import json import gradio as gr # import openai import os import sys import traceback import requests # import markdown import csv my_api_key = "" # 在这里输入你的 API 密钥 HIDE_MY_KEY = False # 如果你想在UI中隐藏你的 API 密钥,将此值设置为 True initial_prompt = "You are a helpful assistant." API_URL = "https://api.openai.com/v1/chat/completions" HISTORY_DIR = "history" TEMPLATES_DIR = "templates" #if we are running in Docker if os.environ.get('dockerrun') == 'yes': dockerflag = True else: dockerflag = False if dockerflag: my_api_key = os.environ.get('my_api_key') if my_api_key == "empty": print("Please give a api key!") sys.exit(1) #auth username = os.environ.get('USERNAME') password = os.environ.get('PASSWORD') if isinstance(username, type(None)) or isinstance(password, type(None)): authflag = False else: authflag = True def parse_text(text): lines = text.split("\n") lines = [line for line in lines if line != ""] count = 0 firstline = False for i, line in enumerate(lines): if "```" in line: count += 1 items = line.split('`') if count % 2 == 1: lines[i] = f'
'
                firstline = True
            else:
                lines[i] = f'
' else: if i > 0: if count % 2 == 1: line = line.replace("`", "\`") line = line.replace("\"", "`\"`") line = line.replace("\'", "`\'`") # line = line.replace("&", "&") line = line.replace("<", "<") line = line.replace(">", ">") line = line.replace(" ", " ") line = line.replace("*", "*") line = line.replace("_", "_") line = line.replace("-", "-") line = line.replace(".", ".") line = line.replace("!", "!") line = line.replace("(", "(") line = line.replace(")", ")") line = line.replace("$", "$") lines[i] = "
"+line text = "".join(lines) return text def predict(inputs, top_p, temperature, openai_api_key, chatbot=[], history=[], system_prompt=initial_prompt, retry=False, summary=False, summary_on_crash = False, stream = True): # repetition_penalty, top_k if summary: stream = False headers = { "Content-Type": "application/json", "Authorization": f"Bearer {openai_api_key}" } chat_counter = len(history) // 2 print(f"chat_counter - {chat_counter}") messages = [compose_system(system_prompt)] if chat_counter: for index in range(0, 2*chat_counter, 2): temp1 = {} temp1["role"] = "user" temp1["content"] = history[index] temp2 = {} temp2["role"] = "assistant" temp2["content"] = history[index+1] if temp1["content"] != "": if temp2["content"] != "" or retry: messages.append(temp1) messages.append(temp2) else: messages[-1]['content'] = temp2['content'] if retry and chat_counter: messages.pop() elif summary: history = [*[i["content"] for i in messages[-2:]], "我们刚刚聊了什么?"] messages.append(compose_user( "请帮我总结一下上述对话的内容,实现减少字数的同时,保证对话的质量。在总结中不要加入这一句话。")) else: temp3 = {} temp3["role"] = "user" temp3["content"] = inputs messages.append(temp3) chat_counter += 1 # messages payload = { "model": "gpt-3.5-turbo", "messages": messages, # [{"role": "user", "content": f"{inputs}"}], "temperature": temperature, # 1.0, "top_p": top_p, # 1.0, "n": 1, "stream": stream, "presence_penalty": 0, "frequency_penalty": 0, } if not summary: history.append(inputs) else: print("精简中...") # make a POST request to the API endpoint using the requests.post method, passing in stream=True response = requests.post(API_URL, headers=headers, json=payload, stream=True) token_counter = 0 partial_words = "" counter = 0 if stream: chatbot.append((parse_text(history[-1]), "")) for chunk in response.iter_lines(): if counter == 0: counter += 1 continue counter += 1 # check whether each line is non-empty if chunk: # decode each line as response data is in bytes try: if len(json.loads(chunk.decode()[6:])['choices'][0]["delta"]) == 0: chunkjson = json.loads(chunk.decode()[6:]) status_text = f"id: {chunkjson['id']}, finish_reason: {chunkjson['choices'][0]['finish_reason']}" yield chatbot, history, status_text break except Exception as e: traceback.print_exc() print("Context 过长,正在尝试精简……") chatbot.pop() chatbot, history, status_text = next(predict(inputs, top_p, temperature, openai_api_key, chatbot, history, system_prompt, retry, summary=True, summary_on_crash=True, stream=False)) yield chatbot, history, status_text if not "ERROR" in status_text: print("精简完成,正在尝试重新生成……") yield next(predict(inputs, top_p, temperature, openai_api_key, chatbot, history, system_prompt, retry, summary=False, summary_on_crash=True, stream=False)) else: print("精简出错了,可能是网络原因。") break chunkjson = json.loads(chunk.decode()[6:]) status_text = f"id: {chunkjson['id']}, finish_reason: {chunkjson['choices'][0]['finish_reason']}" partial_words = partial_words + \ json.loads(chunk.decode()[6:])[ 'choices'][0]["delta"]["content"] if token_counter == 0: history.append(" " + partial_words) else: history[-1] = partial_words chatbot[-1] = (parse_text(history[-2]), parse_text(history[-1])) token_counter += 1 yield chatbot, history, status_text else: try: responsejson = json.loads(response.text) content = responsejson["choices"][0]["message"]["content"] history.append(content) chatbot.append((parse_text(history[-2]), parse_text(content))) status_text = "精简完成" except: chatbot.append((parse_text(history[-1]), "☹️发生了错误,请检查网络连接或者稍后再试。")) status_text = "status: ERROR" yield chatbot, history, status_text def delete_last_conversation(chatbot, history): if "☹️发生了错误" in chatbot[-1][1]: chatbot.pop() print(history) return chatbot, history history.pop() history.pop() print(history) return chatbot, history def save_chat_history(filename, system, history, chatbot): if filename == "": return if not filename.endswith(".json"): filename += ".json" os.makedirs(HISTORY_DIR, exist_ok=True) json_s = {"system": system, "history": history, "chatbot": chatbot} print(json_s) with open(os.path.join(HISTORY_DIR, filename), "w") as f: json.dump(json_s, f) def load_chat_history(filename): with open(os.path.join(HISTORY_DIR, filename), "r") as f: json_s = json.load(f) print(json_s) return filename, json_s["system"], json_s["history"], json_s["chatbot"] def get_file_names(dir, plain=False, filetype=".json"): # find all json files in the current directory and return their names try: files = sorted([f for f in os.listdir(dir) if f.endswith(filetype)]) except FileNotFoundError: files = [] if plain: return files else: return gr.Dropdown.update(choices=files) def get_history_names(plain=False): return get_file_names(HISTORY_DIR, plain) def load_template(filename, mode=0): lines = [] with open(os.path.join(TEMPLATES_DIR, filename), "r", encoding="utf8") as csvfile: reader = csv.reader(csvfile) lines = list(reader) lines = lines[1:] if mode == 1: return sorted([row[0] for row in lines]) elif mode == 2: return {row[0]:row[1] for row in lines} else: return {row[0]:row[1] for row in lines}, gr.Dropdown.update(choices=sorted([row[0] for row in lines])) def get_template_names(plain=False): return get_file_names(TEMPLATES_DIR, plain, filetype=".csv") def reset_state(): return [], [] def compose_system(system_prompt): return {"role": "system", "content": system_prompt} def compose_user(user_input): return {"role": "user", "content": user_input} def reset_textbox(): return gr.update(value='') title = """

川虎ChatGPT 🚀

""" description = """
由Bilibili [土川虎虎虎](https://space.bilibili.com/29125536) 和 [明昭MZhao](https://space.bilibili.com/24807452)开发 访问川虎ChatGPT的 [GitHub项目](https://github.com/GaiZhenbiao/ChuanhuChatGPT) 下载最新版脚本 此App使用 `gpt-3.5-turbo` 大语言模型
""" customCSS = """ code { display: inline; white-space: break-spaces; border-radius: 6px; margin: 0 2px 0 2px; padding: .2em .4em .1em .4em; background-color: rgba(175,184,193,0.2); } pre { display: block; white-space: pre; background-color: hsla(0, 0%, 0%, 72%); border: solid 5px var(--color-border-primary) !important; border-radius: 8px; padding: 0 1.2rem 1.2rem; margin-top: 1em !important; color: #FFF; box-shadow: inset 0px 8px 16px hsla(0, 0%, 0%, .2) } pre code, pre code code { background-color: transparent !important; margin: 0; padding: 0; } """ with gr.Blocks(css=customCSS) as demo: gr.HTML(title) keyTxt = gr.Textbox(show_label=True, placeholder=f"在这里输入你的OpenAI API-key...", value=my_api_key, label="API Key", type="password", visible=not HIDE_MY_KEY).style(container=True) chatbot = gr.Chatbot() # .style(color_map=("#1D51EE", "#585A5B")) history = gr.State([]) promptTemplates = gr.State(load_template(get_template_names(plain=True)[0], mode=2)) TRUECOMSTANT = gr.State(True) FALSECONSTANT = gr.State(False) topic = gr.State("未命名对话历史记录") with gr.Row(): with gr.Column(scale=12): txt = gr.Textbox(show_label=False, placeholder="在这里输入").style( container=False) with gr.Column(min_width=50, scale=1): submitBtn = gr.Button("🚀", variant="primary") with gr.Row(): emptyBtn = gr.Button("🧹 新的对话") retryBtn = gr.Button("🔄 重新生成") delLastBtn = gr.Button("🗑️ 删除上条对话") reduceTokenBtn = gr.Button("♻️ 总结对话") statusDisplay = gr.Markdown("status: ready") systemPromptTxt = gr.Textbox(show_label=True, placeholder=f"在这里输入System Prompt...", label="System prompt", value=initial_prompt).style(container=True) with gr.Accordion(label="加载Prompt模板", open=False): with gr.Column(): with gr.Row(): with gr.Column(scale=6): templateFileSelectDropdown = gr.Dropdown(label="选择Prompt模板集合文件(.csv)", choices=get_template_names(plain=True), multiselect=False) with gr.Column(scale=1): templateRefreshBtn = gr.Button("🔄 刷新") templaeFileReadBtn = gr.Button("📂 读入模板") with gr.Row(): with gr.Column(scale=6): templateSelectDropdown = gr.Dropdown(label="从Prompt模板中加载", choices=load_template(get_template_names(plain=True)[0], mode=1), multiselect=False) with gr.Column(scale=1): templateApplyBtn = gr.Button("⬇️ 应用") with gr.Accordion(label="保存/加载对话历史记录(在文本框中输入文件名,点击“保存对话”按钮,历史记录文件会被存储到Python文件旁边)", open=False): with gr.Column(): with gr.Row(): with gr.Column(scale=6): saveFileName = gr.Textbox( show_label=True, placeholder=f"在这里输入保存的文件名...", label="设置保存文件名", value="对话历史记录").style(container=True) with gr.Column(scale=1): saveBtn = gr.Button("💾 保存对话") with gr.Row(): with gr.Column(scale=6): historyFileSelectDropdown = gr.Dropdown(label="从列表中加载对话", choices=get_history_names(plain=True), multiselect=False) with gr.Column(scale=1): historyRefreshBtn = gr.Button("🔄 刷新") historyReadBtn = gr.Button("📂 读入对话") #inputs, top_p, temperature, top_k, repetition_penalty with gr.Accordion("参数", open=False): top_p = gr.Slider(minimum=-0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p (nucleus sampling)",) temperature = gr.Slider(minimum=-0, maximum=5.0, value=1.0, step=0.1, interactive=True, label="Temperature",) #top_k = gr.Slider( minimum=1, maximum=50, value=4, step=1, interactive=True, label="Top-k",) #repetition_penalty = gr.Slider( minimum=0.1, maximum=3.0, value=1.03, step=0.01, interactive=True, label="Repetition Penalty", ) gr.Markdown(description) txt.submit(predict, [txt, top_p, temperature, keyTxt, chatbot, history, systemPromptTxt], [chatbot, history, statusDisplay]) txt.submit(reset_textbox, [], [txt]) submitBtn.click(predict, [txt, top_p, temperature, keyTxt, chatbot, history, systemPromptTxt], [chatbot, history, statusDisplay], show_progress=True) submitBtn.click(reset_textbox, [], [txt]) emptyBtn.click(reset_state, outputs=[chatbot, history]) retryBtn.click(predict, [txt, top_p, temperature, keyTxt, chatbot, history, systemPromptTxt, TRUECOMSTANT], [chatbot, history, statusDisplay], show_progress=True) delLastBtn.click(delete_last_conversation, [chatbot, history], [ chatbot, history], show_progress=True) reduceTokenBtn.click(predict, [txt, top_p, temperature, keyTxt, chatbot, history, systemPromptTxt, FALSECONSTANT, TRUECOMSTANT], [chatbot, history, statusDisplay], show_progress=True) saveBtn.click(save_chat_history, [ saveFileName, systemPromptTxt, history, chatbot], None, show_progress=True) saveBtn.click(get_history_names, None, [historyFileSelectDropdown]) historyRefreshBtn.click(get_history_names, None, [historyFileSelectDropdown]) historyReadBtn.click(load_chat_history, [historyFileSelectDropdown], [saveFileName, systemPromptTxt, history, chatbot], show_progress=True) templateRefreshBtn.click(get_template_names, None, [templateFileSelectDropdown]) templaeFileReadBtn.click(load_template, [templateFileSelectDropdown], [promptTemplates, templateSelectDropdown], show_progress=True) templateApplyBtn.click(lambda x, y: x[y], [promptTemplates, templateSelectDropdown], [systemPromptTxt], show_progress=True) print("川虎的温馨提示:访问 http://localhost:7860 查看界面") # 默认开启本地服务器,默认可以直接从IP访问,默认不创建公开分享链接 demo.title = "川虎ChatGPT 🚀" #if running in Docker if dockerflag: if authflag: demo.queue().launch(server_name="0.0.0.0", server_port=7860,auth=(username, password)) else: demo.queue().launch(server_name="0.0.0.0", server_port=7860, share=False) #if not running in Docker else: demo.queue().launch(share=False) # 改为 share=True 可以创建公开分享链接 #demo.queue().launch(server_name="0.0.0.0", server_port=7860, share=False) # 可自定义端口 #demo.queue().launch(server_name="0.0.0.0", server_port=7860,auth=("在这里填写用户名", "在这里填写密码")) # 可设置用户名与密码 #demo.queue().launch(auth=("在这里填写用户名", "在这里填写密码")) # 适合Nginx反向代理