # model_name = model_args.model_name_or_path
333
- # if model_args.lora_model_path is not None:
334
- # model_name += f" + {model_args.lora_model_path}"
335
-
336
- # context = (
337
- # "You are a helpful assistant who follows the given instructions"
338
- # " unconditionally."
339
- # )
340
 
341
  def _get_llama_style_input(self):
342
  history = []
@@ -406,26 +400,45 @@ class XMBot_Client(BaseLLMModel):
406
  self.session_id = str(uuid.uuid4())
407
  return [], "已重置"
408
 
409
- def try_read_image(self, filepath):
410
- import base64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
411
 
 
 
 
 
 
 
 
 
 
 
 
 
 
412
  def is_image_file(filepath):
413
  # 判断文件是否为图片
414
  valid_image_extensions = [".jpg", ".jpeg", ".png", ".bmp", ".gif", ".tiff"]
415
  file_extension = os.path.splitext(filepath)[1].lower()
416
  return file_extension in valid_image_extensions
417
 
418
- def read_image_as_bytes(filepath):
419
- # 读取图片文件并返回比特流
420
- with open(filepath, "rb") as f:
421
- image_bytes = f.read()
422
- return image_bytes
423
-
424
  if is_image_file(filepath):
425
  logging.info(f"读取图片文件: {filepath}")
426
- image_bytes = read_image_as_bytes(filepath)
427
- base64_encoded_image = base64.b64encode(image_bytes).decode()
428
- self.image_bytes = base64_encoded_image
429
  self.image_path = filepath
430
  else:
431
  self.image_bytes = None
@@ -529,6 +542,8 @@ def get_model(
529
  msg += f" + {lora_model_path}"
530
  model = LLaMA_Client(model_name, lora_model_path)
531
  elif model_type == ModelType.XMBot:
 
 
532
  model = XMBot_Client(api_key=access_key)
533
  elif model_type == ModelType.Unknown:
534
  raise ValueError(f"未知模型: {model_name}")
 
9
  import requests
10
  import urllib3
11
  import platform
12
+ import base64
13
+ from io import BytesIO
14
+ from PIL import Image
15
 
16
  from tqdm import tqdm
17
  import colorama
 
331
  data_args=data_args,
332
  pipeline_args=pipeline_args,
333
  )
 
 
 
 
 
 
 
 
 
334
 
335
  def _get_llama_style_input(self):
336
  history = []
 
400
  self.session_id = str(uuid.uuid4())
401
  return [], "已重置"
402
 
403
+ def image_to_base64(self, image_path):
404
+ # 打开并加载图片
405
+ img = Image.open(image_path)
406
+
407
+ # 获取图片的宽度和高度
408
+ width, height = img.size
409
+
410
+ # 计算压缩比例,以确保最长边小于4096像素
411
+ max_dimension = 2048
412
+ scale_ratio = min(max_dimension / width, max_dimension / height)
413
+
414
+ if scale_ratio < 1:
415
+ # 按压缩比例调整图片大小
416
+ new_width = int(width * scale_ratio)
417
+ new_height = int(height * scale_ratio)
418
+ img = img.resize((new_width, new_height), Image.ANTIALIAS)
419
 
420
+ # 将图片转换为jpg格式的二进制数据
421
+ buffer = BytesIO()
422
+ if img.mode == "RGBA":
423
+ img = img.convert("RGB")
424
+ img.save(buffer, format='JPEG')
425
+ binary_image = buffer.getvalue()
426
+
427
+ # 对二进制数据进行Base64编码
428
+ base64_image = base64.b64encode(binary_image).decode('utf-8')
429
+
430
+ return base64_image
431
+
432
+ def try_read_image(self, filepath):
433
  def is_image_file(filepath):
434
  # 判断文件是否为图片
435
  valid_image_extensions = [".jpg", ".jpeg", ".png", ".bmp", ".gif", ".tiff"]
436
  file_extension = os.path.splitext(filepath)[1].lower()
437
  return file_extension in valid_image_extensions
438
 
 
 
 
 
 
 
439
  if is_image_file(filepath):
440
  logging.info(f"读取图片文件: {filepath}")
441
+ self.image_bytes = self.image_to_base64(filepath)
 
 
442
  self.image_path = filepath
443
  else:
444
  self.image_bytes = None
 
542
  msg += f" + {lora_model_path}"
543
  model = LLaMA_Client(model_name, lora_model_path)
544
  elif model_type == ModelType.XMBot:
545
+ if os.environ.get("XMBOT_API_KEY") != "":
546
+ access_key = os.environ.get("XMBOT_API_KEY")
547
  model = XMBot_Client(api_key=access_key)
548
  elif model_type == ModelType.Unknown:
549
  raise ValueError(f"未知模型: {model_name}")