Spaces:
Sleeping
Sleeping
Tuchuanhuhuhu
commited on
Commit
·
c12b724
1
Parent(s):
60fe470
加入索引模式的实时回答功能;适配llama_index 0.5.0;加入繁体中文支持
Browse files- modules/chat_func.py +71 -27
- modules/llama_func.py +20 -16
- modules/presets.py +2 -1
- modules/utils.py +19 -4
- requirements.txt +1 -0
modules/chat_func.py
CHANGED
@@ -13,6 +13,9 @@ import colorama
|
|
13 |
from duckduckgo_search import ddg
|
14 |
import asyncio
|
15 |
import aiohttp
|
|
|
|
|
|
|
16 |
|
17 |
from modules.presets import *
|
18 |
from modules.llama_func import *
|
@@ -63,7 +66,7 @@ def get_response(
|
|
63 |
# 如果有自定义的api-url,使用自定义url发送请求,否则使用默认设置发送请求
|
64 |
if shared.state.api_url != API_URL:
|
65 |
logging.info(f"使用自定义API URL: {shared.state.api_url}")
|
66 |
-
|
67 |
response = requests.post(
|
68 |
shared.state.api_url,
|
69 |
headers=headers,
|
@@ -72,7 +75,7 @@ def get_response(
|
|
72 |
timeout=timeout,
|
73 |
proxies=proxies,
|
74 |
)
|
75 |
-
|
76 |
return response
|
77 |
|
78 |
|
@@ -103,13 +106,17 @@ def stream_predict(
|
|
103 |
else:
|
104 |
chatbot.append((inputs, ""))
|
105 |
user_token_count = 0
|
|
|
|
|
|
|
|
|
106 |
if len(all_token_counts) == 0:
|
107 |
system_prompt_token_count = count_token(construct_system(system_prompt))
|
108 |
user_token_count = (
|
109 |
-
|
110 |
)
|
111 |
else:
|
112 |
-
user_token_count =
|
113 |
all_token_counts.append(user_token_count)
|
114 |
logging.info(f"输入token计数: {user_token_count}")
|
115 |
yield get_return_value()
|
@@ -137,6 +144,8 @@ def stream_predict(
|
|
137 |
yield get_return_value()
|
138 |
error_json_str = ""
|
139 |
|
|
|
|
|
140 |
for chunk in tqdm(response.iter_lines()):
|
141 |
if counter == 0:
|
142 |
counter += 1
|
@@ -201,7 +210,10 @@ def predict_all(
|
|
201 |
chatbot.append((fake_input, ""))
|
202 |
else:
|
203 |
chatbot.append((inputs, ""))
|
204 |
-
|
|
|
|
|
|
|
205 |
try:
|
206 |
response = get_response(
|
207 |
openai_api_key,
|
@@ -224,13 +236,22 @@ def predict_all(
|
|
224 |
status_text = standard_error_msg + ssl_error_prompt + error_retrieve_prompt
|
225 |
return chatbot, history, status_text, all_token_counts
|
226 |
response = json.loads(response.text)
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
|
235 |
|
236 |
def predict(
|
@@ -254,37 +275,55 @@ def predict(
|
|
254 |
yield chatbot+[(inputs, "")], history, "开始生成回答……", all_token_counts
|
255 |
if reply_language == "跟随问题语言(不稳定)":
|
256 |
reply_language = "the same language as the question, such as English, 中文, 日本語, Español, Français, or Deutsch."
|
|
|
|
|
|
|
257 |
if files:
|
|
|
|
|
258 |
msg = "加载索引中……(这可能需要几分钟)"
|
259 |
logging.info(msg)
|
260 |
yield chatbot+[(inputs, "")], history, msg, all_token_counts
|
261 |
index = construct_index(openai_api_key, file_src=files)
|
262 |
msg = "索引构建完成,获取回答中……"
|
|
|
263 |
yield chatbot+[(inputs, "")], history, msg, all_token_counts
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
271 |
search_results = ddg(inputs, max_results=5)
|
272 |
old_inputs = inputs
|
273 |
-
|
274 |
for idx, result in enumerate(search_results):
|
275 |
logging.info(f"搜索结果{idx + 1}:{result}")
|
276 |
domain_name = urllib3.util.parse_url(result["href"]).host
|
277 |
-
|
278 |
-
|
279 |
-
|
|
|
280 |
inputs = (
|
281 |
replace_today(WEBSEARCH_PTOMPT_TEMPLATE)
|
282 |
.replace("{query}", inputs)
|
283 |
-
.replace("{web_results}", "\n\n".join(
|
284 |
.replace("{reply_language}", reply_language )
|
285 |
)
|
286 |
else:
|
287 |
-
|
288 |
|
289 |
if len(openai_api_key) != 51:
|
290 |
status_text = standard_error_msg + no_apikey_msg
|
@@ -317,7 +356,7 @@ def predict(
|
|
317 |
temperature,
|
318 |
selected_model,
|
319 |
fake_input=old_inputs,
|
320 |
-
display_append=
|
321 |
)
|
322 |
for chatbot, history, status_text, all_token_counts in iter:
|
323 |
if shared.state.interrupted:
|
@@ -337,7 +376,7 @@ def predict(
|
|
337 |
temperature,
|
338 |
selected_model,
|
339 |
fake_input=old_inputs,
|
340 |
-
display_append=
|
341 |
)
|
342 |
yield chatbot, history, status_text, all_token_counts
|
343 |
|
@@ -350,6 +389,11 @@ def predict(
|
|
350 |
+ colorama.Style.RESET_ALL
|
351 |
)
|
352 |
|
|
|
|
|
|
|
|
|
|
|
353 |
if stream:
|
354 |
max_token = max_token_streaming
|
355 |
else:
|
|
|
13 |
from duckduckgo_search import ddg
|
14 |
import asyncio
|
15 |
import aiohttp
|
16 |
+
from llama_index.indices.query.vector_store import GPTVectorStoreIndexQuery
|
17 |
+
from llama_index.indices.query.schema import QueryBundle
|
18 |
+
from langchain.llms import OpenAIChat
|
19 |
|
20 |
from modules.presets import *
|
21 |
from modules.llama_func import *
|
|
|
66 |
# 如果有自定义的api-url,使用自定义url发送请求,否则使用默认设置发送请求
|
67 |
if shared.state.api_url != API_URL:
|
68 |
logging.info(f"使用自定义API URL: {shared.state.api_url}")
|
69 |
+
|
70 |
response = requests.post(
|
71 |
shared.state.api_url,
|
72 |
headers=headers,
|
|
|
75 |
timeout=timeout,
|
76 |
proxies=proxies,
|
77 |
)
|
78 |
+
|
79 |
return response
|
80 |
|
81 |
|
|
|
106 |
else:
|
107 |
chatbot.append((inputs, ""))
|
108 |
user_token_count = 0
|
109 |
+
if fake_input is not None:
|
110 |
+
input_token_count = count_token(construct_user(fake_input))
|
111 |
+
else:
|
112 |
+
input_token_count = count_token(construct_user(inputs))
|
113 |
if len(all_token_counts) == 0:
|
114 |
system_prompt_token_count = count_token(construct_system(system_prompt))
|
115 |
user_token_count = (
|
116 |
+
input_token_count + system_prompt_token_count
|
117 |
)
|
118 |
else:
|
119 |
+
user_token_count = input_token_count
|
120 |
all_token_counts.append(user_token_count)
|
121 |
logging.info(f"输入token计数: {user_token_count}")
|
122 |
yield get_return_value()
|
|
|
144 |
yield get_return_value()
|
145 |
error_json_str = ""
|
146 |
|
147 |
+
if fake_input is not None:
|
148 |
+
history[-2] = construct_user(fake_input)
|
149 |
for chunk in tqdm(response.iter_lines()):
|
150 |
if counter == 0:
|
151 |
counter += 1
|
|
|
210 |
chatbot.append((fake_input, ""))
|
211 |
else:
|
212 |
chatbot.append((inputs, ""))
|
213 |
+
if fake_input is not None:
|
214 |
+
all_token_counts.append(count_token(construct_user(fake_input)))
|
215 |
+
else:
|
216 |
+
all_token_counts.append(count_token(construct_user(inputs)))
|
217 |
try:
|
218 |
response = get_response(
|
219 |
openai_api_key,
|
|
|
236 |
status_text = standard_error_msg + ssl_error_prompt + error_retrieve_prompt
|
237 |
return chatbot, history, status_text, all_token_counts
|
238 |
response = json.loads(response.text)
|
239 |
+
if fake_input is not None:
|
240 |
+
history[-2] = construct_user(fake_input)
|
241 |
+
try:
|
242 |
+
content = response["choices"][0]["message"]["content"]
|
243 |
+
history[-1] = construct_assistant(content)
|
244 |
+
chatbot[-1] = (chatbot[-1][0], content+display_append)
|
245 |
+
total_token_count = response["usage"]["total_tokens"]
|
246 |
+
if fake_input is not None:
|
247 |
+
all_token_counts[-1] += count_token(construct_assistant(content))
|
248 |
+
else:
|
249 |
+
all_token_counts[-1] = total_token_count - sum(all_token_counts)
|
250 |
+
status_text = construct_token_message(total_token_count)
|
251 |
+
return chatbot, history, status_text, all_token_counts
|
252 |
+
except KeyError:
|
253 |
+
status_text = standard_error_msg + str(response)
|
254 |
+
return chatbot, history, status_text, all_token_counts
|
255 |
|
256 |
|
257 |
def predict(
|
|
|
275 |
yield chatbot+[(inputs, "")], history, "开始生成回答……", all_token_counts
|
276 |
if reply_language == "跟随问题语言(不稳定)":
|
277 |
reply_language = "the same language as the question, such as English, 中文, 日本語, Español, Français, or Deutsch."
|
278 |
+
old_inputs = None
|
279 |
+
display_reference = []
|
280 |
+
limited_context = False
|
281 |
if files:
|
282 |
+
limited_context = True
|
283 |
+
old_inputs = inputs
|
284 |
msg = "加载索引中……(这可能需要几分钟)"
|
285 |
logging.info(msg)
|
286 |
yield chatbot+[(inputs, "")], history, msg, all_token_counts
|
287 |
index = construct_index(openai_api_key, file_src=files)
|
288 |
msg = "索引构建完成,获取回答中……"
|
289 |
+
logging.info(msg)
|
290 |
yield chatbot+[(inputs, "")], history, msg, all_token_counts
|
291 |
+
llm_predictor = LLMPredictor(llm=OpenAIChat(temperature=0, model_name=selected_model))
|
292 |
+
prompt_helper = PromptHelper(max_input_size = 4096, num_output = 5, max_chunk_overlap = 20, chunk_size_limit=600)
|
293 |
+
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper)
|
294 |
+
query_object = GPTVectorStoreIndexQuery(index.index_struct, service_context=service_context, similarity_top_k=5, vector_store=index._vector_store, docstore=index._docstore)
|
295 |
+
query_bundle = QueryBundle(inputs)
|
296 |
+
nodes = query_object.retrieve(query_bundle)
|
297 |
+
reference_results = [n.node.text for n in nodes]
|
298 |
+
reference_results = add_source_numbers(reference_results, use_source=False)
|
299 |
+
display_reference = add_details(reference_results)
|
300 |
+
display_reference = "\n\n" + "".join(display_reference)
|
301 |
+
inputs = (
|
302 |
+
replace_today(PROMPT_TEMPLATE)
|
303 |
+
.replace("{query_str}", inputs)
|
304 |
+
.replace("{context_str}", "\n\n".join(reference_results))
|
305 |
+
.replace("{reply_language}", reply_language )
|
306 |
+
)
|
307 |
+
elif use_websearch:
|
308 |
+
limited_context = True
|
309 |
search_results = ddg(inputs, max_results=5)
|
310 |
old_inputs = inputs
|
311 |
+
reference_results = []
|
312 |
for idx, result in enumerate(search_results):
|
313 |
logging.info(f"搜索结果{idx + 1}:{result}")
|
314 |
domain_name = urllib3.util.parse_url(result["href"]).host
|
315 |
+
reference_results.append([result["body"], result["href"]])
|
316 |
+
display_reference.append(f"{idx+1}. [{domain_name}]({result['href']})\n")
|
317 |
+
reference_results = add_source_numbers(reference_results)
|
318 |
+
display_reference = "\n\n" + "".join(display_reference)
|
319 |
inputs = (
|
320 |
replace_today(WEBSEARCH_PTOMPT_TEMPLATE)
|
321 |
.replace("{query}", inputs)
|
322 |
+
.replace("{web_results}", "\n\n".join(reference_results))
|
323 |
.replace("{reply_language}", reply_language )
|
324 |
)
|
325 |
else:
|
326 |
+
display_reference = ""
|
327 |
|
328 |
if len(openai_api_key) != 51:
|
329 |
status_text = standard_error_msg + no_apikey_msg
|
|
|
356 |
temperature,
|
357 |
selected_model,
|
358 |
fake_input=old_inputs,
|
359 |
+
display_append=display_reference
|
360 |
)
|
361 |
for chatbot, history, status_text, all_token_counts in iter:
|
362 |
if shared.state.interrupted:
|
|
|
376 |
temperature,
|
377 |
selected_model,
|
378 |
fake_input=old_inputs,
|
379 |
+
display_append=display_reference
|
380 |
)
|
381 |
yield chatbot, history, status_text, all_token_counts
|
382 |
|
|
|
389 |
+ colorama.Style.RESET_ALL
|
390 |
)
|
391 |
|
392 |
+
if limited_context:
|
393 |
+
history = history[-4:]
|
394 |
+
all_token_counts = all_token_counts[-2:]
|
395 |
+
yield chatbot, history, status_text, all_token_counts
|
396 |
+
|
397 |
if stream:
|
398 |
max_token = max_token_streaming
|
399 |
else:
|
modules/llama_func.py
CHANGED
@@ -13,6 +13,8 @@ from llama_index import (
|
|
13 |
from langchain.llms import OpenAI
|
14 |
from langchain.chat_models import ChatOpenAI
|
15 |
import colorama
|
|
|
|
|
16 |
|
17 |
from modules.presets import *
|
18 |
from modules.utils import *
|
@@ -29,6 +31,12 @@ def get_index_name(file_src):
|
|
29 |
|
30 |
return md5_hash.hexdigest()
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
def get_documents(file_src):
|
34 |
documents = []
|
@@ -38,9 +46,12 @@ def get_documents(file_src):
|
|
38 |
logging.info(f"loading file: {file.name}")
|
39 |
if os.path.splitext(file.name)[1] == ".pdf":
|
40 |
logging.debug("Loading PDF...")
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
44 |
elif os.path.splitext(file.name)[1] == ".docx":
|
45 |
logging.debug("Loading DOCX...")
|
46 |
DocxReader = download_loader("DocxReader")
|
@@ -56,6 +67,8 @@ def get_documents(file_src):
|
|
56 |
with open(file.name, "r", encoding="utf-8") as f:
|
57 |
text_raw = f.read()
|
58 |
text = add_space(text_raw)
|
|
|
|
|
59 |
documents += [Document(text)]
|
60 |
logging.debug("Documents loaded.")
|
61 |
return documents
|
@@ -65,13 +78,11 @@ def construct_index(
|
|
65 |
api_key,
|
66 |
file_src,
|
67 |
max_input_size=4096,
|
68 |
-
num_outputs=
|
69 |
max_chunk_overlap=20,
|
70 |
chunk_size_limit=600,
|
71 |
embedding_limit=None,
|
72 |
-
separator=" "
|
73 |
-
num_children=10,
|
74 |
-
max_keywords_per_chunk=10,
|
75 |
):
|
76 |
os.environ["OPENAI_API_KEY"] = api_key
|
77 |
chunk_size_limit = None if chunk_size_limit == 0 else chunk_size_limit
|
@@ -81,14 +92,7 @@ def construct_index(
|
|
81 |
llm_predictor = LLMPredictor(
|
82 |
llm=ChatOpenAI(model_name="gpt-3.5-turbo-0301", openai_api_key=api_key)
|
83 |
)
|
84 |
-
prompt_helper = PromptHelper(
|
85 |
-
max_input_size,
|
86 |
-
num_outputs,
|
87 |
-
max_chunk_overlap,
|
88 |
-
embedding_limit,
|
89 |
-
chunk_size_limit,
|
90 |
-
separator=separator,
|
91 |
-
)
|
92 |
index_name = get_index_name(file_src)
|
93 |
if os.path.exists(f"./index/{index_name}.json"):
|
94 |
logging.info("找到了缓存的索引文件,加载中……")
|
@@ -97,7 +101,7 @@ def construct_index(
|
|
97 |
try:
|
98 |
documents = get_documents(file_src)
|
99 |
logging.info("构建索引中……")
|
100 |
-
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper)
|
101 |
index = GPTSimpleVectorIndex.from_documents(
|
102 |
documents, service_context=service_context
|
103 |
)
|
|
|
13 |
from langchain.llms import OpenAI
|
14 |
from langchain.chat_models import ChatOpenAI
|
15 |
import colorama
|
16 |
+
import PyPDF2
|
17 |
+
from tqdm import tqdm
|
18 |
|
19 |
from modules.presets import *
|
20 |
from modules.utils import *
|
|
|
31 |
|
32 |
return md5_hash.hexdigest()
|
33 |
|
34 |
+
def block_split(text):
|
35 |
+
blocks = []
|
36 |
+
while len(text) > 0:
|
37 |
+
blocks.append(Document(text[:1000]))
|
38 |
+
text = text[1000:]
|
39 |
+
return blocks
|
40 |
|
41 |
def get_documents(file_src):
|
42 |
documents = []
|
|
|
46 |
logging.info(f"loading file: {file.name}")
|
47 |
if os.path.splitext(file.name)[1] == ".pdf":
|
48 |
logging.debug("Loading PDF...")
|
49 |
+
pdftext = ""
|
50 |
+
with open(file.name, 'rb') as pdfFileObj:
|
51 |
+
pdfReader = PyPDF2.PdfReader(pdfFileObj)
|
52 |
+
for page in tqdm(pdfReader.pages):
|
53 |
+
pdftext += page.extract_text()
|
54 |
+
text_raw = pdftext
|
55 |
elif os.path.splitext(file.name)[1] == ".docx":
|
56 |
logging.debug("Loading DOCX...")
|
57 |
DocxReader = download_loader("DocxReader")
|
|
|
67 |
with open(file.name, "r", encoding="utf-8") as f:
|
68 |
text_raw = f.read()
|
69 |
text = add_space(text_raw)
|
70 |
+
# text = block_split(text)
|
71 |
+
# documents += text
|
72 |
documents += [Document(text)]
|
73 |
logging.debug("Documents loaded.")
|
74 |
return documents
|
|
|
78 |
api_key,
|
79 |
file_src,
|
80 |
max_input_size=4096,
|
81 |
+
num_outputs=5,
|
82 |
max_chunk_overlap=20,
|
83 |
chunk_size_limit=600,
|
84 |
embedding_limit=None,
|
85 |
+
separator=" "
|
|
|
|
|
86 |
):
|
87 |
os.environ["OPENAI_API_KEY"] = api_key
|
88 |
chunk_size_limit = None if chunk_size_limit == 0 else chunk_size_limit
|
|
|
92 |
llm_predictor = LLMPredictor(
|
93 |
llm=ChatOpenAI(model_name="gpt-3.5-turbo-0301", openai_api_key=api_key)
|
94 |
)
|
95 |
+
prompt_helper = PromptHelper(max_input_size = max_input_size, num_output = num_outputs, max_chunk_overlap = max_chunk_overlap, embedding_limit=embedding_limit, chunk_size_limit=600, separator=separator)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
index_name = get_index_name(file_src)
|
97 |
if os.path.exists(f"./index/{index_name}.json"):
|
98 |
logging.info("找到了缓存的索引文件,加载中……")
|
|
|
101 |
try:
|
102 |
documents = get_documents(file_src)
|
103 |
logging.info("构建索引中……")
|
104 |
+
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper, chunk_size_limit=chunk_size_limit)
|
105 |
index = GPTSimpleVectorIndex.from_documents(
|
106 |
documents, service_context=service_context
|
107 |
)
|
modules/presets.py
CHANGED
@@ -57,7 +57,8 @@ MODELS = [
|
|
57 |
] # 可选的模型
|
58 |
|
59 |
REPLY_LANGUAGES = [
|
60 |
-
"
|
|
|
61 |
"English",
|
62 |
"日本語",
|
63 |
"Español",
|
|
|
57 |
] # 可选的模型
|
58 |
|
59 |
REPLY_LANGUAGES = [
|
60 |
+
"简体中文",
|
61 |
+
"繁體中文",
|
62 |
"English",
|
63 |
"日本語",
|
64 |
"Español",
|
modules/utils.py
CHANGED
@@ -375,8 +375,8 @@ def replace_today(prompt):
|
|
375 |
|
376 |
|
377 |
def get_geoip():
|
378 |
-
response = requests.get("https://ipapi.co/json/", timeout=5)
|
379 |
try:
|
|
|
380 |
data = response.json()
|
381 |
except:
|
382 |
data = {"error": True, "reason": "连接ipapi失败"}
|
@@ -384,7 +384,7 @@ def get_geoip():
|
|
384 |
logging.warning(f"无法获取IP地址信息。\n{data}")
|
385 |
if data["reason"] == "RateLimited":
|
386 |
return (
|
387 |
-
f"获取IP地理位置失败,因为达到了检测IP
|
388 |
)
|
389 |
else:
|
390 |
return f"获取IP地理位置失败。原因:{data['reason']}。你仍然可以使用聊天功能。"
|
@@ -457,7 +457,7 @@ def get_proxies():
|
|
457 |
|
458 |
if proxies == {}:
|
459 |
proxies = None
|
460 |
-
|
461 |
return proxies
|
462 |
|
463 |
def run(command, desc=None, errdesc=None, custom_env=None, live=False):
|
@@ -500,4 +500,19 @@ Python: <span title="{sys.version}">{python_version}</span>
|
|
500 |
Gradio: {gr.__version__}
|
501 |
•
|
502 |
Commit: {commit_info}
|
503 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
375 |
|
376 |
|
377 |
def get_geoip():
|
|
|
378 |
try:
|
379 |
+
response = requests.get("https://ipapi.co/json/", timeout=5)
|
380 |
data = response.json()
|
381 |
except:
|
382 |
data = {"error": True, "reason": "连接ipapi失败"}
|
|
|
384 |
logging.warning(f"无法获取IP地址信息。\n{data}")
|
385 |
if data["reason"] == "RateLimited":
|
386 |
return (
|
387 |
+
f"获取IP地理位置失败,因为达到了检测IP的速率限制。聊天功能可能仍然可用。"
|
388 |
)
|
389 |
else:
|
390 |
return f"获取IP地理位置失败。原因:{data['reason']}。你仍然可以使用聊天功能。"
|
|
|
457 |
|
458 |
if proxies == {}:
|
459 |
proxies = None
|
460 |
+
|
461 |
return proxies
|
462 |
|
463 |
def run(command, desc=None, errdesc=None, custom_env=None, live=False):
|
|
|
500 |
Gradio: {gr.__version__}
|
501 |
•
|
502 |
Commit: {commit_info}
|
503 |
+
"""
|
504 |
+
|
505 |
+
def add_source_numbers(lst, source_name = "Source", use_source = True):
|
506 |
+
if use_source:
|
507 |
+
return [f'[{idx+1}]\t "{item[0]}"\n{source_name}: {item[1]}' for idx, item in enumerate(lst)]
|
508 |
+
else:
|
509 |
+
return [f'[{idx+1}]\t "{item}"' for idx, item in enumerate(lst)]
|
510 |
+
|
511 |
+
def add_details(lst):
|
512 |
+
nodes = []
|
513 |
+
for index, txt in enumerate(lst):
|
514 |
+
brief = txt[:25].replace("\n", "")
|
515 |
+
nodes.append(
|
516 |
+
f"<details><summary>{brief}...</summary><p>{txt}</p></details>"
|
517 |
+
)
|
518 |
+
return nodes
|
requirements.txt
CHANGED
@@ -10,3 +10,4 @@ Pygments
|
|
10 |
llama_index
|
11 |
langchain
|
12 |
markdown
|
|
|
|
10 |
llama_index
|
11 |
langchain
|
12 |
markdown
|
13 |
+
PyPDF2
|