Spaces:
Sleeping
Sleeping
Tuchuanhuhuhu
commited on
Commit
·
b8f3115
1
Parent(s):
5d31dec
修改代码格式
Browse files- ChuanhuChatbot.py +217 -47
- presets.py +21 -14
- utils.py +239 -54
ChuanhuChatbot.py
CHANGED
@@ -7,12 +7,15 @@ import argparse
|
|
7 |
from utils import *
|
8 |
from presets import *
|
9 |
|
10 |
-
logging.basicConfig(
|
|
|
|
|
|
|
11 |
|
12 |
-
my_api_key = ""
|
13 |
|
14 |
-
#if we are running in Docker
|
15 |
-
if os.environ.get(
|
16 |
dockerflag = True
|
17 |
else:
|
18 |
dockerflag = False
|
@@ -20,17 +23,21 @@ else:
|
|
20 |
authflag = False
|
21 |
|
22 |
if dockerflag:
|
23 |
-
my_api_key = os.environ.get(
|
24 |
if my_api_key == "empty":
|
25 |
logging.error("Please give a api key!")
|
26 |
sys.exit(1)
|
27 |
-
#auth
|
28 |
-
username = os.environ.get(
|
29 |
-
password = os.environ.get(
|
30 |
if not (isinstance(username, type(None)) or isinstance(password, type(None))):
|
31 |
authflag = True
|
32 |
else:
|
33 |
-
if
|
|
|
|
|
|
|
|
|
34 |
with open("api_key.txt", "r") as f:
|
35 |
my_api_key = f.read().strip()
|
36 |
if os.path.exists("auth.json"):
|
@@ -58,44 +65,91 @@ with gr.Blocks(css=customCSS) as demo:
|
|
58 |
with gr.Row(scale=1).style(equal_height=True):
|
59 |
with gr.Column(scale=5):
|
60 |
with gr.Row(scale=1):
|
61 |
-
chatbot = gr.Chatbot().style(
|
|
|
|
|
62 |
with gr.Row(scale=1):
|
63 |
with gr.Column(scale=12):
|
64 |
-
user_input = gr.Textbox(
|
65 |
-
|
|
|
66 |
with gr.Column(min_width=50, scale=1):
|
67 |
submitBtn = gr.Button("🚀", variant="primary")
|
68 |
with gr.Row(scale=1):
|
69 |
-
emptyBtn = gr.Button(
|
|
|
|
|
70 |
retryBtn = gr.Button("🔄 重新生成")
|
71 |
delLastBtn = gr.Button("🗑️ 删除一条对话")
|
72 |
reduceTokenBtn = gr.Button("♻️ 总结对话")
|
73 |
|
74 |
with gr.Column():
|
75 |
-
with gr.Column(min_width=50,scale=1):
|
76 |
with gr.Tab(label="ChatGPT"):
|
77 |
-
keyTxt = gr.Textbox(
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
with gr.Accordion("参数", open=False):
|
80 |
-
top_p = gr.Slider(
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
use_websearch_checkbox = gr.Checkbox(label="使用在线搜索", value=False)
|
86 |
|
87 |
with gr.Tab(label="Prompt"):
|
88 |
-
systemPromptTxt = gr.Textbox(
|
|
|
|
|
|
|
|
|
|
|
89 |
with gr.Accordion(label="加载Prompt模板", open=True):
|
90 |
with gr.Column():
|
91 |
with gr.Row():
|
92 |
with gr.Column(scale=6):
|
93 |
-
templateFileSelectDropdown = gr.Dropdown(
|
|
|
|
|
|
|
|
|
|
|
94 |
with gr.Column(scale=1):
|
95 |
templateRefreshBtn = gr.Button("🔄 刷新")
|
96 |
with gr.Row():
|
97 |
with gr.Column():
|
98 |
-
templateSelectDropdown = gr.Dropdown(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
with gr.Tab(label="保存/加载"):
|
101 |
with gr.Accordion(label="保存/加载对话历史记录", open=True):
|
@@ -104,13 +158,22 @@ with gr.Blocks(css=customCSS) as demo:
|
|
104 |
with gr.Row():
|
105 |
with gr.Column(scale=6):
|
106 |
saveFileName = gr.Textbox(
|
107 |
-
show_label=True,
|
|
|
|
|
|
|
|
|
108 |
with gr.Column(scale=1):
|
109 |
saveHistoryBtn = gr.Button("💾 保存对话")
|
110 |
exportMarkdownBtn = gr.Button("📝 导出为Markdown")
|
111 |
with gr.Row():
|
112 |
with gr.Column(scale=6):
|
113 |
-
historyFileSelectDropdown = gr.Dropdown(
|
|
|
|
|
|
|
|
|
|
|
114 |
with gr.Column(scale=1):
|
115 |
historyRefreshBtn = gr.Button("🔄 刷新")
|
116 |
with gr.Row():
|
@@ -120,52 +183,159 @@ with gr.Blocks(css=customCSS) as demo:
|
|
120 |
gr.Markdown(description)
|
121 |
|
122 |
# Chatbot
|
123 |
-
user_input.submit(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
user_input.submit(reset_textbox, [], [user_input])
|
125 |
|
126 |
-
submitBtn.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
submitBtn.click(reset_textbox, [], [user_input])
|
128 |
|
129 |
-
emptyBtn.click(
|
|
|
|
|
|
|
|
|
130 |
|
131 |
-
retryBtn.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
-
delLastBtn.click(
|
134 |
-
|
|
|
|
|
|
|
|
|
135 |
|
136 |
-
reduceTokenBtn.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
# Template
|
139 |
templateRefreshBtn.click(get_template_names, None, [templateFileSelectDropdown])
|
140 |
-
templateFileSelectDropdown.change(
|
141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
# S&L
|
144 |
-
saveHistoryBtn.click(
|
|
|
|
|
|
|
|
|
|
|
145 |
saveHistoryBtn.click(get_history_names, None, [historyFileSelectDropdown])
|
146 |
-
exportMarkdownBtn.click(
|
|
|
|
|
|
|
|
|
|
|
147 |
historyRefreshBtn.click(get_history_names, None, [historyFileSelectDropdown])
|
148 |
-
historyFileSelectDropdown.change(
|
149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
|
152 |
-
logging.info(
|
|
|
|
|
|
|
|
|
153 |
# 默认开启本地服务器,默认可以直接从IP访问,默认不创建公开分享链接
|
154 |
demo.title = "川虎ChatGPT 🚀"
|
155 |
|
156 |
if __name__ == "__main__":
|
157 |
-
#if running in Docker
|
158 |
if dockerflag:
|
159 |
if authflag:
|
160 |
-
demo.queue().launch(
|
|
|
|
|
161 |
else:
|
162 |
demo.queue().launch(server_name="0.0.0.0", server_port=7860, share=False)
|
163 |
-
#if not running in Docker
|
164 |
else:
|
165 |
if authflag:
|
166 |
demo.queue().launch(share=False, auth=(username, password))
|
167 |
else:
|
168 |
-
demo.queue().launch(share=False)
|
169 |
-
#demo.queue().launch(server_name="0.0.0.0", server_port=7860, share=False) # 可自定义端口
|
170 |
-
#demo.queue().launch(server_name="0.0.0.0", server_port=7860,auth=("在这里填写用户名", "在这里填写密码")) # 可设置用户名与密码
|
171 |
-
#demo.queue().launch(auth=("在这里填写用户名", "在这里填写密码")) # 适合Nginx反向代理
|
|
|
7 |
from utils import *
|
8 |
from presets import *
|
9 |
|
10 |
+
logging.basicConfig(
|
11 |
+
level=logging.INFO,
|
12 |
+
format="%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s",
|
13 |
+
)
|
14 |
|
15 |
+
my_api_key = "" # 在这里输入你的 API 密钥
|
16 |
|
17 |
+
# if we are running in Docker
|
18 |
+
if os.environ.get("dockerrun") == "yes":
|
19 |
dockerflag = True
|
20 |
else:
|
21 |
dockerflag = False
|
|
|
23 |
authflag = False
|
24 |
|
25 |
if dockerflag:
|
26 |
+
my_api_key = os.environ.get("my_api_key")
|
27 |
if my_api_key == "empty":
|
28 |
logging.error("Please give a api key!")
|
29 |
sys.exit(1)
|
30 |
+
# auth
|
31 |
+
username = os.environ.get("USERNAME")
|
32 |
+
password = os.environ.get("PASSWORD")
|
33 |
if not (isinstance(username, type(None)) or isinstance(password, type(None))):
|
34 |
authflag = True
|
35 |
else:
|
36 |
+
if (
|
37 |
+
not my_api_key
|
38 |
+
and os.path.exists("api_key.txt")
|
39 |
+
and os.path.getsize("api_key.txt")
|
40 |
+
):
|
41 |
with open("api_key.txt", "r") as f:
|
42 |
my_api_key = f.read().strip()
|
43 |
if os.path.exists("auth.json"):
|
|
|
65 |
with gr.Row(scale=1).style(equal_height=True):
|
66 |
with gr.Column(scale=5):
|
67 |
with gr.Row(scale=1):
|
68 |
+
chatbot = gr.Chatbot().style(
|
69 |
+
height=600
|
70 |
+
) # .style(color_map=("#1D51EE", "#585A5B"))
|
71 |
with gr.Row(scale=1):
|
72 |
with gr.Column(scale=12):
|
73 |
+
user_input = gr.Textbox(
|
74 |
+
show_label=False, placeholder="在这里输入"
|
75 |
+
).style(container=False)
|
76 |
with gr.Column(min_width=50, scale=1):
|
77 |
submitBtn = gr.Button("🚀", variant="primary")
|
78 |
with gr.Row(scale=1):
|
79 |
+
emptyBtn = gr.Button(
|
80 |
+
"🧹 新的对话",
|
81 |
+
)
|
82 |
retryBtn = gr.Button("🔄 重新生成")
|
83 |
delLastBtn = gr.Button("🗑️ 删除一条对话")
|
84 |
reduceTokenBtn = gr.Button("♻️ 总结对话")
|
85 |
|
86 |
with gr.Column():
|
87 |
+
with gr.Column(min_width=50, scale=1):
|
88 |
with gr.Tab(label="ChatGPT"):
|
89 |
+
keyTxt = gr.Textbox(
|
90 |
+
show_label=True,
|
91 |
+
placeholder=f"OpenAI API-key...",
|
92 |
+
value=my_api_key,
|
93 |
+
type="password",
|
94 |
+
visible=not HIDE_MY_KEY,
|
95 |
+
label="API-Key",
|
96 |
+
)
|
97 |
+
model_select_dropdown = gr.Dropdown(
|
98 |
+
label="选择模型", choices=MODELS, multiselect=False, value=MODELS[0]
|
99 |
+
)
|
100 |
with gr.Accordion("参数", open=False):
|
101 |
+
top_p = gr.Slider(
|
102 |
+
minimum=-0,
|
103 |
+
maximum=1.0,
|
104 |
+
value=1.0,
|
105 |
+
step=0.05,
|
106 |
+
interactive=True,
|
107 |
+
label="Top-p (nucleus sampling)",
|
108 |
+
)
|
109 |
+
temperature = gr.Slider(
|
110 |
+
minimum=-0,
|
111 |
+
maximum=2.0,
|
112 |
+
value=1.0,
|
113 |
+
step=0.1,
|
114 |
+
interactive=True,
|
115 |
+
label="Temperature",
|
116 |
+
)
|
117 |
+
use_streaming_checkbox = gr.Checkbox(
|
118 |
+
label="实时传输回答", value=True, visible=enable_streaming_option
|
119 |
+
)
|
120 |
use_websearch_checkbox = gr.Checkbox(label="使用在线搜索", value=False)
|
121 |
|
122 |
with gr.Tab(label="Prompt"):
|
123 |
+
systemPromptTxt = gr.Textbox(
|
124 |
+
show_label=True,
|
125 |
+
placeholder=f"在这里输入System Prompt...",
|
126 |
+
label="System prompt",
|
127 |
+
value=initial_prompt,
|
128 |
+
).style(container=True)
|
129 |
with gr.Accordion(label="加载Prompt模板", open=True):
|
130 |
with gr.Column():
|
131 |
with gr.Row():
|
132 |
with gr.Column(scale=6):
|
133 |
+
templateFileSelectDropdown = gr.Dropdown(
|
134 |
+
label="选择Prompt模板集合文件",
|
135 |
+
choices=get_template_names(plain=True),
|
136 |
+
multiselect=False,
|
137 |
+
value=get_template_names(plain=True)[0],
|
138 |
+
)
|
139 |
with gr.Column(scale=1):
|
140 |
templateRefreshBtn = gr.Button("🔄 刷新")
|
141 |
with gr.Row():
|
142 |
with gr.Column():
|
143 |
+
templateSelectDropdown = gr.Dropdown(
|
144 |
+
label="从Prompt模板中加载",
|
145 |
+
choices=load_template(
|
146 |
+
get_template_names(plain=True)[0], mode=1
|
147 |
+
),
|
148 |
+
multiselect=False,
|
149 |
+
value=load_template(
|
150 |
+
get_template_names(plain=True)[0], mode=1
|
151 |
+
)[0],
|
152 |
+
)
|
153 |
|
154 |
with gr.Tab(label="保存/加载"):
|
155 |
with gr.Accordion(label="保存/加载对话历史记录", open=True):
|
|
|
158 |
with gr.Row():
|
159 |
with gr.Column(scale=6):
|
160 |
saveFileName = gr.Textbox(
|
161 |
+
show_label=True,
|
162 |
+
placeholder=f"设置文件名: 默认为.json,可选为.md",
|
163 |
+
label="设置保存文件名",
|
164 |
+
value="对话历史记录",
|
165 |
+
).style(container=True)
|
166 |
with gr.Column(scale=1):
|
167 |
saveHistoryBtn = gr.Button("💾 保存对话")
|
168 |
exportMarkdownBtn = gr.Button("📝 导出为Markdown")
|
169 |
with gr.Row():
|
170 |
with gr.Column(scale=6):
|
171 |
+
historyFileSelectDropdown = gr.Dropdown(
|
172 |
+
label="从列表中加载对话",
|
173 |
+
choices=get_history_names(plain=True),
|
174 |
+
multiselect=False,
|
175 |
+
value=get_history_names(plain=True)[0],
|
176 |
+
)
|
177 |
with gr.Column(scale=1):
|
178 |
historyRefreshBtn = gr.Button("🔄 刷新")
|
179 |
with gr.Row():
|
|
|
183 |
gr.Markdown(description)
|
184 |
|
185 |
# Chatbot
|
186 |
+
user_input.submit(
|
187 |
+
predict,
|
188 |
+
[
|
189 |
+
keyTxt,
|
190 |
+
systemPromptTxt,
|
191 |
+
history,
|
192 |
+
user_input,
|
193 |
+
chatbot,
|
194 |
+
token_count,
|
195 |
+
top_p,
|
196 |
+
temperature,
|
197 |
+
use_streaming_checkbox,
|
198 |
+
model_select_dropdown,
|
199 |
+
use_websearch_checkbox,
|
200 |
+
],
|
201 |
+
[chatbot, history, status_display, token_count],
|
202 |
+
show_progress=True,
|
203 |
+
)
|
204 |
user_input.submit(reset_textbox, [], [user_input])
|
205 |
|
206 |
+
submitBtn.click(
|
207 |
+
predict,
|
208 |
+
[
|
209 |
+
keyTxt,
|
210 |
+
systemPromptTxt,
|
211 |
+
history,
|
212 |
+
user_input,
|
213 |
+
chatbot,
|
214 |
+
token_count,
|
215 |
+
top_p,
|
216 |
+
temperature,
|
217 |
+
use_streaming_checkbox,
|
218 |
+
model_select_dropdown,
|
219 |
+
use_websearch_checkbox,
|
220 |
+
],
|
221 |
+
[chatbot, history, status_display, token_count],
|
222 |
+
show_progress=True,
|
223 |
+
)
|
224 |
submitBtn.click(reset_textbox, [], [user_input])
|
225 |
|
226 |
+
emptyBtn.click(
|
227 |
+
reset_state,
|
228 |
+
outputs=[chatbot, history, token_count, status_display],
|
229 |
+
show_progress=True,
|
230 |
+
)
|
231 |
|
232 |
+
retryBtn.click(
|
233 |
+
retry,
|
234 |
+
[
|
235 |
+
keyTxt,
|
236 |
+
systemPromptTxt,
|
237 |
+
history,
|
238 |
+
chatbot,
|
239 |
+
token_count,
|
240 |
+
top_p,
|
241 |
+
temperature,
|
242 |
+
use_streaming_checkbox,
|
243 |
+
model_select_dropdown,
|
244 |
+
],
|
245 |
+
[chatbot, history, status_display, token_count],
|
246 |
+
show_progress=True,
|
247 |
+
)
|
248 |
|
249 |
+
delLastBtn.click(
|
250 |
+
delete_last_conversation,
|
251 |
+
[chatbot, history, token_count],
|
252 |
+
[chatbot, history, token_count, status_display],
|
253 |
+
show_progress=True,
|
254 |
+
)
|
255 |
|
256 |
+
reduceTokenBtn.click(
|
257 |
+
reduce_token_size,
|
258 |
+
[
|
259 |
+
keyTxt,
|
260 |
+
systemPromptTxt,
|
261 |
+
history,
|
262 |
+
chatbot,
|
263 |
+
token_count,
|
264 |
+
top_p,
|
265 |
+
temperature,
|
266 |
+
use_streaming_checkbox,
|
267 |
+
model_select_dropdown,
|
268 |
+
],
|
269 |
+
[chatbot, history, status_display, token_count],
|
270 |
+
show_progress=True,
|
271 |
+
)
|
272 |
|
273 |
# Template
|
274 |
templateRefreshBtn.click(get_template_names, None, [templateFileSelectDropdown])
|
275 |
+
templateFileSelectDropdown.change(
|
276 |
+
load_template,
|
277 |
+
[templateFileSelectDropdown],
|
278 |
+
[promptTemplates, templateSelectDropdown],
|
279 |
+
show_progress=True,
|
280 |
+
)
|
281 |
+
templateSelectDropdown.change(
|
282 |
+
get_template_content,
|
283 |
+
[promptTemplates, templateSelectDropdown, systemPromptTxt],
|
284 |
+
[systemPromptTxt],
|
285 |
+
show_progress=True,
|
286 |
+
)
|
287 |
|
288 |
# S&L
|
289 |
+
saveHistoryBtn.click(
|
290 |
+
save_chat_history,
|
291 |
+
[saveFileName, systemPromptTxt, history, chatbot],
|
292 |
+
downloadFile,
|
293 |
+
show_progress=True,
|
294 |
+
)
|
295 |
saveHistoryBtn.click(get_history_names, None, [historyFileSelectDropdown])
|
296 |
+
exportMarkdownBtn.click(
|
297 |
+
export_markdown,
|
298 |
+
[saveFileName, systemPromptTxt, history, chatbot],
|
299 |
+
downloadFile,
|
300 |
+
show_progress=True,
|
301 |
+
)
|
302 |
historyRefreshBtn.click(get_history_names, None, [historyFileSelectDropdown])
|
303 |
+
historyFileSelectDropdown.change(
|
304 |
+
load_chat_history,
|
305 |
+
[historyFileSelectDropdown, systemPromptTxt, history, chatbot],
|
306 |
+
[saveFileName, systemPromptTxt, history, chatbot],
|
307 |
+
show_progress=True,
|
308 |
+
)
|
309 |
+
downloadFile.change(
|
310 |
+
load_chat_history,
|
311 |
+
[downloadFile, systemPromptTxt, history, chatbot],
|
312 |
+
[saveFileName, systemPromptTxt, history, chatbot],
|
313 |
+
)
|
314 |
|
315 |
|
316 |
+
logging.info(
|
317 |
+
colorama.Back.GREEN
|
318 |
+
+ "\n川虎的温馨提示:访问 http://localhost:7860 查看界面"
|
319 |
+
+ colorama.Style.RESET_ALL
|
320 |
+
)
|
321 |
# 默认开启本地服务器,默认可以直接从IP访问,默认不创建公开分享链接
|
322 |
demo.title = "川虎ChatGPT 🚀"
|
323 |
|
324 |
if __name__ == "__main__":
|
325 |
+
# if running in Docker
|
326 |
if dockerflag:
|
327 |
if authflag:
|
328 |
+
demo.queue().launch(
|
329 |
+
server_name="0.0.0.0", server_port=7860, auth=(username, password)
|
330 |
+
)
|
331 |
else:
|
332 |
demo.queue().launch(server_name="0.0.0.0", server_port=7860, share=False)
|
333 |
+
# if not running in Docker
|
334 |
else:
|
335 |
if authflag:
|
336 |
demo.queue().launch(share=False, auth=(username, password))
|
337 |
else:
|
338 |
+
demo.queue().launch(share=False) # 改为 share=True 可以创建公开分享链接
|
339 |
+
# demo.queue().launch(server_name="0.0.0.0", server_port=7860, share=False) # 可自定义端口
|
340 |
+
# demo.queue().launch(server_name="0.0.0.0", server_port=7860,auth=("在这里填写用户名", "在这里填写密码")) # 可设置用户名与密码
|
341 |
+
# demo.queue().launch(auth=("在这里填写用户名", "在这里填写密码")) # 适合Nginx反向代理
|
presets.py
CHANGED
@@ -62,8 +62,15 @@ pre code {
|
|
62 |
}
|
63 |
"""
|
64 |
|
65 |
-
summarize_prompt = "你是谁?我们刚才聊了什么?"
|
66 |
-
MODELS = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
websearch_prompt = """Web search results:
|
68 |
|
69 |
{web_results}
|
@@ -74,17 +81,17 @@ Query: {query}
|
|
74 |
Reply in 中文"""
|
75 |
|
76 |
# 错误信息
|
77 |
-
standard_error_msg = "☹️发生了错误:"
|
78 |
-
error_retrieve_prompt = "请检查网络连接,或者API-Key是否有效。"
|
79 |
-
connection_timeout_prompt = "连接超时,无法获取对话。"
|
80 |
-
read_timeout_prompt = "读取超时,无法获取对话。"
|
81 |
-
proxy_error_prompt = "代理错误,无法获取对话。"
|
82 |
-
ssl_error_prompt = "SSL错误,无法获取对话。"
|
83 |
-
no_apikey_msg = "API key长度不是51位,请检查是否输入正确。"
|
84 |
|
85 |
-
max_token_streaming = 3500
|
86 |
-
timeout_streaming = 30
|
87 |
-
max_token_all = 3500
|
88 |
-
timeout_all = 200
|
89 |
enable_streaming_option = True # 是否启用选择选择是否实时显示回答的勾选框
|
90 |
-
HIDE_MY_KEY = False
|
|
|
62 |
}
|
63 |
"""
|
64 |
|
65 |
+
summarize_prompt = "你是谁?我们刚才聊了什么?" # 总结对话时的 prompt
|
66 |
+
MODELS = [
|
67 |
+
"gpt-3.5-turbo",
|
68 |
+
"gpt-3.5-turbo-0301",
|
69 |
+
"gpt-4",
|
70 |
+
"gpt-4-0314",
|
71 |
+
"gpt-4-32k",
|
72 |
+
"gpt-4-32k-0314",
|
73 |
+
] # 可选的模型
|
74 |
websearch_prompt = """Web search results:
|
75 |
|
76 |
{web_results}
|
|
|
81 |
Reply in 中文"""
|
82 |
|
83 |
# 错误信息
|
84 |
+
standard_error_msg = "☹️发生了错误:" # 错误信息的标准前缀
|
85 |
+
error_retrieve_prompt = "请检查网络连接,或者API-Key是否有效。" # 获取对话时发生错误
|
86 |
+
connection_timeout_prompt = "连接超时,无法获取对话。" # 连接超时
|
87 |
+
read_timeout_prompt = "读取超时,无法获取对话。" # 读取超时
|
88 |
+
proxy_error_prompt = "代理错误,无法获取对话。" # 代理错误
|
89 |
+
ssl_error_prompt = "SSL错误,无法获取对话。" # SSL 错误
|
90 |
+
no_apikey_msg = "API key长度不是51位,请检查是否输入正确。" # API key 长度不足 51 位
|
91 |
|
92 |
+
max_token_streaming = 3500 # 流式对话时的最大 token 数
|
93 |
+
timeout_streaming = 30 # 流式对话时的超时时间
|
94 |
+
max_token_all = 3500 # 非流式对话时的最大 token 数
|
95 |
+
timeout_all = 200 # 非流式对话时的超时时间
|
96 |
enable_streaming_option = True # 是否启用选择选择是否实时显示回答的勾选框
|
97 |
+
HIDE_MY_KEY = False # 如果你想在UI中隐藏你的 API 密钥,将此值设置为 True
|
utils.py
CHANGED
@@ -4,10 +4,12 @@ from typing import TYPE_CHECKING, Any, Callable, Dict, List, Tuple, Type
|
|
4 |
import logging
|
5 |
import json
|
6 |
import gradio as gr
|
|
|
7 |
# import openai
|
8 |
import os
|
9 |
import traceback
|
10 |
import requests
|
|
|
11 |
# import markdown
|
12 |
import csv
|
13 |
import mdtex2html
|
@@ -28,30 +30,33 @@ if TYPE_CHECKING:
|
|
28 |
headers: List[str]
|
29 |
data: List[List[str | int | bool]]
|
30 |
|
|
|
31 |
initial_prompt = "You are a helpful assistant."
|
32 |
API_URL = "https://api.openai.com/v1/chat/completions"
|
33 |
HISTORY_DIR = "history"
|
34 |
TEMPLATES_DIR = "templates"
|
35 |
|
|
|
36 |
def postprocess(
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
55 |
|
56 |
def count_token(message):
|
57 |
encoding = tiktoken.get_encoding("cl100k_base")
|
@@ -59,6 +64,7 @@ def count_token(message):
|
|
59 |
length = len(encoding.encode(input_str))
|
60 |
return length
|
61 |
|
|
|
62 |
def parse_text(text):
|
63 |
lines = text.split("\n")
|
64 |
lines = [line for line in lines if line != ""]
|
@@ -66,11 +72,11 @@ def parse_text(text):
|
|
66 |
for i, line in enumerate(lines):
|
67 |
if "```" in line:
|
68 |
count += 1
|
69 |
-
items = line.split(
|
70 |
if count % 2 == 1:
|
71 |
lines[i] = f'<pre><code class="language-{items[-1]}">'
|
72 |
else:
|
73 |
-
lines[i] = f
|
74 |
else:
|
75 |
if i > 0:
|
76 |
if count % 2 == 1:
|
@@ -86,29 +92,37 @@ def parse_text(text):
|
|
86 |
line = line.replace("(", "(")
|
87 |
line = line.replace(")", ")")
|
88 |
line = line.replace("$", "$")
|
89 |
-
lines[i] = "<br>"+line
|
90 |
text = "".join(lines)
|
91 |
return text
|
92 |
|
|
|
93 |
def construct_text(role, text):
|
94 |
return {"role": role, "content": text}
|
95 |
|
|
|
96 |
def construct_user(text):
|
97 |
return construct_text("user", text)
|
98 |
|
|
|
99 |
def construct_system(text):
|
100 |
return construct_text("system", text)
|
101 |
|
|
|
102 |
def construct_assistant(text):
|
103 |
return construct_text("assistant", text)
|
104 |
|
|
|
105 |
def construct_token_message(token, stream=False):
|
106 |
return f"Token 计数: {token}"
|
107 |
|
108 |
-
|
|
|
|
|
|
|
109 |
headers = {
|
110 |
"Content-Type": "application/json",
|
111 |
-
"Authorization": f"Bearer {openai_api_key}"
|
112 |
}
|
113 |
|
114 |
history = [construct_system(system_prompt), *history]
|
@@ -127,10 +141,23 @@ def get_response(openai_api_key, system_prompt, history, temperature, top_p, str
|
|
127 |
timeout = timeout_streaming
|
128 |
else:
|
129 |
timeout = timeout_all
|
130 |
-
response = requests.post(
|
|
|
|
|
131 |
return response
|
132 |
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
def get_return_value():
|
135 |
return chatbot, history, status_text, all_token_counts
|
136 |
|
@@ -144,16 +171,28 @@ def stream_predict(openai_api_key, system_prompt, history, inputs, chatbot, all_
|
|
144 |
user_token_count = 0
|
145 |
if len(all_token_counts) == 0:
|
146 |
system_prompt_token_count = count_token(construct_system(system_prompt))
|
147 |
-
user_token_count =
|
|
|
|
|
148 |
else:
|
149 |
user_token_count = count_token(construct_user(inputs))
|
150 |
all_token_counts.append(user_token_count)
|
151 |
logging.info(f"输入token计数: {user_token_count}")
|
152 |
yield get_return_value()
|
153 |
try:
|
154 |
-
response = get_response(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
except requests.exceptions.ConnectTimeout:
|
156 |
-
status_text =
|
|
|
|
|
157 |
yield get_return_value()
|
158 |
return
|
159 |
except requests.exceptions.ReadTimeout:
|
@@ -182,16 +221,24 @@ def stream_predict(openai_api_key, system_prompt, history, inputs, chatbot, all_
|
|
182 |
yield get_return_value()
|
183 |
continue
|
184 |
# decode each line as response data is in bytes
|
185 |
-
if chunklength > 6 and "delta" in chunk[
|
186 |
-
finish_reason = chunk[
|
187 |
-
status_text = construct_token_message(
|
|
|
|
|
188 |
if finish_reason == "stop":
|
189 |
yield get_return_value()
|
190 |
break
|
191 |
try:
|
192 |
-
partial_words =
|
|
|
|
|
193 |
except KeyError:
|
194 |
-
status_text =
|
|
|
|
|
|
|
|
|
195 |
yield get_return_value()
|
196 |
break
|
197 |
history[-1] = construct_assistant(partial_words)
|
@@ -200,16 +247,36 @@ def stream_predict(openai_api_key, system_prompt, history, inputs, chatbot, all_
|
|
200 |
yield get_return_value()
|
201 |
|
202 |
|
203 |
-
def predict_all(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
logging.info("一次性回答模式")
|
205 |
history.append(construct_user(inputs))
|
206 |
history.append(construct_assistant(""))
|
207 |
chatbot.append((parse_text(inputs), ""))
|
208 |
all_token_counts.append(count_token(construct_user(inputs)))
|
209 |
try:
|
210 |
-
response = get_response(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
211 |
except requests.exceptions.ConnectTimeout:
|
212 |
-
status_text =
|
|
|
|
|
213 |
return chatbot, history, status_text, all_token_counts
|
214 |
except requests.exceptions.ProxyError:
|
215 |
status_text = standard_error_msg + proxy_error_prompt + error_retrieve_prompt
|
@@ -227,8 +294,21 @@ def predict_all(openai_api_key, system_prompt, history, inputs, chatbot, all_tok
|
|
227 |
return chatbot, history, status_text, all_token_counts
|
228 |
|
229 |
|
230 |
-
def predict(
|
231 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
if use_websearch_checkbox:
|
233 |
results = ddg(inputs, max_results=3)
|
234 |
web_results = []
|
@@ -237,7 +317,11 @@ def predict(openai_api_key, system_prompt, history, inputs, chatbot, all_token_c
|
|
237 |
web_results.append(f'[{idx+1}]"{result["body"]}"\nURL: {result["href"]}')
|
238 |
web_results = "\n\n".join(web_results)
|
239 |
today = datetime.datetime.today().strftime("%Y-%m-%d")
|
240 |
-
inputs =
|
|
|
|
|
|
|
|
|
241 |
if len(openai_api_key) != 51:
|
242 |
status_text = standard_error_msg + no_apikey_msg
|
243 |
logging.info(status_text)
|
@@ -254,16 +338,41 @@ def predict(openai_api_key, system_prompt, history, inputs, chatbot, all_token_c
|
|
254 |
yield chatbot, history, "开始生成回答……", all_token_counts
|
255 |
if stream:
|
256 |
logging.info("使用流式传输")
|
257 |
-
iter = stream_predict(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
for chatbot, history, status_text, all_token_counts in iter:
|
259 |
yield chatbot, history, status_text, all_token_counts
|
260 |
else:
|
261 |
logging.info("不使用流式传输")
|
262 |
-
chatbot, history, status_text, all_token_counts = predict_all(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
yield chatbot, history, status_text, all_token_counts
|
264 |
logging.info(f"传输完毕。当前token计数为{all_token_counts}")
|
265 |
-
if len(history) > 1 and history[-1][
|
266 |
-
logging.info(
|
|
|
|
|
|
|
|
|
|
|
267 |
if stream:
|
268 |
max_token = max_token_streaming
|
269 |
else:
|
@@ -272,13 +381,34 @@ def predict(openai_api_key, system_prompt, history, inputs, chatbot, all_token_c
|
|
272 |
status_text = f"精简token中{all_token_counts}/{max_token}"
|
273 |
logging.info(status_text)
|
274 |
yield chatbot, history, status_text, all_token_counts
|
275 |
-
iter = reduce_token_size(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
for chatbot, history, status_text, all_token_counts in iter:
|
277 |
status_text = f"Token 达到上限,已自动降低Token计数至 {status_text}"
|
278 |
yield chatbot, history, status_text, all_token_counts
|
279 |
|
280 |
|
281 |
-
def retry(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
282 |
logging.info("重试中……")
|
283 |
if len(history) == 0:
|
284 |
yield chatbot, history, f"{standard_error_msg}上下文是空的", token_count
|
@@ -286,22 +416,58 @@ def retry(openai_api_key, system_prompt, history, chatbot, token_count, top_p, t
|
|
286 |
history.pop()
|
287 |
inputs = history.pop()["content"]
|
288 |
token_count.pop()
|
289 |
-
iter = predict(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
290 |
logging.info("重试完毕")
|
291 |
for x in iter:
|
292 |
yield x
|
293 |
|
294 |
|
295 |
-
def reduce_token_size(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
296 |
logging.info("开始减少token数量……")
|
297 |
-
iter = predict(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
298 |
logging.info(f"chatbot: {chatbot}")
|
299 |
for chatbot, history, status_text, previous_token_count in iter:
|
300 |
history = history[-2:]
|
301 |
token_count = previous_token_count[-1:]
|
302 |
if hidden:
|
303 |
chatbot.pop()
|
304 |
-
yield chatbot, history, construct_token_message(
|
|
|
|
|
305 |
logging.info("减少token数量完毕")
|
306 |
|
307 |
|
@@ -320,7 +486,12 @@ def delete_last_conversation(chatbot, history, previous_token_count):
|
|
320 |
if len(previous_token_count) > 0:
|
321 |
logging.info("删除了一组对话的token计数记录")
|
322 |
previous_token_count.pop()
|
323 |
-
return
|
|
|
|
|
|
|
|
|
|
|
324 |
|
325 |
|
326 |
def save_file(filename, system, history, chatbot):
|
@@ -340,6 +511,7 @@ def save_file(filename, system, history, chatbot):
|
|
340 |
logging.info("保存对话历史完毕")
|
341 |
return os.path.join(HISTORY_DIR, filename)
|
342 |
|
|
|
343 |
def save_chat_history(filename, system, history, chatbot):
|
344 |
if filename == "":
|
345 |
return
|
@@ -347,6 +519,7 @@ def save_chat_history(filename, system, history, chatbot):
|
|
347 |
filename += ".json"
|
348 |
return save_file(filename, system, history, chatbot)
|
349 |
|
|
|
350 |
def export_markdown(filename, system, history, chatbot):
|
351 |
if filename == "":
|
352 |
return
|
@@ -382,9 +555,11 @@ def load_chat_history(filename, system, history, chatbot):
|
|
382 |
logging.info("没有找到对话历史文件,不执行任何操作")
|
383 |
return filename, system, history, chatbot
|
384 |
|
|
|
385 |
def sorted_by_pinyin(list):
|
386 |
return sorted(list, key=lambda char: lazy_pinyin(char)[0][0])
|
387 |
|
|
|
388 |
def get_file_names(dir, plain=False, filetypes=[".json"]):
|
389 |
logging.info(f"获取文件名列表,目录为{dir},文件类型为{filetypes},是否为纯文本列表{plain}")
|
390 |
files = []
|
@@ -401,10 +576,12 @@ def get_file_names(dir, plain=False, filetypes=[".json"]):
|
|
401 |
else:
|
402 |
return gr.Dropdown.update(choices=files)
|
403 |
|
|
|
404 |
def get_history_names(plain=False):
|
405 |
logging.info("获取历史记录文件名列表")
|
406 |
return get_file_names(HISTORY_DIR, plain)
|
407 |
|
|
|
408 |
def load_template(filename, mode=0):
|
409 |
logging.info(f"加载模板文件{filename},模式为{mode}(0为返回字典和下拉菜单,1为返回下拉菜单,2为返回字典)")
|
410 |
lines = []
|
@@ -414,22 +591,28 @@ def load_template(filename, mode=0):
|
|
414 |
lines = json.load(f)
|
415 |
lines = [[i["act"], i["prompt"]] for i in lines]
|
416 |
else:
|
417 |
-
with open(
|
|
|
|
|
418 |
reader = csv.reader(csvfile)
|
419 |
lines = list(reader)
|
420 |
lines = lines[1:]
|
421 |
if mode == 1:
|
422 |
return sorted_by_pinyin([row[0] for row in lines])
|
423 |
elif mode == 2:
|
424 |
-
return {row[0]:row[1] for row in lines}
|
425 |
else:
|
426 |
choices = sorted_by_pinyin([row[0] for row in lines])
|
427 |
-
return {row[0]:row[1] for row in lines}, gr.Dropdown.update(
|
|
|
|
|
|
|
428 |
|
429 |
def get_template_names(plain=False):
|
430 |
logging.info("获取模板文件名列表")
|
431 |
return get_file_names(TEMPLATES_DIR, plain, filetypes=[".csv", "json"])
|
432 |
|
|
|
433 |
def get_template_content(templates, selection, original_system_prompt):
|
434 |
logging.info(f"应用模板中,选择为{selection},原始系统提示为{original_system_prompt}")
|
435 |
try:
|
@@ -437,9 +620,11 @@ def get_template_content(templates, selection, original_system_prompt):
|
|
437 |
except:
|
438 |
return original_system_prompt
|
439 |
|
|
|
440 |
def reset_state():
|
441 |
logging.info("重置状态")
|
442 |
return [], [], [], construct_token_message(0)
|
443 |
|
|
|
444 |
def reset_textbox():
|
445 |
-
return gr.update(value=
|
|
|
4 |
import logging
|
5 |
import json
|
6 |
import gradio as gr
|
7 |
+
|
8 |
# import openai
|
9 |
import os
|
10 |
import traceback
|
11 |
import requests
|
12 |
+
|
13 |
# import markdown
|
14 |
import csv
|
15 |
import mdtex2html
|
|
|
30 |
headers: List[str]
|
31 |
data: List[List[str | int | bool]]
|
32 |
|
33 |
+
|
34 |
initial_prompt = "You are a helpful assistant."
|
35 |
API_URL = "https://api.openai.com/v1/chat/completions"
|
36 |
HISTORY_DIR = "history"
|
37 |
TEMPLATES_DIR = "templates"
|
38 |
|
39 |
+
|
40 |
def postprocess(
|
41 |
+
self, y: List[Tuple[str | None, str | None]]
|
42 |
+
) -> List[Tuple[str | None, str | None]]:
|
43 |
+
"""
|
44 |
+
Parameters:
|
45 |
+
y: List of tuples representing the message and response pairs. Each message and response should be a string, which may be in Markdown format.
|
46 |
+
Returns:
|
47 |
+
List of tuples representing the message and response. Each message and response will be a string of HTML.
|
48 |
+
"""
|
49 |
+
if y is None:
|
50 |
+
return []
|
51 |
+
for i, (message, response) in enumerate(y):
|
52 |
+
y[i] = (
|
53 |
+
# None if message is None else markdown.markdown(message),
|
54 |
+
# None if response is None else markdown.markdown(response),
|
55 |
+
None if message is None else message,
|
56 |
+
None if response is None else mdtex2html.convert(response),
|
57 |
+
)
|
58 |
+
return y
|
59 |
+
|
60 |
|
61 |
def count_token(message):
|
62 |
encoding = tiktoken.get_encoding("cl100k_base")
|
|
|
64 |
length = len(encoding.encode(input_str))
|
65 |
return length
|
66 |
|
67 |
+
|
68 |
def parse_text(text):
|
69 |
lines = text.split("\n")
|
70 |
lines = [line for line in lines if line != ""]
|
|
|
72 |
for i, line in enumerate(lines):
|
73 |
if "```" in line:
|
74 |
count += 1
|
75 |
+
items = line.split("`")
|
76 |
if count % 2 == 1:
|
77 |
lines[i] = f'<pre><code class="language-{items[-1]}">'
|
78 |
else:
|
79 |
+
lines[i] = f"<br></code></pre>"
|
80 |
else:
|
81 |
if i > 0:
|
82 |
if count % 2 == 1:
|
|
|
92 |
line = line.replace("(", "(")
|
93 |
line = line.replace(")", ")")
|
94 |
line = line.replace("$", "$")
|
95 |
+
lines[i] = "<br>" + line
|
96 |
text = "".join(lines)
|
97 |
return text
|
98 |
|
99 |
+
|
100 |
def construct_text(role, text):
|
101 |
return {"role": role, "content": text}
|
102 |
|
103 |
+
|
104 |
def construct_user(text):
|
105 |
return construct_text("user", text)
|
106 |
|
107 |
+
|
108 |
def construct_system(text):
|
109 |
return construct_text("system", text)
|
110 |
|
111 |
+
|
112 |
def construct_assistant(text):
|
113 |
return construct_text("assistant", text)
|
114 |
|
115 |
+
|
116 |
def construct_token_message(token, stream=False):
|
117 |
return f"Token 计数: {token}"
|
118 |
|
119 |
+
|
120 |
+
def get_response(
|
121 |
+
openai_api_key, system_prompt, history, temperature, top_p, stream, selected_model
|
122 |
+
):
|
123 |
headers = {
|
124 |
"Content-Type": "application/json",
|
125 |
+
"Authorization": f"Bearer {openai_api_key}",
|
126 |
}
|
127 |
|
128 |
history = [construct_system(system_prompt), *history]
|
|
|
141 |
timeout = timeout_streaming
|
142 |
else:
|
143 |
timeout = timeout_all
|
144 |
+
response = requests.post(
|
145 |
+
API_URL, headers=headers, json=payload, stream=True, timeout=timeout
|
146 |
+
)
|
147 |
return response
|
148 |
|
149 |
+
|
150 |
+
def stream_predict(
|
151 |
+
openai_api_key,
|
152 |
+
system_prompt,
|
153 |
+
history,
|
154 |
+
inputs,
|
155 |
+
chatbot,
|
156 |
+
all_token_counts,
|
157 |
+
top_p,
|
158 |
+
temperature,
|
159 |
+
selected_model,
|
160 |
+
):
|
161 |
def get_return_value():
|
162 |
return chatbot, history, status_text, all_token_counts
|
163 |
|
|
|
171 |
user_token_count = 0
|
172 |
if len(all_token_counts) == 0:
|
173 |
system_prompt_token_count = count_token(construct_system(system_prompt))
|
174 |
+
user_token_count = (
|
175 |
+
count_token(construct_user(inputs)) + system_prompt_token_count
|
176 |
+
)
|
177 |
else:
|
178 |
user_token_count = count_token(construct_user(inputs))
|
179 |
all_token_counts.append(user_token_count)
|
180 |
logging.info(f"输入token计数: {user_token_count}")
|
181 |
yield get_return_value()
|
182 |
try:
|
183 |
+
response = get_response(
|
184 |
+
openai_api_key,
|
185 |
+
system_prompt,
|
186 |
+
history,
|
187 |
+
temperature,
|
188 |
+
top_p,
|
189 |
+
True,
|
190 |
+
selected_model,
|
191 |
+
)
|
192 |
except requests.exceptions.ConnectTimeout:
|
193 |
+
status_text = (
|
194 |
+
standard_error_msg + connection_timeout_prompt + error_retrieve_prompt
|
195 |
+
)
|
196 |
yield get_return_value()
|
197 |
return
|
198 |
except requests.exceptions.ReadTimeout:
|
|
|
221 |
yield get_return_value()
|
222 |
continue
|
223 |
# decode each line as response data is in bytes
|
224 |
+
if chunklength > 6 and "delta" in chunk["choices"][0]:
|
225 |
+
finish_reason = chunk["choices"][0]["finish_reason"]
|
226 |
+
status_text = construct_token_message(
|
227 |
+
sum(all_token_counts), stream=True
|
228 |
+
)
|
229 |
if finish_reason == "stop":
|
230 |
yield get_return_value()
|
231 |
break
|
232 |
try:
|
233 |
+
partial_words = (
|
234 |
+
partial_words + chunk["choices"][0]["delta"]["content"]
|
235 |
+
)
|
236 |
except KeyError:
|
237 |
+
status_text = (
|
238 |
+
standard_error_msg
|
239 |
+
+ "API回复中找不到内容。很可能是Token计数达到上限了。请重置对话。当前Token计数: "
|
240 |
+
+ str(sum(all_token_counts))
|
241 |
+
)
|
242 |
yield get_return_value()
|
243 |
break
|
244 |
history[-1] = construct_assistant(partial_words)
|
|
|
247 |
yield get_return_value()
|
248 |
|
249 |
|
250 |
+
def predict_all(
|
251 |
+
openai_api_key,
|
252 |
+
system_prompt,
|
253 |
+
history,
|
254 |
+
inputs,
|
255 |
+
chatbot,
|
256 |
+
all_token_counts,
|
257 |
+
top_p,
|
258 |
+
temperature,
|
259 |
+
selected_model,
|
260 |
+
):
|
261 |
logging.info("一次性回答模式")
|
262 |
history.append(construct_user(inputs))
|
263 |
history.append(construct_assistant(""))
|
264 |
chatbot.append((parse_text(inputs), ""))
|
265 |
all_token_counts.append(count_token(construct_user(inputs)))
|
266 |
try:
|
267 |
+
response = get_response(
|
268 |
+
openai_api_key,
|
269 |
+
system_prompt,
|
270 |
+
history,
|
271 |
+
temperature,
|
272 |
+
top_p,
|
273 |
+
False,
|
274 |
+
selected_model,
|
275 |
+
)
|
276 |
except requests.exceptions.ConnectTimeout:
|
277 |
+
status_text = (
|
278 |
+
standard_error_msg + connection_timeout_prompt + error_retrieve_prompt
|
279 |
+
)
|
280 |
return chatbot, history, status_text, all_token_counts
|
281 |
except requests.exceptions.ProxyError:
|
282 |
status_text = standard_error_msg + proxy_error_prompt + error_retrieve_prompt
|
|
|
294 |
return chatbot, history, status_text, all_token_counts
|
295 |
|
296 |
|
297 |
+
def predict(
|
298 |
+
openai_api_key,
|
299 |
+
system_prompt,
|
300 |
+
history,
|
301 |
+
inputs,
|
302 |
+
chatbot,
|
303 |
+
all_token_counts,
|
304 |
+
top_p,
|
305 |
+
temperature,
|
306 |
+
stream=False,
|
307 |
+
selected_model=MODELS[0],
|
308 |
+
use_websearch_checkbox=False,
|
309 |
+
should_check_token_count=True,
|
310 |
+
): # repetition_penalty, top_k
|
311 |
+
logging.info("输入为:" + colorama.Fore.BLUE + f"{inputs}" + colorama.Style.RESET_ALL)
|
312 |
if use_websearch_checkbox:
|
313 |
results = ddg(inputs, max_results=3)
|
314 |
web_results = []
|
|
|
317 |
web_results.append(f'[{idx+1}]"{result["body"]}"\nURL: {result["href"]}')
|
318 |
web_results = "\n\n".join(web_results)
|
319 |
today = datetime.datetime.today().strftime("%Y-%m-%d")
|
320 |
+
inputs = (
|
321 |
+
websearch_prompt.replace("{current_date}", today)
|
322 |
+
.replace("{query}", inputs)
|
323 |
+
.replace("{web_results}", web_results)
|
324 |
+
)
|
325 |
if len(openai_api_key) != 51:
|
326 |
status_text = standard_error_msg + no_apikey_msg
|
327 |
logging.info(status_text)
|
|
|
338 |
yield chatbot, history, "开始生成回答……", all_token_counts
|
339 |
if stream:
|
340 |
logging.info("使用流式传输")
|
341 |
+
iter = stream_predict(
|
342 |
+
openai_api_key,
|
343 |
+
system_prompt,
|
344 |
+
history,
|
345 |
+
inputs,
|
346 |
+
chatbot,
|
347 |
+
all_token_counts,
|
348 |
+
top_p,
|
349 |
+
temperature,
|
350 |
+
selected_model,
|
351 |
+
)
|
352 |
for chatbot, history, status_text, all_token_counts in iter:
|
353 |
yield chatbot, history, status_text, all_token_counts
|
354 |
else:
|
355 |
logging.info("不使用流式传输")
|
356 |
+
chatbot, history, status_text, all_token_counts = predict_all(
|
357 |
+
openai_api_key,
|
358 |
+
system_prompt,
|
359 |
+
history,
|
360 |
+
inputs,
|
361 |
+
chatbot,
|
362 |
+
all_token_counts,
|
363 |
+
top_p,
|
364 |
+
temperature,
|
365 |
+
selected_model,
|
366 |
+
)
|
367 |
yield chatbot, history, status_text, all_token_counts
|
368 |
logging.info(f"传输完毕。当前token计数为{all_token_counts}")
|
369 |
+
if len(history) > 1 and history[-1]["content"] != inputs:
|
370 |
+
logging.info(
|
371 |
+
"回答为:"
|
372 |
+
+ colorama.Fore.BLUE
|
373 |
+
+ f"{history[-1]['content']}"
|
374 |
+
+ colorama.Style.RESET_ALL
|
375 |
+
)
|
376 |
if stream:
|
377 |
max_token = max_token_streaming
|
378 |
else:
|
|
|
381 |
status_text = f"精简token中{all_token_counts}/{max_token}"
|
382 |
logging.info(status_text)
|
383 |
yield chatbot, history, status_text, all_token_counts
|
384 |
+
iter = reduce_token_size(
|
385 |
+
openai_api_key,
|
386 |
+
system_prompt,
|
387 |
+
history,
|
388 |
+
chatbot,
|
389 |
+
all_token_counts,
|
390 |
+
top_p,
|
391 |
+
temperature,
|
392 |
+
stream=False,
|
393 |
+
selected_model=selected_model,
|
394 |
+
hidden=True,
|
395 |
+
)
|
396 |
for chatbot, history, status_text, all_token_counts in iter:
|
397 |
status_text = f"Token 达到上限,已自动降低Token计数至 {status_text}"
|
398 |
yield chatbot, history, status_text, all_token_counts
|
399 |
|
400 |
|
401 |
+
def retry(
|
402 |
+
openai_api_key,
|
403 |
+
system_prompt,
|
404 |
+
history,
|
405 |
+
chatbot,
|
406 |
+
token_count,
|
407 |
+
top_p,
|
408 |
+
temperature,
|
409 |
+
stream=False,
|
410 |
+
selected_model=MODELS[0],
|
411 |
+
):
|
412 |
logging.info("重试中……")
|
413 |
if len(history) == 0:
|
414 |
yield chatbot, history, f"{standard_error_msg}上下文是空的", token_count
|
|
|
416 |
history.pop()
|
417 |
inputs = history.pop()["content"]
|
418 |
token_count.pop()
|
419 |
+
iter = predict(
|
420 |
+
openai_api_key,
|
421 |
+
system_prompt,
|
422 |
+
history,
|
423 |
+
inputs,
|
424 |
+
chatbot,
|
425 |
+
token_count,
|
426 |
+
top_p,
|
427 |
+
temperature,
|
428 |
+
stream=stream,
|
429 |
+
selected_model=selected_model,
|
430 |
+
)
|
431 |
logging.info("重试完毕")
|
432 |
for x in iter:
|
433 |
yield x
|
434 |
|
435 |
|
436 |
+
def reduce_token_size(
|
437 |
+
openai_api_key,
|
438 |
+
system_prompt,
|
439 |
+
history,
|
440 |
+
chatbot,
|
441 |
+
token_count,
|
442 |
+
top_p,
|
443 |
+
temperature,
|
444 |
+
stream=False,
|
445 |
+
selected_model=MODELS[0],
|
446 |
+
hidden=False,
|
447 |
+
):
|
448 |
logging.info("开始减少token数量……")
|
449 |
+
iter = predict(
|
450 |
+
openai_api_key,
|
451 |
+
system_prompt,
|
452 |
+
history,
|
453 |
+
summarize_prompt,
|
454 |
+
chatbot,
|
455 |
+
token_count,
|
456 |
+
top_p,
|
457 |
+
temperature,
|
458 |
+
stream=stream,
|
459 |
+
selected_model=selected_model,
|
460 |
+
should_check_token_count=False,
|
461 |
+
)
|
462 |
logging.info(f"chatbot: {chatbot}")
|
463 |
for chatbot, history, status_text, previous_token_count in iter:
|
464 |
history = history[-2:]
|
465 |
token_count = previous_token_count[-1:]
|
466 |
if hidden:
|
467 |
chatbot.pop()
|
468 |
+
yield chatbot, history, construct_token_message(
|
469 |
+
sum(token_count), stream=stream
|
470 |
+
), token_count
|
471 |
logging.info("减少token数量完毕")
|
472 |
|
473 |
|
|
|
486 |
if len(previous_token_count) > 0:
|
487 |
logging.info("删除了一组对话的token计数记录")
|
488 |
previous_token_count.pop()
|
489 |
+
return (
|
490 |
+
chatbot,
|
491 |
+
history,
|
492 |
+
previous_token_count,
|
493 |
+
construct_token_message(sum(previous_token_count)),
|
494 |
+
)
|
495 |
|
496 |
|
497 |
def save_file(filename, system, history, chatbot):
|
|
|
511 |
logging.info("保存对话历史完毕")
|
512 |
return os.path.join(HISTORY_DIR, filename)
|
513 |
|
514 |
+
|
515 |
def save_chat_history(filename, system, history, chatbot):
|
516 |
if filename == "":
|
517 |
return
|
|
|
519 |
filename += ".json"
|
520 |
return save_file(filename, system, history, chatbot)
|
521 |
|
522 |
+
|
523 |
def export_markdown(filename, system, history, chatbot):
|
524 |
if filename == "":
|
525 |
return
|
|
|
555 |
logging.info("没有找到对话历史文件,不执行任何操作")
|
556 |
return filename, system, history, chatbot
|
557 |
|
558 |
+
|
559 |
def sorted_by_pinyin(list):
|
560 |
return sorted(list, key=lambda char: lazy_pinyin(char)[0][0])
|
561 |
|
562 |
+
|
563 |
def get_file_names(dir, plain=False, filetypes=[".json"]):
|
564 |
logging.info(f"获取文件名列表,目录为{dir},文件类型为{filetypes},是否为纯文本列表{plain}")
|
565 |
files = []
|
|
|
576 |
else:
|
577 |
return gr.Dropdown.update(choices=files)
|
578 |
|
579 |
+
|
580 |
def get_history_names(plain=False):
|
581 |
logging.info("获取历史记录文件名列表")
|
582 |
return get_file_names(HISTORY_DIR, plain)
|
583 |
|
584 |
+
|
585 |
def load_template(filename, mode=0):
|
586 |
logging.info(f"加载模板文件{filename},模式为{mode}(0为返回字典和下拉菜单,1为返回下拉菜单,2为返回字典)")
|
587 |
lines = []
|
|
|
591 |
lines = json.load(f)
|
592 |
lines = [[i["act"], i["prompt"]] for i in lines]
|
593 |
else:
|
594 |
+
with open(
|
595 |
+
os.path.join(TEMPLATES_DIR, filename), "r", encoding="utf8"
|
596 |
+
) as csvfile:
|
597 |
reader = csv.reader(csvfile)
|
598 |
lines = list(reader)
|
599 |
lines = lines[1:]
|
600 |
if mode == 1:
|
601 |
return sorted_by_pinyin([row[0] for row in lines])
|
602 |
elif mode == 2:
|
603 |
+
return {row[0]: row[1] for row in lines}
|
604 |
else:
|
605 |
choices = sorted_by_pinyin([row[0] for row in lines])
|
606 |
+
return {row[0]: row[1] for row in lines}, gr.Dropdown.update(
|
607 |
+
choices=choices, value=choices[0]
|
608 |
+
)
|
609 |
+
|
610 |
|
611 |
def get_template_names(plain=False):
|
612 |
logging.info("获取模板文件名列表")
|
613 |
return get_file_names(TEMPLATES_DIR, plain, filetypes=[".csv", "json"])
|
614 |
|
615 |
+
|
616 |
def get_template_content(templates, selection, original_system_prompt):
|
617 |
logging.info(f"应用模板中,选择为{selection},原始系统提示为{original_system_prompt}")
|
618 |
try:
|
|
|
620 |
except:
|
621 |
return original_system_prompt
|
622 |
|
623 |
+
|
624 |
def reset_state():
|
625 |
logging.info("重置状态")
|
626 |
return [], [], [], construct_token_message(0)
|
627 |
|
628 |
+
|
629 |
def reset_textbox():
|
630 |
+
return gr.update(value="")
|