"""Contains all of the components that can be used with Gradio Interface / Blocks. Along with the docs for each component, you can find the names of example demos that use each component. These demos are located in the `demo` directory.""" from __future__ import annotations import inspect import json import math import operator import random import tempfile import uuid import warnings from copy import deepcopy from enum import Enum from pathlib import Path from types import ModuleType from typing import TYPE_CHECKING, Any, Callable, Dict, List, Tuple, Type import altair as alt import matplotlib.figure import numpy as np import pandas as pd import PIL import PIL.ImageOps from ffmpy import FFmpeg from pandas.api.types import is_numeric_dtype from PIL import Image as _Image # using _ to minimize namespace pollution from typing_extensions import Literal from gradio import media_data, processing_utils, utils from gradio.blocks import Block, BlockContext from gradio.context import Context from gradio.documentation import document, set_documentation_group from gradio.events import ( Blurrable, Changeable, Clearable, Clickable, Editable, Playable, Releaseable, Streamable, Submittable, Uploadable, ) from gradio.interpretation import NeighborInterpretable, TokenInterpretable from gradio.layouts import Column, Form, Row from gradio.processing_utils import TempFileManager from gradio.serializing import ( FileSerializable, ImgSerializable, JSONSerializable, Serializable, SimpleSerializable, ) if TYPE_CHECKING: from typing import TypedDict class DataframeData(TypedDict): headers: List[str] data: List[List[str | int | bool]] set_documentation_group("component") _Image.init() # fixes https://github.com/gradio-app/gradio/issues/2843 class _Keywords(Enum): NO_VALUE = "NO_VALUE" # Used as a sentinel to determine if nothing is provided as a argument for `value` in `Component.update()` FINISHED_ITERATING = "FINISHED_ITERATING" # Used to skip processing of a component's value (needed for generators + state) class Component(Block): """ A base class for defining the methods that all gradio components should have. """ def __str__(self): return self.__repr__() def __repr__(self): return f"{self.get_block_name()}" def get_config(self): """ :return: a dictionary with context variables for the javascript file associated with the context """ return { "name": self.get_block_name(), **super().get_config(), } def preprocess(self, x: Any) -> Any: """ Any preprocessing needed to be performed on function input. """ return x def postprocess(self, y): """ Any postprocessing needed to be performed on function output. """ return y def style( self, *, container: bool | None = None, **kwargs, ): """ This method can be used to change the appearance of the component. Parameters: container: If True, will place the component in a container - providing some extra padding around the border. """ put_deprecated_params_in_box = False if "rounded" in kwargs: warnings.warn( "'rounded' styling is no longer supported. To round adjacent components together, place them in a Column(variant='box')." ) if isinstance(kwargs["rounded"], list) or isinstance( kwargs["rounded"], tuple ): put_deprecated_params_in_box = True kwargs.pop("rounded") if "margin" in kwargs: warnings.warn( "'margin' styling is no longer supported. To place adjacent components together without margin, place them in a Column(variant='box')." ) if isinstance(kwargs["margin"], list) or isinstance( kwargs["margin"], tuple ): put_deprecated_params_in_box = True kwargs.pop("margin") if "border" in kwargs: warnings.warn( "'border' styling is no longer supported. To place adjacent components in a shared border, place them in a Column(variant='box')." ) kwargs.pop("border") if container is not None: self._style["container"] = container if len(kwargs): for key in kwargs: warnings.warn(f"Unknown style parameter: {key}") if put_deprecated_params_in_box and isinstance(self.parent, (Row, Column)): if self.parent.variant == "default": self.parent.variant = "compact" return self class IOComponent(Component, Serializable): """ A base class for defining methods that all input/output components should have. """ def __init__( self, *, value: Any = None, label: str | None = None, info: str | None = None, show_label: bool = True, interactive: bool | None = None, visible: bool = True, elem_id: str | None = None, load_fn: Callable | None = None, every: float | None = None, **kwargs, ): super().__init__(elem_id=elem_id, visible=visible, **kwargs) self.label = label self.info = info self.show_label = show_label self.interactive = interactive self.load_event = None self.load_event_to_attach = None load_fn, initial_value = self.get_load_fn_and_initial_value(value) self.value = ( initial_value if self._skip_init_processing else self.postprocess(initial_value) ) if callable(load_fn): self.load_event = self.attach_load_event(load_fn, every) def get_config(self): config = { "label": self.label, "show_label": self.show_label, "interactive": self.interactive, **super().get_config(), } if self.info: config["info"] = self.info return config def generate_sample(self) -> Any: """ Returns a sample value of the input that would be accepted by the api. Used for api documentation. """ pass @staticmethod def add_interactive_to_config(config, interactive): if interactive is not None: config["mode"] = "dynamic" if interactive else "static" return config @staticmethod def get_load_fn_and_initial_value(value): if callable(value): initial_value = value() load_fn = value else: initial_value = value load_fn = None return load_fn, initial_value def attach_load_event(self, callable: Callable, every: float | None): """Add a load event that runs `callable`, optionally every `every` seconds.""" if Context.root_block: return Context.root_block.load( callable, None, self, no_target=True, every=every, ) else: self.load_event_to_attach = (callable, every) def as_example(self, input_data): """Return the input data in a way that can be displayed by the examples dataset component in the front-end.""" return input_data class FormComponent: def get_expected_parent(self) -> Type[Form]: return Form @document("change", "submit", "blur", "style") class Textbox( FormComponent, Changeable, Submittable, Blurrable, IOComponent, SimpleSerializable, TokenInterpretable, ): """ Creates a textarea for user to enter string input or display string output. Preprocessing: passes textarea value as a {str} into the function. Postprocessing: expects a {str} returned from function and sets textarea value to it. Examples-format: a {str} representing the textbox input. Demos: hello_world, diff_texts, sentence_builder Guides: creating_a_chatbot, real_time_speech_recognition """ def __init__( self, value: str | Callable | None = "", *, lines: int = 1, max_lines: int = 20, placeholder: str | None = None, label: str | None = None, info: str | None = None, every: float | None = None, show_label: bool = True, interactive: bool | None = None, visible: bool = True, elem_id: str | None = None, type: str = "text", **kwargs, ): """ Parameters: value: default text to provide in textarea. If callable, the function will be called whenever the app loads to set the initial value of the component. lines: minimum number of line rows to provide in textarea. max_lines: maximum number of line rows to provide in textarea. placeholder: placeholder hint to provide behind textarea. label: component name in interface. info: additional component description. every: If `value` is a callable, run the function 'every' number of seconds while the client connection is open. Has no effect otherwise. Queue must be enabled. The event can be accessed (e.g. to cancel it) via this component's .load_event attribute. show_label: if True, will display label. interactive: if True, will be rendered as an editable textbox; if False, editing will be disabled. If not provided, this is inferred based on whether the component is used as an input or output. visible: If False, component will be hidden. elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles. type: The type of textbox. One of: 'text', 'password', 'email', Default is 'text'. """ if type not in ["text", "password", "email"]: raise ValueError('`type` must be one of "text", "password", or "email".') # self.lines = lines self.max_lines = max_lines if type == "text" else 1 self.placeholder = placeholder IOComponent.__init__( self, label=label, info=info, every=every, show_label=show_label, interactive=interactive, visible=visible, elem_id=elem_id, value=value, **kwargs, ) TokenInterpretable.__init__(self) self.cleared_value = "" self.test_input = value self.type = type def get_config(self): return { "lines": self.lines, "max_lines": self.max_lines, "placeholder": self.placeholder, "value": self.value, "type": self.type, **IOComponent.get_config(self), } @staticmethod def update( value: str | Literal[_Keywords.NO_VALUE] | None = _Keywords.NO_VALUE, lines: int | None = None, max_lines: int | None = None, placeholder: str | None = None, label: str | None = None, show_label: bool | None = None, visible: bool | None = None, interactive: bool | None = None, type: str | None = None, ): updated_config = { "lines": lines, "max_lines": max_lines, "placeholder": placeholder, "label": label, "show_label": show_label, "visible": visible, "value": value, "type": type, "__type__": "update", } return IOComponent.add_interactive_to_config(updated_config, interactive) def generate_sample(self) -> str: return "Hello World" def preprocess(self, x: str | None) -> str | None: """ Preprocesses input (converts it to a string) before passing it to the function. Parameters: x: text Returns: text """ return None if x is None else str(x) def postprocess(self, y: str | None) -> str | None: """ Postproccess the function output y by converting it to a str before passing it to the frontend. Parameters: y: function output to postprocess. Returns: text """ return None if y is None else str(y) def set_interpret_parameters( self, separator: str = " ", replacement: str | None = None ): """ Calculates interpretation score of characters in input by splitting input into tokens, then using a "leave one out" method to calculate the score of each token by removing each token and measuring the delta of the output value. Parameters: separator: Separator to use to split input into tokens. replacement: In the "leave one out" step, the text that the token should be replaced with. If None, the token is removed altogether. """ self.interpretation_separator = separator self.interpretation_replacement = replacement return self def tokenize(self, x: str) -> Tuple[List[str], List[str], None]: """ Tokenizes an input string by dividing into "words" delimited by self.interpretation_separator """ tokens = x.split(self.interpretation_separator) leave_one_out_strings = [] for index in range(len(tokens)): leave_one_out_set = list(tokens) if self.interpretation_replacement is None: leave_one_out_set.pop(index) else: leave_one_out_set[index] = self.interpretation_replacement leave_one_out_strings.append( self.interpretation_separator.join(leave_one_out_set) ) return tokens, leave_one_out_strings, None def get_masked_inputs( self, tokens: List[str], binary_mask_matrix: List[List[int]] ) -> List[str]: """ Constructs partially-masked sentences for SHAP interpretation """ masked_inputs = [] for binary_mask_vector in binary_mask_matrix: masked_input = np.array(tokens)[np.array(binary_mask_vector, dtype=bool)] masked_inputs.append(self.interpretation_separator.join(masked_input)) return masked_inputs def get_interpretation_scores( self, x, neighbors, scores: List[float], tokens: List[str], masks=None, **kwargs ) -> List[Tuple[str, float]]: """ Returns: Each tuple set represents a set of characters and their corresponding interpretation score. """ result = [] for token, score in zip(tokens, scores): result.append((token, score)) result.append((self.interpretation_separator, 0)) return result @document("change", "submit", "style") class Number( FormComponent, Changeable, Submittable, Blurrable, IOComponent, SimpleSerializable, NeighborInterpretable, ): """ Creates a numeric field for user to enter numbers as input or display numeric output. Preprocessing: passes field value as a {float} or {int} into the function, depending on `precision`. Postprocessing: expects an {int} or {float} returned from the function and sets field value to it. Examples-format: a {float} or {int} representing the number's value. Demos: tax_calculator, titanic_survival, blocks_simple_squares """ def __init__( self, value: float | Callable | None = None, *, label: str | None = None, info: str | None = None, every: float | None = None, show_label: bool = True, interactive: bool | None = None, visible: bool = True, elem_id: str | None = None, precision: int | None = None, **kwargs, ): """ Parameters: value: default value. If callable, the function will be called whenever the app loads to set the initial value of the component. label: component name in interface. info: additional component description. every: If `value` is a callable, run the function 'every' number of seconds while the client connection is open. Has no effect otherwise. Queue must be enabled. The event can be accessed (e.g. to cancel it) via this component's .load_event attribute. show_label: if True, will display label. interactive: if True, will be editable; if False, editing will be disabled. If not provided, this is inferred based on whether the component is used as an input or output. visible: If False, component will be hidden. elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles. precision: Precision to round input/output to. If set to 0, will round to nearest integer and convert type to int. If None, no rounding happens. """ self.precision = precision IOComponent.__init__( self, label=label, info=info, every=every, show_label=show_label, interactive=interactive, visible=visible, elem_id=elem_id, value=value, **kwargs, ) NeighborInterpretable.__init__(self) self.test_input = self.value if self.value is not None else 1 @staticmethod def _round_to_precision(num: float | int, precision: int | None) -> float | int: """ Round to a given precision. If precision is None, no rounding happens. If 0, num is converted to int. Parameters: num: Number to round. precision: Precision to round to. Returns: rounded number """ if precision is None: return float(num) elif precision == 0: return int(round(num, precision)) else: return round(num, precision) def get_config(self): return { "value": self.value, **IOComponent.get_config(self), } @staticmethod def update( value: float | Literal[_Keywords.NO_VALUE] | None = _Keywords.NO_VALUE, label: str | None = None, show_label: bool | None = None, interactive: bool | None = None, visible: bool | None = None, ): updated_config = { "label": label, "show_label": show_label, "visible": visible, "value": value, "__type__": "update", } return IOComponent.add_interactive_to_config(updated_config, interactive) def preprocess(self, x: float | None) -> float | None: """ Parameters: x: numeric input Returns: number representing function input """ if x is None: return None return self._round_to_precision(x, self.precision) def postprocess(self, y: float | None) -> float | None: """ Any postprocessing needed to be performed on function output. Parameters: y: numeric output Returns: number representing function output """ if y is None: return None return self._round_to_precision(y, self.precision) def set_interpret_parameters( self, steps: int = 3, delta: float = 1, delta_type: str = "percent" ): """ Calculates interpretation scores of numeric values close to the input number. Parameters: steps: Number of nearby values to measure in each direction (above and below the input number). delta: Size of step in each direction between nearby values. delta_type: "percent" if delta step between nearby values should be a calculated as a percent, or "absolute" if delta should be a constant step change. """ self.interpretation_steps = steps self.interpretation_delta = delta self.interpretation_delta_type = delta_type return self def get_interpretation_neighbors(self, x: float | int) -> Tuple[List[float], Dict]: x = self._round_to_precision(x, self.precision) if self.interpretation_delta_type == "percent": delta = 1.0 * self.interpretation_delta * x / 100 elif self.interpretation_delta_type == "absolute": delta = self.interpretation_delta else: delta = self.interpretation_delta if self.precision == 0 and math.floor(delta) != delta: raise ValueError( f"Delta value {delta} is not an integer and precision=0. Cannot generate valid set of neighbors. " "If delta_type='percent', pick a value of delta such that x * delta is an integer. " "If delta_type='absolute', pick a value of delta that is an integer." ) # run_interpretation will preprocess the neighbors so no need to convert to int here negatives = ( np.array(x) + np.arange(-self.interpretation_steps, 0) * delta ).tolist() positives = ( np.array(x) + np.arange(1, self.interpretation_steps + 1) * delta ).tolist() return negatives + positives, {} def get_interpretation_scores( self, x: float, neighbors: List[float], scores: List[float | None], **kwargs ) -> List[Tuple[float, float | None]]: """ Returns: Each tuple set represents a numeric value near the input and its corresponding interpretation score. """ interpretation = list(zip(neighbors, scores)) interpretation.insert(int(len(interpretation) / 2), (x, None)) return interpretation def generate_sample(self) -> float: return self._round_to_precision(1, self.precision) @document("change", "style") class Slider( FormComponent, Changeable, Releaseable, IOComponent, SimpleSerializable, NeighborInterpretable, ): """ Creates a slider that ranges from `minimum` to `maximum` with a step size of `step`. Preprocessing: passes slider value as a {float} into the function. Postprocessing: expects an {int} or {float} returned from function and sets slider value to it as long as it is within range. Examples-format: A {float} or {int} representing the slider's value. Demos: sentence_builder, slider_release, generate_tone, titanic_survival, interface_random_slider, blocks_random_slider Guides: create_your_own_friends_with_a_gan """ def __init__( self, minimum: float = 0, maximum: float = 100, value: float | Callable | None = None, *, step: float | None = None, label: str | None = None, info: str | None = None, every: float | None = None, show_label: bool = True, interactive: bool | None = None, visible: bool = True, elem_id: str | None = None, randomize: bool = False, **kwargs, ): """ Parameters: minimum: minimum value for slider. maximum: maximum value for slider. value: default value. If callable, the function will be called whenever the app loads to set the initial value of the component. Ignored if randomized=True. step: increment between slider values. label: component name in interface. info: additional component description. every: If `value` is a callable, run the function 'every' number of seconds while the client connection is open. Has no effect otherwise. Queue must be enabled. The event can be accessed (e.g. to cancel it) via this component's .load_event attribute. show_label: if True, will display label. interactive: if True, slider will be adjustable; if False, adjusting will be disabled. If not provided, this is inferred based on whether the component is used as an input or output. visible: If False, component will be hidden. elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles. randomize: If True, the value of the slider when the app loads is taken uniformly at random from the range given by the minimum and maximum. """ self.minimum = minimum self.maximum = maximum if step is None: difference = maximum - minimum power = math.floor(math.log10(difference) - 2) self.step = 10**power else: self.step = step if randomize: value = self.get_random_value IOComponent.__init__( self, label=label, info=info, every=every, show_label=show_label, interactive=interactive, visible=visible, elem_id=elem_id, value=value, **kwargs, ) NeighborInterpretable.__init__(self) self.cleared_value = self.value self.test_input = self.value def get_config(self): return { "minimum": self.minimum, "maximum": self.maximum, "step": self.step, "value": self.value, **IOComponent.get_config(self), } def get_random_value(self): n_steps = int((self.maximum - self.minimum) / self.step) step = random.randint(0, n_steps) value = self.minimum + step * self.step # Round to number of decimals in step so that UI doesn't display long decimals n_decimals = max(str(self.step)[::-1].find("."), 0) if n_decimals: value = round(value, n_decimals) return value @staticmethod def update( value: float | Literal[_Keywords.NO_VALUE] | None = _Keywords.NO_VALUE, minimum: float | None = None, maximum: float | None = None, step: float | None = None, label: str | None = None, show_label: bool | None = None, interactive: bool | None = None, visible: bool | None = None, ): updated_config = { "minimum": minimum, "maximum": maximum, "step": step, "label": label, "show_label": show_label, "interactive": interactive, "visible": visible, "value": value, "__type__": "update", } return IOComponent.add_interactive_to_config(updated_config, interactive) def generate_sample(self) -> float: return self.maximum def postprocess(self, y: float | None) -> float | None: """ Any postprocessing needed to be performed on function output. Parameters: y: numeric output Returns: numeric output or minimum number if None """ return self.minimum if y is None else y def set_interpret_parameters(self, steps: int = 8) -> "Slider": """ Calculates interpretation scores of numeric values ranging between the minimum and maximum values of the slider. Parameters: steps: Number of neighboring values to measure between the minimum and maximum values of the slider range. """ self.interpretation_steps = steps return self def get_interpretation_neighbors(self, x) -> Tuple[object, dict]: return ( np.linspace(self.minimum, self.maximum, self.interpretation_steps).tolist(), {}, ) def style( self, *, container: bool | None = None, ): """ This method can be used to change the appearance of the slider. Parameters: container: If True, will place the component in a container - providing some extra padding around the border. """ return Component.style( self, container=container, ) @document("change", "style") class Checkbox( FormComponent, Changeable, IOComponent, SimpleSerializable, NeighborInterpretable ): """ Creates a checkbox that can be set to `True` or `False`. Preprocessing: passes the status of the checkbox as a {bool} into the function. Postprocessing: expects a {bool} returned from the function and, if it is True, checks the checkbox. Examples-format: a {bool} representing whether the box is checked. Demos: sentence_builder, titanic_survival """ def __init__( self, value: bool | Callable = False, *, label: str | None = None, info: str | None = None, every: float | None = None, show_label: bool = True, interactive: bool | None = None, visible: bool = True, elem_id: str | None = None, **kwargs, ): """ Parameters: value: if True, checked by default. If callable, the function will be called whenever the app loads to set the initial value of the component. label: component name in interface. info: additional component description. every: If `value` is a callable, run the function 'every' number of seconds while the client connection is open. Has no effect otherwise. Queue must be enabled. The event can be accessed (e.g. to cancel it) via this component's .load_event attribute. show_label: if True, will display label. interactive: if True, this checkbox can be checked; if False, checking will be disabled. If not provided, this is inferred based on whether the component is used as an input or output. visible: If False, component will be hidden. elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles. """ self.test_input = True IOComponent.__init__( self, label=label, info=info, every=every, show_label=show_label, interactive=interactive, visible=visible, elem_id=elem_id, value=value, **kwargs, ) NeighborInterpretable.__init__(self) def get_config(self): return { "value": self.value, **IOComponent.get_config(self), } @staticmethod def update( value: bool | Literal[_Keywords.NO_VALUE] | None = _Keywords.NO_VALUE, label: str | None = None, show_label: bool | None = None, interactive: bool | None = None, visible: bool | None = None, ): updated_config = { "label": label, "show_label": show_label, "interactive": interactive, "visible": visible, "value": value, "__type__": "update", } return IOComponent.add_interactive_to_config(updated_config, interactive) def generate_sample(self): return True def get_interpretation_neighbors(self, x): return [not x], {} def get_interpretation_scores(self, x, neighbors, scores, **kwargs): """ Returns: The first value represents the interpretation score if the input is False, and the second if the input is True. """ if x: return scores[0], None else: return None, scores[0] @document("change", "style") class CheckboxGroup( FormComponent, Changeable, IOComponent, SimpleSerializable, NeighborInterpretable ): """ Creates a set of checkboxes of which a subset can be checked. Preprocessing: passes the list of checked checkboxes as a {List[str]} or their indices as a {List[int]} into the function, depending on `type`. Postprocessing: expects a {List[str]}, each element of which becomes a checked checkbox. Examples-format: a {List[str]} representing the values to be checked. Demos: sentence_builder, titanic_survival """ def __init__( self, choices: List[str] | None = None, *, value: List[str] | str | Callable | None = None, type: str = "value", label: str | None = None, info: str | None = None, every: float | None = None, show_label: bool = True, interactive: bool | None = None, visible: bool = True, elem_id: str | None = None, **kwargs, ): """ Parameters: choices: list of options to select from. value: default selected list of options. If callable, the function will be called whenever the app loads to set the initial value of the component. type: Type of value to be returned by component. "value" returns the list of strings of the choices selected, "index" returns the list of indicies of the choices selected. label: component name in interface. info: additional component description. every: If `value` is a callable, run the function 'every' number of seconds while the client connection is open. Has no effect otherwise. Queue must be enabled. The event can be accessed (e.g. to cancel it) via this component's .load_event attribute. show_label: if True, will display label. interactive: if True, choices in this checkbox group will be checkable; if False, checking will be disabled. If not provided, this is inferred based on whether the component is used as an input or output. visible: If False, component will be hidden. elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles. """ self.choices = choices or [] self.cleared_value = [] valid_types = ["value", "index"] if type not in valid_types: raise ValueError( f"Invalid value for parameter `type`: {type}. Please choose from one of: {valid_types}" ) self.type = type self.test_input = self.choices IOComponent.__init__( self, label=label, info=info, every=every, show_label=show_label, interactive=interactive, visible=visible, elem_id=elem_id, value=value, **kwargs, ) NeighborInterpretable.__init__(self) def get_config(self): return { "choices": self.choices, "value": self.value, **IOComponent.get_config(self), } @staticmethod def update( value: List[str] | str | Literal[_Keywords.NO_VALUE] | None = _Keywords.NO_VALUE, choices: List[str] | None = None, label: str | None = None, show_label: bool | None = None, interactive: bool | None = None, visible: bool | None = None, ): updated_config = { "choices": choices, "label": label, "show_label": show_label, "interactive": interactive, "visible": visible, "value": value, "__type__": "update", } return IOComponent.add_interactive_to_config(updated_config, interactive) def generate_sample(self): return self.choices def preprocess(self, x: List[str]) -> List[str] | List[int]: """ Parameters: x: list of selected choices Returns: list of selected choices as strings or indices within choice list """ if self.type == "value": return x elif self.type == "index": return [self.choices.index(choice) for choice in x] else: raise ValueError( "Unknown type: " + str(self.type) + ". Please choose from: 'value', 'index'." ) def postprocess(self, y: List[str] | str | None) -> List[str]: """ Any postprocessing needed to be performed on function output. Parameters: y: List of selected choices. If a single choice is selected, it can be passed in as a string Returns: List of selected choices """ if y is None: return [] if not isinstance(y, list): y = [y] return y def get_interpretation_neighbors(self, x): leave_one_out_sets = [] for choice in self.choices: leave_one_out_set = list(x) if choice in leave_one_out_set: leave_one_out_set.remove(choice) else: leave_one_out_set.append(choice) leave_one_out_sets.append(leave_one_out_set) return leave_one_out_sets, {} def get_interpretation_scores(self, x, neighbors, scores, **kwargs): """ Returns: For each tuple in the list, the first value represents the interpretation score if the input is False, and the second if the input is True. """ final_scores = [] for choice, score in zip(self.choices, scores): if choice in x: score_set = [score, None] else: score_set = [None, score] final_scores.append(score_set) return final_scores def style( self, *, item_container: bool | None = None, container: bool | None = None, **kwargs, ): """ This method can be used to change the appearance of the CheckboxGroup. Parameters: item_container: If True, will place the items in a container. container: If True, will place the component in a container - providing some extra padding around the border. """ if item_container is not None: self._style["item_container"] = item_container return Component.style(self, container=container, **kwargs) @document("change", "style") class Radio( FormComponent, Changeable, IOComponent, SimpleSerializable, NeighborInterpretable ): """ Creates a set of radio buttons of which only one can be selected. Preprocessing: passes the value of the selected radio button as a {str} or its index as an {int} into the function, depending on `type`. Postprocessing: expects a {str} corresponding to the value of the radio button to be selected. Examples-format: a {str} representing the radio option to select. Demos: sentence_builder, titanic_survival, blocks_essay """ def __init__( self, choices: List[str] | None = None, *, value: str | Callable | None = None, type: str = "value", label: str | None = None, info: str | None = None, every: float | None = None, show_label: bool = True, interactive: bool | None = None, visible: bool = True, elem_id: str | None = None, **kwargs, ): """ Parameters: choices: list of options to select from. value: the button selected by default. If None, no button is selected by default. If callable, the function will be called whenever the app loads to set the initial value of the component. type: Type of value to be returned by component. "value" returns the string of the choice selected, "index" returns the index of the choice selected. label: component name in interface. info: additional component description. every: If `value` is a callable, run the function 'every' number of seconds while the client connection is open. Has no effect otherwise. Queue must be enabled. The event can be accessed (e.g. to cancel it) via this component's .load_event attribute. show_label: if True, will display label. interactive: if True, choices in this radio group will be selectable; if False, selection will be disabled. If not provided, this is inferred based on whether the component is used as an input or output. visible: If False, component will be hidden. elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles. """ self.choices = choices or [] valid_types = ["value", "index"] if type not in valid_types: raise ValueError( f"Invalid value for parameter `type`: {type}. Please choose from one of: {valid_types}" ) self.type = type self.test_input = self.choices[0] if len(self.choices) else None IOComponent.__init__( self, label=label, info=info, every=every, show_label=show_label, interactive=interactive, visible=visible, elem_id=elem_id, value=value, **kwargs, ) NeighborInterpretable.__init__(self) self.cleared_value = self.value def get_config(self): return { "choices": self.choices, "value": self.value, **IOComponent.get_config(self), } @staticmethod def update( value: Any | Literal[_Keywords.NO_VALUE] | None = _Keywords.NO_VALUE, choices: List[str] | None = None, label: str | None = None, show_label: bool | None = None, interactive: bool | None = None, visible: bool | None = None, ): updated_config = { "choices": choices, "label": label, "show_label": show_label, "interactive": interactive, "visible": visible, "value": value, "__type__": "update", } return IOComponent.add_interactive_to_config(updated_config, interactive) def generate_sample(self): return self.choices[0] def preprocess(self, x: str | None) -> str | int | None: """ Parameters: x: selected choice Returns: selected choice as string or index within choice list """ if self.type == "value": return x elif self.type == "index": if x is None: return None else: return self.choices.index(x) else: raise ValueError( "Unknown type: " + str(self.type) + ". Please choose from: 'value', 'index'." ) def get_interpretation_neighbors(self, x): choices = list(self.choices) choices.remove(x) return choices, {} def get_interpretation_scores( self, x, neighbors, scores: List[float | None], **kwargs ) -> List: """ Returns: Each value represents the interpretation score corresponding to each choice. """ scores.insert(self.choices.index(x), None) return scores def style( self, *, item_container: bool | None = None, container: bool | None = None, **kwargs, ): """ This method can be used to change the appearance of the radio component. Parameters: item_container: If True, will place items in a container. container: If True, will place the component in a container - providing some extra padding around the border. """ if item_container is not None: self._style["item_container"] = item_container return Component.style(self, container=container, **kwargs) @document("change", "style") class Dropdown(Changeable, IOComponent, SimpleSerializable, FormComponent): """ Creates a dropdown of choices from which entries can be selected. Preprocessing: passes the value of the selected dropdown entry as a {str} or its index as an {int} into the function, depending on `type`. Postprocessing: expects a {str} corresponding to the value of the dropdown entry to be selected. Examples-format: a {str} representing the drop down value to select. Demos: sentence_builder, titanic_survival """ def __init__( self, choices: str | List[str] | None = None, *, value: str | List[str] | Callable | None = None, type: str = "value", multiselect: bool | None = None, max_choices: int | None = None, label: str | None = None, info: str | None = None, every: float | None = None, show_label: bool = True, interactive: bool | None = None, visible: bool = True, elem_id: str | None = None, **kwargs, ): """ Parameters: choices: list of options to select from. value: default value(s) selected in dropdown. If None, no value is selected by default. If callable, the function will be called whenever the app loads to set the initial value of the component. type: Type of value to be returned by component. "value" returns the string of the choice selected, "index" returns the index of the choice selected. multiselect: if True, multiple choices can be selected. max_choices: maximum number of choices that can be selected. If None, no limit is enforced. label: component name in interface. info: additional component description. every: If `value` is a callable, run the function 'every' number of seconds while the client connection is open. Has no effect otherwise. Queue must be enabled. The event can be accessed (e.g. to cancel it) via this component's .load_event attribute. show_label: if True, will display label. interactive: if True, choices in this dropdown will be selectable; if False, selection will be disabled. If not provided, this is inferred based on whether the component is used as an input or output. visible: If False, component will be hidden. elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles. """ self.choices = choices or [] valid_types = ["value", "index"] if type not in valid_types: raise ValueError( f"Invalid value for parameter `type`: {type}. Please choose from one of: {valid_types}" ) self.type = type self.multiselect = multiselect if multiselect: if isinstance(value, str): value = [value] if not multiselect and max_choices is not None: warnings.warn( "The `max_choices` parameter is ignored when `multiselect` is False." ) self.max_choices = max_choices self.test_input = self.choices[0] if len(self.choices) else None self.interpret_by_tokens = False IOComponent.__init__( self, label=label, info=info, every=every, show_label=show_label, interactive=interactive, visible=visible, elem_id=elem_id, value=value, **kwargs, ) self.cleared_value = self.value or ([] if multiselect else "") def get_config(self): return { "choices": self.choices, "value": self.value, "multiselect": self.multiselect, "max_choices": self.max_choices, **IOComponent.get_config(self), } @staticmethod def update( value: Any | Literal[_Keywords.NO_VALUE] | None = _Keywords.NO_VALUE, choices: str | List[str] | None = None, label: str | None = None, show_label: bool | None = None, interactive: bool | None = None, visible: bool | None = None, ): updated_config = { "choices": choices, "label": label, "show_label": show_label, "interactive": interactive, "visible": visible, "value": value, "__type__": "update", } return IOComponent.add_interactive_to_config(updated_config, interactive) def generate_sample(self): return self.choices[0] def preprocess( self, x: str | List[str] ) -> str | int | List[str] | List[int] | None: """ Parameters: x: selected choice(s) Returns: selected choice(s) as string or index within choice list or list of string or indices """ if self.type == "value": return x elif self.type == "index": if x is None: return None elif self.multiselect: return [self.choices.index(c) for c in x] else: if isinstance(x, str): return self.choices.index(x) else: raise ValueError( "Unknown type: " + str(self.type) + ". Please choose from: 'value', 'index'." ) def set_interpret_parameters(self): """ Calculates interpretation score of each choice by comparing the output against each of the outputs when alternative choices are selected. """ return self def get_interpretation_neighbors(self, x): choices = list(self.choices) choices.remove(x) return choices, {} def get_interpretation_scores( self, x, neighbors, scores: List[float | None], **kwargs ) -> List: """ Returns: Each value represents the interpretation score corresponding to each choice. """ scores.insert(self.choices.index(x), None) return scores def style(self, *, container: bool | None = None, **kwargs): """ This method can be used to change the appearance of the Dropdown. Parameters: container: If True, will place the component in a container - providing some extra padding around the border. """ return Component.style(self, container=container, **kwargs) @document("edit", "clear", "change", "stream", "style") class Image( Editable, Clearable, Changeable, Streamable, Uploadable, IOComponent, ImgSerializable, TokenInterpretable, ): """ Creates an image component that can be used to upload/draw images (as an input) or display images (as an output). Preprocessing: passes the uploaded image as a {numpy.array}, {PIL.Image} or {str} filepath depending on `type` -- unless `tool` is `sketch` AND source is one of `upload` or `webcam`. In these cases, a {dict} with keys `image` and `mask` is passed, and the format of the corresponding values depends on `type`. Postprocessing: expects a {numpy.array}, {PIL.Image} or {str} or {pathlib.Path} filepath to an image and displays the image. Examples-format: a {str} filepath to a local file that contains the image. Demos: image_mod, image_mod_default_image Guides: Gradio_and_ONNX_on_Hugging_Face, image_classification_in_pytorch, image_classification_in_tensorflow, image_classification_with_vision_transformers, building_a_pictionary_app, create_your_own_friends_with_a_gan """ def __init__( self, value: str | _Image.Image | np.ndarray | None = None, *, shape: Tuple[int, int] | None = None, image_mode: str = "RGB", invert_colors: bool = False, source: str = "upload", tool: str | None = None, type: str = "numpy", label: str | None = None, every: float | None = None, show_label: bool = True, interactive: bool | None = None, visible: bool = True, streaming: bool = False, elem_id: str | None = None, mirror_webcam: bool = True, brush_radius: int | None = None, **kwargs, ): """ Parameters: value: A PIL Image, numpy array, path or URL for the default value that Image component is going to take. If callable, the function will be called whenever the app loads to set the initial value of the component. shape: (width, height) shape to crop and resize image to; if None, matches input image size. Pass None for either width or height to only crop and resize the other. image_mode: "RGB" if color, or "L" if black and white. invert_colors: whether to invert the image as a preprocessing step. source: Source of image. "upload" creates a box where user can drop an image file, "webcam" allows user to take snapshot from their webcam, "canvas" defaults to a white image that can be edited and drawn upon with tools. tool: Tools used for editing. "editor" allows a full screen editor (and is the default if source is "upload" or "webcam"), "select" provides a cropping and zoom tool, "sketch" allows you to create a binary sketch (and is the default if source="canvas"), and "color-sketch" allows you to created a sketch in different colors. "color-sketch" can be used with source="upload" or "webcam" to allow sketching on an image. "sketch" can also be used with "upload" or "webcam" to create a mask over an image and in that case both the image and mask are passed into the function as a dictionary with keys "image" and "mask" respectively. type: The format the image is converted to before being passed into the prediction function. "numpy" converts the image to a numpy array with shape (width, height, 3) and values from 0 to 255, "pil" converts the image to a PIL image object, "filepath" passes a str path to a temporary file containing the image. label: component name in interface. every: If `value` is a callable, run the function 'every' number of seconds while the client connection is open. Has no effect otherwise. Queue must be enabled. The event can be accessed (e.g. to cancel it) via this component's .load_event attribute. show_label: if True, will display label. interactive: if True, will allow users to upload and edit an image; if False, can only be used to display images. If not provided, this is inferred based on whether the component is used as an input or output. visible: If False, component will be hidden. streaming: If True when used in a `live` interface, will automatically stream webcam feed. Only valid is source is 'webcam'. elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles. mirror_webcam: If True webcam will be mirrored. Default is True. brush_radius: Size of the brush for Sketch. Default is None which chooses a sensible default """ self.brush_radius = brush_radius self.mirror_webcam = mirror_webcam valid_types = ["numpy", "pil", "filepath"] if type not in valid_types: raise ValueError( f"Invalid value for parameter `type`: {type}. Please choose from one of: {valid_types}" ) self.type = type self.shape = shape self.image_mode = image_mode valid_sources = ["upload", "webcam", "canvas"] if source not in valid_sources: raise ValueError( f"Invalid value for parameter `source`: {source}. Please choose from one of: {valid_sources}" ) self.source = source if tool is None: self.tool = "sketch" if source == "canvas" else "editor" else: self.tool = tool self.invert_colors = invert_colors self.test_input = deepcopy(media_data.BASE64_IMAGE) self.streaming = streaming if streaming and source != "webcam": raise ValueError("Image streaming only available if source is 'webcam'.") IOComponent.__init__( self, label=label, every=every, show_label=show_label, interactive=interactive, visible=visible, elem_id=elem_id, value=value, **kwargs, ) TokenInterpretable.__init__(self) def get_config(self): return { "image_mode": self.image_mode, "shape": self.shape, "source": self.source, "tool": self.tool, "value": self.value, "streaming": self.streaming, "mirror_webcam": self.mirror_webcam, "brush_radius": self.brush_radius, **IOComponent.get_config(self), } @staticmethod def update( value: Any | Literal[_Keywords.NO_VALUE] | None = _Keywords.NO_VALUE, label: str | None = None, show_label: bool | None = None, interactive: bool | None = None, visible: bool | None = None, brush_radius: int | None = None, ): updated_config = { "label": label, "show_label": show_label, "interactive": interactive, "visible": visible, "value": value, "brush_radius": brush_radius, "__type__": "update", } return IOComponent.add_interactive_to_config(updated_config, interactive) def _format_image( self, im: _Image.Image | None ) -> np.ndarray | _Image.Image | str | None: """Helper method to format an image based on self.type""" if im is None: return im fmt = im.format if self.type == "pil": return im elif self.type == "numpy": return np.array(im) elif self.type == "filepath": file_obj = tempfile.NamedTemporaryFile( delete=False, suffix=("." + fmt.lower() if fmt is not None else ".png"), ) im.save(file_obj.name) return file_obj.name else: raise ValueError( "Unknown type: " + str(self.type) + ". Please choose from: 'numpy', 'pil', 'filepath'." ) def generate_sample(self): return deepcopy(media_data.BASE64_IMAGE) def preprocess( self, x: str | Dict[str, str] ) -> np.ndarray | _Image.Image | str | Dict | None: """ Parameters: x: base64 url data, or (if tool == "sketch") a dict of image and mask base64 url data Returns: image in requested format, or (if tool == "sketch") a dict of image and mask in requested format """ if x is None: return x mask = "" if self.tool == "sketch" and self.source in ["upload", "webcam"]: assert isinstance(x, dict) x, mask = x["image"], x["mask"] assert isinstance(x, str) im = processing_utils.decode_base64_to_image(x) with warnings.catch_warnings(): warnings.simplefilter("ignore") im = im.convert(self.image_mode) if self.shape is not None: im = processing_utils.resize_and_crop(im, self.shape) if self.invert_colors: im = PIL.ImageOps.invert(im) if ( self.source == "webcam" and self.mirror_webcam is True and self.tool != "color-sketch" ): im = PIL.ImageOps.mirror(im) if self.tool == "sketch" and self.source in ["upload", "webcam"]: mask_im = processing_utils.decode_base64_to_image(mask) return { "image": self._format_image(im), "mask": self._format_image(mask_im), } return self._format_image(im) def postprocess( self, y: np.ndarray | _Image.Image | str | Path | None ) -> str | None: """ Parameters: y: image as a numpy array, PIL Image, string/Path filepath, or string URL Returns: base64 url data """ if y is None: return None if isinstance(y, np.ndarray): return processing_utils.encode_array_to_base64(y) elif isinstance(y, _Image.Image): return processing_utils.encode_pil_to_base64(y) elif isinstance(y, (str, Path)): return processing_utils.encode_url_or_file_to_base64(y) else: raise ValueError("Cannot process this value as an Image") def set_interpret_parameters(self, segments: int = 16): """ Calculates interpretation score of image subsections by splitting the image into subsections, then using a "leave one out" method to calculate the score of each subsection by whiting out the subsection and measuring the delta of the output value. Parameters: segments: Number of interpretation segments to split image into. """ self.interpretation_segments = segments return self def _segment_by_slic(self, x): """ Helper method that segments an image into superpixels using slic. Parameters: x: base64 representation of an image """ x = processing_utils.decode_base64_to_image(x) if self.shape is not None: x = processing_utils.resize_and_crop(x, self.shape) resized_and_cropped_image = np.array(x) try: from skimage.segmentation import slic except (ImportError, ModuleNotFoundError): raise ValueError( "Error: running this interpretation for images requires scikit-image, please install it first." ) try: segments_slic = slic( resized_and_cropped_image, self.interpretation_segments, compactness=10, sigma=1, start_label=1, ) except TypeError: # For skimage 0.16 and older segments_slic = slic( resized_and_cropped_image, self.interpretation_segments, compactness=10, sigma=1, ) return segments_slic, resized_and_cropped_image def tokenize(self, x): """ Segments image into tokens, masks, and leave-one-out-tokens Parameters: x: base64 representation of an image Returns: tokens: list of tokens, used by the get_masked_input() method leave_one_out_tokens: list of left-out tokens, used by the get_interpretation_neighbors() method masks: list of masks, used by the get_interpretation_neighbors() method """ segments_slic, resized_and_cropped_image = self._segment_by_slic(x) tokens, masks, leave_one_out_tokens = [], [], [] replace_color = np.mean(resized_and_cropped_image, axis=(0, 1)) for (i, segment_value) in enumerate(np.unique(segments_slic)): mask = segments_slic == segment_value image_screen = np.copy(resized_and_cropped_image) image_screen[segments_slic == segment_value] = replace_color leave_one_out_tokens.append( processing_utils.encode_array_to_base64(image_screen) ) token = np.copy(resized_and_cropped_image) token[segments_slic != segment_value] = 0 tokens.append(token) masks.append(mask) return tokens, leave_one_out_tokens, masks def get_masked_inputs(self, tokens, binary_mask_matrix): masked_inputs = [] for binary_mask_vector in binary_mask_matrix: masked_input = np.zeros_like(tokens[0], dtype=int) for token, b in zip(tokens, binary_mask_vector): masked_input = masked_input + token * int(b) masked_inputs.append(processing_utils.encode_array_to_base64(masked_input)) return masked_inputs def get_interpretation_scores( self, x, neighbors, scores, masks, tokens=None, **kwargs ) -> List[List[float]]: """ Returns: A 2D array representing the interpretation score of each pixel of the image. """ x = processing_utils.decode_base64_to_image(x) if self.shape is not None: x = processing_utils.resize_and_crop(x, self.shape) x = np.array(x) output_scores = np.zeros((x.shape[0], x.shape[1])) for score, mask in zip(scores, masks): output_scores += score * mask max_val, min_val = np.max(output_scores), np.min(output_scores) if max_val > 0: output_scores = (output_scores - min_val) / (max_val - min_val) return output_scores.tolist() def style(self, *, height: int | None = None, width: int | None = None, **kwargs): """ This method can be used to change the appearance of the Image component. Parameters: height: Height of the image. width: Width of the image. """ self._style["height"] = height self._style["width"] = width return Component.style( self, **kwargs, ) def stream( self, fn: Callable, inputs: List[Component], outputs: List[Component], _js: str | None = None, api_name: str | None = None, preprocess: bool = True, postprocess: bool = True, ): """ This event is triggered when the user streams the component (e.g. a live webcam component) Parameters: fn: Callable function inputs: List of inputs outputs: List of outputs """ # js: Optional frontend js method to run before running 'fn'. Input arguments for js method are values of 'inputs' and 'outputs', return should be a list of values for output components. if self.source != "webcam": raise ValueError("Image streaming only available if source is 'webcam'.") Streamable.stream( self, fn, inputs, outputs, _js=_js, api_name=api_name, preprocess=preprocess, postprocess=postprocess, ) def as_example(self, input_data: str | None) -> str: if input_data is None: return "" elif ( self.root_url ): # If an externally hosted image, don't convert to absolute path return input_data return str(utils.abspath(input_data)) @document("change", "clear", "play", "pause", "stop", "style") class Video( Changeable, Clearable, Playable, Uploadable, IOComponent, FileSerializable, TempFileManager, ): """ Creates a video component that can be used to upload/record videos (as an input) or display videos (as an output). For the video to be playable in the browser it must have a compatible container and codec combination. Allowed combinations are .mp4 with h264 codec, .ogg with theora codec, and .webm with vp9 codec. If the component detects that the output video would not be playable in the browser it will attempt to convert it to a playable mp4 video. If the conversion fails, the original video is returned. Preprocessing: passes the uploaded video as a {str} filepath or URL whose extension can be modified by `format`. Postprocessing: expects a {str} filepath to a video which is displayed. Examples-format: a {str} filepath to a local file that contains the video. Demos: video_identity """ def __init__( self, value: str | Callable | None = None, *, format: str | None = None, source: str = "upload", label: str | None = None, every: float | None = None, show_label: bool = True, interactive: bool | None = None, visible: bool = True, elem_id: str | None = None, mirror_webcam: bool = True, include_audio: bool | None = None, **kwargs, ): """ Parameters: value: A path or URL for the default value that Video component is going to take. If callable, the function will be called whenever the app loads to set the initial value of the component. format: Format of video format to be returned by component, such as 'avi' or 'mp4'. Use 'mp4' to ensure browser playability. If set to None, video will keep uploaded format. source: Source of video. "upload" creates a box where user can drop an video file, "webcam" allows user to record a video from their webcam. label: component name in interface. every: If `value` is a callable, run the function 'every' number of seconds while the client connection is open. Has no effect otherwise. Queue must be enabled. The event can be accessed (e.g. to cancel it) via this component's .load_event attribute. show_label: if True, will display label. interactive: if True, will allow users to upload a video; if False, can only be used to display videos. If not provided, this is inferred based on whether the component is used as an input or output. visible: If False, component will be hidden. elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles. mirror_webcam: If True webcam will be mirrored. Default is True. include_audio: Whether the component should record/retain the audio track for a video. By default, audio is excluded for webcam videos and included for uploaded videos. """ self.format = format valid_sources = ["upload", "webcam"] if source not in valid_sources: raise ValueError( f"Invalid value for parameter `source`: {source}. Please choose from one of: {valid_sources}" ) self.source = source self.mirror_webcam = mirror_webcam self.include_audio = ( include_audio if include_audio is not None else source == "upload" ) TempFileManager.__init__(self) IOComponent.__init__( self, label=label, every=every, show_label=show_label, interactive=interactive, visible=visible, elem_id=elem_id, value=value, **kwargs, ) def get_config(self): return { "source": self.source, "value": self.value, "mirror_webcam": self.mirror_webcam, "include_audio": self.include_audio, **IOComponent.get_config(self), } @staticmethod def update( value: Any | Literal[_Keywords.NO_VALUE] | None = _Keywords.NO_VALUE, source: str | None = None, label: str | None = None, show_label: bool | None = None, interactive: bool | None = None, visible: bool | None = None, ): updated_config = { "source": source, "label": label, "show_label": show_label, "interactive": interactive, "visible": visible, "value": value, "__type__": "update", } return IOComponent.add_interactive_to_config(updated_config, interactive) def preprocess(self, x: Dict[str, str] | None) -> str | None: """ Parameters: x: a dictionary with the following keys: 'name' (containing the file path to a video), 'data' (with either the file URL or base64 representation of the video), and 'is_file` (True if `data` contains the file URL). Returns: a string file path to the preprocessed video """ if x is None: return x file_name, file_data, is_file = ( x["name"], x["data"], x.get("is_file", False), ) if is_file: file_name = Path(self.make_temp_copy_if_needed(file_name)) else: file_name = Path(self.base64_to_temp_file_if_needed(file_data, file_name)) uploaded_format = file_name.suffix.replace(".", "") modify_format = self.format is not None and uploaded_format != self.format flip = self.source == "webcam" and self.mirror_webcam if modify_format or flip: format = f".{self.format if modify_format else uploaded_format}" output_options = ["-vf", "hflip", "-c:a", "copy"] if flip else [] output_options += ["-an"] if not self.include_audio else [] flip_suffix = "_flip" if flip else "" output_file_name = str( file_name.with_name(f"{file_name.stem}{flip_suffix}{format}") ) if Path(output_file_name).exists(): return output_file_name ff = FFmpeg( inputs={str(file_name): None}, outputs={output_file_name: output_options}, ) ff.run() return output_file_name elif not self.include_audio: output_file_name = str(file_name.with_name(f"muted_{file_name.name}")) ff = FFmpeg( inputs={str(file_name): None}, outputs={output_file_name: ["-an"]}, ) ff.run() return output_file_name else: return str(file_name) def generate_sample(self): """Generates a random video for testing the API.""" return deepcopy(media_data.BASE64_VIDEO) def postprocess(self, y: str | None) -> Dict[str, Any] | None: """ Processes a video to ensure that it is in the correct format before returning it to the front end. Parameters: y: a path or URL to the video file Returns: a dictionary with the following keys: 'name' (containing the file path to a temporary copy of the video), 'data' (None), and 'is_file` (True). """ if y is None: return None returned_format = y.split(".")[-1].lower() if self.format is None or returned_format == self.format: conversion_needed = False else: conversion_needed = True # For cases where the video is a URL and does not need to be converted to another format, we can just return the URL if utils.validate_url(y) and not (conversion_needed): return {"name": y, "data": None, "is_file": True} # For cases where the video needs to be converted to another format if utils.validate_url(y): y = self.download_temp_copy_if_needed(y) if ( processing_utils.ffmpeg_installed() and not processing_utils.video_is_playable(y) ): warnings.warn( "Video does not have browser-compatible container or codec. Converting to mp4" ) y = processing_utils.convert_video_to_playable_mp4(y) if self.format is not None and returned_format != self.format: output_file_name = y[0 : y.rindex(".") + 1] + self.format ff = FFmpeg(inputs={y: None}, outputs={output_file_name: None}) ff.run() y = output_file_name y = self.make_temp_copy_if_needed(y) return {"name": y, "data": None, "is_file": True} def style(self, *, height: int | None = None, width: int | None = None, **kwargs): """ This method can be used to change the appearance of the video component. Parameters: height: Height of the video. width: Width of the video. """ self._style["height"] = height self._style["width"] = width return Component.style( self, **kwargs, ) @document("change", "clear", "play", "pause", "stop", "stream", "style") class Audio( Changeable, Clearable, Playable, Streamable, Uploadable, IOComponent, FileSerializable, TempFileManager, TokenInterpretable, ): """ Creates an audio component that can be used to upload/record audio (as an input) or display audio (as an output). Preprocessing: passes the uploaded audio as a {Tuple(int, numpy.array)} corresponding to (sample rate, data) or as a {str} filepath, depending on `type` Postprocessing: expects a {Tuple(int, numpy.array)} corresponding to (sample rate, data) or as a {str} filepath or URL to an audio file, which gets displayed Examples-format: a {str} filepath to a local file that contains audio. Demos: main_note, generate_tone, reverse_audio Guides: real_time_speech_recognition """ def __init__( self, value: str | Tuple[int, np.ndarray] | Callable | None = None, *, source: str = "upload", type: str = "numpy", label: str | None = None, every: float | None = None, show_label: bool = True, interactive: bool | None = None, visible: bool = True, streaming: bool = False, elem_id: str | None = None, **kwargs, ): """ Parameters: value: A path, URL, or [sample_rate, numpy array] tuple for the default value that Audio component is going to take. If callable, the function will be called whenever the app loads to set the initial value of the component. source: Source of audio. "upload" creates a box where user can drop an audio file, "microphone" creates a microphone input. type: The format the audio file is converted to before being passed into the prediction function. "numpy" converts the audio to a tuple consisting of: (int sample rate, numpy.array for the data), "filepath" passes a str path to a temporary file containing the audio. label: component name in interface. every: If `value` is a callable, run the function 'every' number of seconds while the client connection is open. Has no effect otherwise. Queue must be enabled. The event can be accessed (e.g. to cancel it) via this component's .load_event attribute. show_label: if True, will display label. interactive: if True, will allow users to upload and edit a audio file; if False, can only be used to play audio. If not provided, this is inferred based on whether the component is used as an input or output. visible: If False, component will be hidden. streaming: If set to True when used in a `live` interface, will automatically stream webcam feed. Only valid is source is 'microphone'. elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles. """ valid_sources = ["upload", "microphone"] if source not in valid_sources: raise ValueError( f"Invalid value for parameter `source`: {source}. Please choose from one of: {valid_sources}" ) self.source = source valid_types = ["numpy", "filepath"] if type not in valid_types: raise ValueError( f"Invalid value for parameter `type`: {type}. Please choose from one of: {valid_types}" ) self.type = type self.test_input = deepcopy(media_data.BASE64_AUDIO) self.streaming = streaming if streaming and source != "microphone": raise ValueError( "Audio streaming only available if source is 'microphone'." ) TempFileManager.__init__(self) IOComponent.__init__( self, label=label, every=every, show_label=show_label, interactive=interactive, visible=visible, elem_id=elem_id, value=value, **kwargs, ) TokenInterpretable.__init__(self) def get_config(self): return { "source": self.source, "value": self.value, "streaming": self.streaming, **IOComponent.get_config(self), } @staticmethod def update( value: Any | Literal[_Keywords.NO_VALUE] | None = _Keywords.NO_VALUE, source: str | None = None, label: str | None = None, show_label: bool | None = None, interactive: bool | None = None, visible: bool | None = None, ): updated_config = { "source": source, "label": label, "show_label": show_label, "interactive": interactive, "visible": visible, "value": value, "__type__": "update", } return IOComponent.add_interactive_to_config(updated_config, interactive) def preprocess( self, x: Dict[str, Any] | None ) -> Tuple[int, np.ndarray] | str | None: """ Parameters: x: dictionary with keys "name", "data", "is_file", "crop_min", "crop_max". Returns: audio in requested format """ if x is None: return x file_name, file_data, is_file = ( x["name"], x["data"], x.get("is_file", False), ) crop_min, crop_max = x.get("crop_min", 0), x.get("crop_max", 100) if is_file: if utils.validate_url(file_name): temp_file_path = self.download_temp_copy_if_needed(file_name) else: temp_file_path = self.make_temp_copy_if_needed(file_name) else: temp_file_path = self.base64_to_temp_file_if_needed(file_data, file_name) sample_rate, data = processing_utils.audio_from_file( temp_file_path, crop_min=crop_min, crop_max=crop_max ) # Need a unique name for the file to avoid re-using the same audio file if # a user submits the same audio file twice, but with different crop min/max. temp_file_path = Path(temp_file_path) output_file_name = str( temp_file_path.with_name( f"{temp_file_path.stem}-{crop_min}-{crop_max}{temp_file_path.suffix}" ) ) if self.type == "numpy": return sample_rate, data elif self.type == "filepath": processing_utils.audio_to_file(sample_rate, data, output_file_name) return output_file_name else: raise ValueError( "Unknown type: " + str(self.type) + ". Please choose from: 'numpy', 'filepath'." ) def set_interpret_parameters(self, segments: int = 8): """ Calculates interpretation score of audio subsections by splitting the audio into subsections, then using a "leave one out" method to calculate the score of each subsection by removing the subsection and measuring the delta of the output value. Parameters: segments: Number of interpretation segments to split audio into. """ self.interpretation_segments = segments return self def tokenize(self, x): if x.get("is_file"): sample_rate, data = processing_utils.audio_from_file(x["name"]) else: file_name = self.base64_to_temp_file_if_needed(x["data"]) sample_rate, data = processing_utils.audio_from_file(file_name) leave_one_out_sets = [] tokens = [] masks = [] duration = data.shape[0] boundaries = np.linspace(0, duration, self.interpretation_segments + 1).tolist() boundaries = [round(boundary) for boundary in boundaries] for index in range(len(boundaries) - 1): start, stop = boundaries[index], boundaries[index + 1] masks.append((start, stop)) # Handle the leave one outs leave_one_out_data = np.copy(data) leave_one_out_data[start:stop] = 0 file = tempfile.NamedTemporaryFile(delete=False, suffix=".wav") processing_utils.audio_to_file(sample_rate, leave_one_out_data, file.name) out_data = processing_utils.encode_file_to_base64(file.name) leave_one_out_sets.append(out_data) file.close() Path(file.name).unlink() # Handle the tokens token = np.copy(data) token[0:start] = 0 token[stop:] = 0 file = tempfile.NamedTemporaryFile(delete=False, suffix=".wav") processing_utils.audio_to_file(sample_rate, token, file.name) token_data = processing_utils.encode_file_to_base64(file.name) file.close() Path(file.name).unlink() tokens.append(token_data) tokens = [{"name": "token.wav", "data": token} for token in tokens] leave_one_out_sets = [ {"name": "loo.wav", "data": loo_set} for loo_set in leave_one_out_sets ] return tokens, leave_one_out_sets, masks def get_masked_inputs(self, tokens, binary_mask_matrix): # create a "zero input" vector and get sample rate x = tokens[0]["data"] file_name = self.base64_to_temp_file_if_needed(x) sample_rate, data = processing_utils.audio_from_file(file_name) zero_input = np.zeros_like(data, dtype="int16") # decode all of the tokens token_data = [] for token in tokens: file_name = self.base64_to_temp_file_if_needed(token["data"]) _, data = processing_utils.audio_from_file(file_name) token_data.append(data) # construct the masked version masked_inputs = [] for binary_mask_vector in binary_mask_matrix: masked_input = np.copy(zero_input) for t, b in zip(token_data, binary_mask_vector): masked_input = masked_input + t * int(b) file = tempfile.NamedTemporaryFile(delete=False) processing_utils.audio_to_file(sample_rate, masked_input, file.name) masked_data = processing_utils.encode_file_to_base64(file.name) file.close() Path(file.name).unlink() masked_inputs.append(masked_data) return masked_inputs def generate_sample(self): return deepcopy(media_data.BASE64_AUDIO) def postprocess(self, y: Tuple[int, np.ndarray] | str | None) -> str | Dict | None: """ Parameters: y: audio data in either of the following formats: a tuple of (sample_rate, data), or a string filepath or URL to an audio file, or None. Returns: base64 url data """ if y is None: return None if isinstance(y, str) and utils.validate_url(y): return {"name": y, "data": None, "is_file": True} if isinstance(y, tuple): sample_rate, data = y file = tempfile.NamedTemporaryFile(suffix=".wav", delete=False) processing_utils.audio_to_file(sample_rate, data, file.name) file_path = str(utils.abspath(file.name)) self.temp_files.add(file_path) else: file_path = self.make_temp_copy_if_needed(y) return {"name": file_path, "data": None, "is_file": True} def stream( self, fn: Callable, inputs: List[Component], outputs: List[Component], _js: str | None = None, api_name: str | None = None, preprocess: bool = True, postprocess: bool = True, ): """ This event is triggered when the user streams the component (e.g. a live webcam component) Parameters: fn: Callable function inputs: List of inputs outputs: List of outputs """ # _js: Optional frontend js method to run before running 'fn'. Input arguments for js method are values of 'inputs' and 'outputs', return should be a list of values for output components. if self.source != "microphone": raise ValueError( "Audio streaming only available if source is 'microphone'." ) Streamable.stream( self, fn, inputs, outputs, _js=_js, api_name=api_name, preprocess=preprocess, postprocess=postprocess, ) def style( self, **kwargs, ): """ This method can be used to change the appearance of the audio component. """ return Component.style( self, **kwargs, ) def as_example(self, input_data: str | None) -> str: return Path(input_data).name if input_data else "" @document("change", "clear", "style") class File( Changeable, Clearable, Uploadable, IOComponent, FileSerializable, TempFileManager ): """ Creates a file component that allows uploading generic file (when used as an input) and or displaying generic files (output). Preprocessing: passes the uploaded file as a {file-object} or {List[file-object]} depending on `file_count` (or a {bytes}/{List{bytes}} depending on `type`) Postprocessing: expects function to return a {str} path to a file, or {List[str]} consisting of paths to files. Examples-format: a {str} path to a local file that populates the component. Demos: zip_to_json, zip_files """ def __init__( self, value: str | List[str] | Callable | None = None, *, file_count: str = "single", file_types: List[str] | None = None, type: str = "file", label: str | None = None, every: float | None = None, show_label: bool = True, interactive: bool | None = None, visible: bool = True, elem_id: str | None = None, **kwargs, ): """ Parameters: value: Default file to display, given as str file path. If callable, the function will be called whenever the app loads to set the initial value of the component. file_count: if single, allows user to upload one file. If "multiple", user uploads multiple files. If "directory", user uploads all files in selected directory. Return type will be list for each file in case of "multiple" or "directory". file_types: List of file extensions or types of files to be uploaded (e.g. ['image', '.json', '.mp4']). "file" allows any file to be uploaded, "image" allows only image files to be uploaded, "audio" allows only audio files to be uploaded, "video" allows only video files to be uploaded, "text" allows only text files to be uploaded. type: Type of value to be returned by component. "file" returns a temporary file object whose path can be retrieved by file_obj.name and original filename can be retrieved with file_obj.orig_name, "binary" returns an bytes object. label: component name in interface. every: If `value` is a callable, run the function 'every' number of seconds while the client connection is open. Has no effect otherwise. Queue must be enabled. The event can be accessed (e.g. to cancel it) via this component's .load_event attribute. show_label: if True, will display label. interactive: if True, will allow users to upload a file; if False, can only be used to display files. If not provided, this is inferred based on whether the component is used as an input or output. visible: If False, component will be hidden. elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles. """ self.file_count = file_count self.file_types = file_types if file_types is not None and not isinstance(file_types, list): raise ValueError( f"Parameter file_types must be a list. Received {file_types.__class__.__name__}" ) valid_types = [ "file", "binary", "bytes", ] # "bytes" is included for backwards compatibility if type not in valid_types: raise ValueError( f"Invalid value for parameter `type`: {type}. Please choose from one of: {valid_types}" ) if type == "bytes": warnings.warn( "The `bytes` type is deprecated and may not work as expected. Please use `binary` instead." ) if file_count == "directory" and file_types is not None: warnings.warn( "The `file_types` parameter is ignored when `file_count` is 'directory'." ) self.type = type self.test_input = None TempFileManager.__init__(self) IOComponent.__init__( self, label=label, every=every, show_label=show_label, interactive=interactive, visible=visible, elem_id=elem_id, value=value, **kwargs, ) def get_config(self): return { "file_count": self.file_count, "file_types": self.file_types, "value": self.value, **IOComponent.get_config(self), } @staticmethod def update( value: Any | Literal[_Keywords.NO_VALUE] | None = _Keywords.NO_VALUE, label: str | None = None, show_label: bool | None = None, interactive: bool | None = None, visible: bool | None = None, ): updated_config = { "label": label, "show_label": show_label, "interactive": interactive, "visible": visible, "value": value, "__type__": "update", } return IOComponent.add_interactive_to_config(updated_config, interactive) def preprocess( self, x: List[Dict[str, Any]] | None ) -> bytes | tempfile._TemporaryFileWrapper | List[ bytes | tempfile._TemporaryFileWrapper ] | None: """ Parameters: x: List of JSON objects with filename as 'name' property and base64 data as 'data' property Returns: File objects in requested format """ if x is None: return None def process_single_file(f) -> bytes | tempfile._TemporaryFileWrapper: file_name, data, is_file = ( f["name"], f["data"], f.get("is_file", False), ) if self.type == "file": if is_file: temp_file_path = self.make_temp_copy_if_needed(file_name) file = tempfile.NamedTemporaryFile(delete=False) file.name = temp_file_path file.orig_name = file_name # type: ignore else: file = processing_utils.decode_base64_to_file( data, file_path=file_name ) file.orig_name = file_name # type: ignore self.temp_files.add(str(utils.abspath(file.name))) return file elif ( self.type == "binary" or self.type == "bytes" ): # "bytes" is included for backwards compatibility if is_file: with open(file_name, "rb") as file_data: return file_data.read() return processing_utils.decode_base64_to_binary(data)[0] else: raise ValueError( "Unknown type: " + str(self.type) + ". Please choose from: 'file', 'bytes'." ) if self.file_count == "single": if isinstance(x, list): return process_single_file(x[0]) else: return process_single_file(x) else: if isinstance(x, list): return [process_single_file(f) for f in x] else: return process_single_file(x) def generate_sample(self): return deepcopy(media_data.BASE64_FILE) def postprocess( self, y: str | List[str] | None ) -> Dict[str, Any] | List[Dict[str, Any]] | None: """ Parameters: y: file path Returns: JSON object with key 'name' for filename, 'data' for base64 url, and 'size' for filesize in bytes """ if y is None: return None if isinstance(y, list): return [ { "orig_name": Path(file).name, "name": self.make_temp_copy_if_needed(file), "size": Path(file).stat().st_size, "data": None, "is_file": True, } for file in y ] else: return { "orig_name": Path(y).name, "name": self.make_temp_copy_if_needed(y), "size": Path(y).stat().st_size, "data": None, "is_file": True, } def serialize( self, x: str | None, load_dir: str = "", encryption_key: bytes | None = None ) -> Dict | None: serialized = FileSerializable.serialize(self, x, load_dir, encryption_key) if serialized is None: return None serialized["size"] = Path(serialized["name"]).stat().st_size return serialized def style( self, **kwargs, ): """ This method can be used to change the appearance of the file component. """ return Component.style( self, **kwargs, ) def as_example(self, input_data: str | List | None) -> str: if input_data is None: return "" elif isinstance(input_data, list): return ", ".join([Path(file).name for file in input_data]) else: return Path(input_data).name @document("change", "style") class Dataframe(Changeable, IOComponent, JSONSerializable): """ Accepts or displays 2D input through a spreadsheet-like component for dataframes. Preprocessing: passes the uploaded spreadsheet data as a {pandas.DataFrame}, {numpy.array}, {List[List]}, or {List} depending on `type` Postprocessing: expects a {pandas.DataFrame}, {numpy.array}, {List[List]}, {List}, a {Dict} with keys `data` (and optionally `headers`), or {str} path to a csv, which is rendered in the spreadsheet. Examples-format: a {str} filepath to a csv with data, a pandas dataframe, or a list of lists (excluding headers) where each sublist is a row of data. Demos: filter_records, matrix_transpose, tax_calculator """ markdown_parser = None def __init__( self, value: List[List[Any]] | Callable | None = None, *, headers: List[str] | None = None, row_count: int | Tuple[int, str] = (1, "dynamic"), col_count: int | Tuple[int, str] | None = None, datatype: str | List[str] = "str", type: str = "pandas", max_rows: int | None = 20, max_cols: int | None = None, overflow_row_behaviour: str = "paginate", label: str | None = None, every: float | None = None, show_label: bool = True, interactive: bool | None = None, visible: bool = True, elem_id: str | None = None, wrap: bool = False, **kwargs, ): """ Parameters: value: Default value as a 2-dimensional list of values. If callable, the function will be called whenever the app loads to set the initial value of the component. headers: List of str header names. If None, no headers are shown. row_count: Limit number of rows for input and decide whether user can create new rows. The first element of the tuple is an `int`, the row count; the second should be 'fixed' or 'dynamic', the new row behaviour. If an `int` is passed the rows default to 'dynamic' col_count: Limit number of columns for input and decide whether user can create new columns. The first element of the tuple is an `int`, the number of columns; the second should be 'fixed' or 'dynamic', the new column behaviour. If an `int` is passed the columns default to 'dynamic' datatype: Datatype of values in sheet. Can be provided per column as a list of strings, or for the entire sheet as a single string. Valid datatypes are "str", "number", "bool", "date", and "markdown". type: Type of value to be returned by component. "pandas" for pandas dataframe, "numpy" for numpy array, or "array" for a Python array. label: component name in interface. max_rows: Maximum number of rows to display at once. Set to None for infinite. max_cols: Maximum number of columns to display at once. Set to None for infinite. overflow_row_behaviour: If set to "paginate", will create pages for overflow rows. If set to "show_ends", will show initial and final rows and truncate middle rows. label: component name in interface. every: If `value` is a callable, run the function 'every' number of seconds while the client connection is open. Has no effect otherwise. Queue must be enabled. The event can be accessed (e.g. to cancel it) via this component's .load_event attribute. show_label: if True, will display label. interactive: if True, will allow users to edit the dataframe; if False, can only be used to display data. If not provided, this is inferred based on whether the component is used as an input or output. visible: If False, component will be hidden. elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles. wrap: if True text in table cells will wrap when appropriate, if False the table will scroll horiztonally. Defaults to False. """ self.wrap = wrap self.row_count = self.__process_counts(row_count) self.col_count = self.__process_counts( col_count, len(headers) if headers else 3 ) self.__validate_headers(headers, self.col_count[0]) self.headers = ( headers if headers is not None else list(range(1, self.col_count[0] + 1)) ) self.datatype = ( datatype if isinstance(datatype, list) else [datatype] * self.col_count[0] ) valid_types = ["pandas", "numpy", "array"] if type not in valid_types: raise ValueError( f"Invalid value for parameter `type`: {type}. Please choose from one of: {valid_types}" ) self.type = type values = { "str": "", "number": 0, "bool": False, "date": "01/01/1970", "markdown": "", "html": "", } column_dtypes = ( [datatype] * self.col_count[0] if isinstance(datatype, str) else datatype ) self.test_input = [ [values[c] for c in column_dtypes] for _ in range(self.row_count[0]) ] self.max_rows = max_rows self.max_cols = max_cols self.overflow_row_behaviour = overflow_row_behaviour IOComponent.__init__( self, label=label, every=every, show_label=show_label, interactive=interactive, visible=visible, elem_id=elem_id, value=value, **kwargs, ) def get_config(self): return { "headers": self.headers, "datatype": self.datatype, "row_count": self.row_count, "col_count": self.col_count, "value": self.value, "max_rows": self.max_rows, "max_cols": self.max_cols, "overflow_row_behaviour": self.overflow_row_behaviour, "wrap": self.wrap, **IOComponent.get_config(self), } @staticmethod def update( value: Any | Literal[_Keywords.NO_VALUE] | None = _Keywords.NO_VALUE, max_rows: int | None = None, max_cols: str | None = None, label: str | None = None, show_label: bool | None = None, interactive: bool | None = None, visible: bool | None = None, ): updated_config = { "max_rows": max_rows, "max_cols": max_cols, "label": label, "show_label": show_label, "interactive": interactive, "visible": visible, "value": value, "__type__": "update", } return IOComponent.add_interactive_to_config(updated_config, interactive) def preprocess(self, x: DataframeData): """ Parameters: x: 2D array of str, numeric, or bool data Returns: Dataframe in requested format """ if self.type == "pandas": if x.get("headers") is not None: return pd.DataFrame(x["data"], columns=x.get("headers")) else: return pd.DataFrame(x["data"]) if self.type == "numpy": return np.array(x["data"]) elif self.type == "array": return x["data"] else: raise ValueError( "Unknown type: " + str(self.type) + ". Please choose from: 'pandas', 'numpy', 'array'." ) def generate_sample(self): return [[1, 2, 3], [4, 5, 6]] def postprocess( self, y: str | pd.DataFrame | np.ndarray | List[List[str | float]] | Dict ) -> Dict: """ Parameters: y: dataframe in given format Returns: JSON object with key 'headers' for list of header names, 'data' for 2D array of string or numeric data """ if y is None: return self.postprocess(self.test_input) if isinstance(y, dict): return y if isinstance(y, str): dataframe = pd.read_csv(y) return { "headers": list(dataframe.columns), "data": Dataframe.__process_markdown( dataframe.to_dict(orient="split")["data"], self.datatype ), } if isinstance(y, pd.DataFrame): return { "headers": list(y.columns), # type: ignore "data": Dataframe.__process_markdown( y.to_dict(orient="split")["data"], self.datatype # type: ignore ), } if isinstance(y, (np.ndarray, list)): if isinstance(y, np.ndarray): y = y.tolist() assert isinstance(y, list), "output cannot be converted to list" _headers = self.headers if len(self.headers) < len(y[0]): _headers = [ *self.headers, *list(range(len(self.headers) + 1, len(y[0]) + 1)), ] elif len(self.headers) > len(y[0]): _headers = self.headers[: len(y[0])] return { "headers": _headers, "data": Dataframe.__process_markdown(y, self.datatype), } raise ValueError("Cannot process value as a Dataframe") @staticmethod def __process_counts(count, default=3) -> Tuple[int, str]: if count is None: return (default, "dynamic") if type(count) == int or type(count) == float: return (int(count), "dynamic") else: return count @staticmethod def __validate_headers(headers: List[str] | None, col_count: int): if headers is not None and len(headers) != col_count: raise ValueError( "The length of the headers list must be equal to the col_count int.\nThe column count is set to {cols} but `headers` has {headers} items. Check the values passed to `col_count` and `headers`.".format( cols=col_count, headers=len(headers) ) ) @classmethod def __process_markdown(cls, data: List[List[Any]], datatype: List[str]): if "markdown" not in datatype: return data if cls.markdown_parser is None: cls.markdown_parser = utils.get_markdown_parser() for i in range(len(data)): for j in range(len(data[i])): if datatype[j] == "markdown": data[i][j] = cls.markdown_parser.render(data[i][j]) return data def style( self, **kwargs, ): """ This method can be used to change the appearance of the DataFrame component. """ return Component.style( self, **kwargs, ) def as_example(self, input_data: pd.DataFrame | np.ndarray | str | None): if input_data is None: return "" elif isinstance(input_data, pd.DataFrame): return input_data.head(n=5).to_dict(orient="split")["data"] # type: ignore elif isinstance(input_data, np.ndarray): return input_data.tolist() return input_data @document("change", "style") class Timeseries(Changeable, IOComponent, JSONSerializable): """ Creates a component that can be used to upload/preview timeseries csv files or display a dataframe consisting of a time series graphically. Preprocessing: passes the uploaded timeseries data as a {pandas.DataFrame} into the function Postprocessing: expects a {pandas.DataFrame} or {str} path to a csv to be returned, which is then displayed as a timeseries graph Examples-format: a {str} filepath of csv data with time series data. Demos: fraud_detector """ def __init__( self, value: str | Callable | None = None, *, x: str | None = None, y: str | List[str] | None = None, colors: List[str] | None = None, label: str | None = None, every: float | None = None, show_label: bool = True, interactive: bool | None = None, visible: bool = True, elem_id: str | None = None, **kwargs, ): """ Parameters: value: File path for the timeseries csv file. If callable, the function will be called whenever the app loads to set the initial value of the component. x: Column name of x (time) series. None if csv has no headers, in which case first column is x series. y: Column name of y series, or list of column names if multiple series. None if csv has no headers, in which case every column after first is a y series. label: component name in interface. every: If `value` is a callable, run the function 'every' number of seconds while the client connection is open. Has no effect otherwise. Queue must be enabled. The event can be accessed (e.g. to cancel it) via this component's .load_event attribute. colors: an ordered list of colors to use for each line plot show_label: if True, will display label. interactive: if True, will allow users to upload a timeseries csv; if False, can only be used to display timeseries data. If not provided, this is inferred based on whether the component is used as an input or output. visible: If False, component will be hidden. elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles. """ self.x = x if isinstance(y, str): y = [y] self.y = y self.colors = colors IOComponent.__init__( self, label=label, every=every, show_label=show_label, interactive=interactive, visible=visible, elem_id=elem_id, value=value, **kwargs, ) def get_config(self): return { "x": self.x, "y": self.y, "value": self.value, "colors": self.colors, **IOComponent.get_config(self), } @staticmethod def update( value: Any | Literal[_Keywords.NO_VALUE] | None = _Keywords.NO_VALUE, colors: List[str] | None = None, label: str | None = None, show_label: bool | None = None, interactive: bool | None = None, visible: bool | None = None, ): updated_config = { "colors": colors, "label": label, "show_label": show_label, "interactive": interactive, "visible": visible, "value": value, "__type__": "update", } return IOComponent.add_interactive_to_config(updated_config, interactive) def preprocess(self, x: Dict | None) -> pd.DataFrame | None: """ Parameters: x: Dict with keys 'data': 2D array of str, numeric, or bool data, 'headers': list of strings for header names, 'range': optional two element list designating start of end of subrange. Returns: Dataframe of timeseries data """ if x is None: return x elif x.get("is_file"): dataframe = pd.read_csv(x["name"]) else: dataframe = pd.DataFrame(data=x["data"], columns=x["headers"]) if x.get("range") is not None: dataframe = dataframe.loc[dataframe[self.x or 0] >= x["range"][0]] dataframe = dataframe.loc[dataframe[self.x or 0] <= x["range"][1]] return dataframe def generate_sample(self): return { "data": [[1] + [2] * len(self.y or [])] * 4, "headers": [self.x] + (self.y or []), } def postprocess(self, y: str | pd.DataFrame | None) -> Dict | None: """ Parameters: y: csv or dataframe with timeseries data Returns: JSON object with key 'headers' for list of header names, 'data' for 2D array of string or numeric data """ if y is None: return None if isinstance(y, str): dataframe = pd.read_csv(y) return { "headers": dataframe.columns.values.tolist(), "data": dataframe.values.tolist(), } if isinstance(y, pd.DataFrame): return {"headers": y.columns.values.tolist(), "data": y.values.tolist()} raise ValueError("Cannot process value as Timeseries data") def style( self, **kwargs, ): """ This method can be used to change the appearance of the TimeSeries component. """ return Component.style( self, **kwargs, ) def as_example(self, input_data: str | None) -> str: return Path(input_data).name if input_data else "" @document() class State(IOComponent, SimpleSerializable): """ Special hidden component that stores session state across runs of the demo by the same user. The value of the State variable is cleared when the user refreshes the page. Preprocessing: No preprocessing is performed Postprocessing: No postprocessing is performed Demos: chatbot_demo, blocks_simple_squares Guides: creating_a_chatbot, real_time_speech_recognition """ allow_string_shortcut = False def __init__( self, value: Any = None, **kwargs, ): """ Parameters: value: the initial value of the state. If callable, the function will be called whenever the app loads to set the initial value of the component. """ self.stateful = True IOComponent.__init__(self, value=deepcopy(value), **kwargs) def style(self): return self class Variable(State): """Variable was renamed to State. This class is kept for backwards compatibility.""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def get_block_name(self): return "state" @document("click", "style") class Button(Clickable, IOComponent, SimpleSerializable): """ Used to create a button, that can be assigned arbitrary click() events. The label (value) of the button can be used as an input or set via the output of a function. Preprocessing: passes the button value as a {str} into the function Postprocessing: expects a {str} to be returned from a function, which is set as the label of the button Demos: blocks_inputs, blocks_kinematics """ def __init__( self, value: str | Callable = "Run", *, variant: str = "secondary", visible: bool = True, interactive: bool = True, elem_id: str | None = None, **kwargs, ): """ Parameters: value: Default text for the button to display. If callable, the function will be called whenever the app loads to set the initial value of the component. variant: 'primary' for main call-to-action, 'secondary' for a more subdued style visible: If False, component will be hidden. elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles. """ IOComponent.__init__( self, visible=visible, elem_id=elem_id, value=value, interactive=interactive, **kwargs, ) self.variant = variant def get_config(self): return { "value": self.value, "variant": self.variant, "interactive": self.interactive, **Component.get_config(self), } @staticmethod def update( value: str | Literal[_Keywords.NO_VALUE] | None = _Keywords.NO_VALUE, variant: str | None = None, visible: bool | None = None, interactive: bool | None = None, ): updated_config = { "variant": variant, "visible": visible, "value": value, "__type__": "update", } return IOComponent.add_interactive_to_config(updated_config, interactive) def style(self, *, full_width: bool | None = None, **kwargs): """ This method can be used to change the appearance of the button component. Parameters: full_width: If True, will expand to fill parent container. """ if full_width is not None: self._style["full_width"] = full_width return Component.style(self, **kwargs) @document("click", "upload", "style") class UploadButton( Clickable, Uploadable, IOComponent, FileSerializable, TempFileManager ): """ Used to create an upload button, when cicked allows a user to upload files that satisfy the specified file type or generic files (if file_type not set). Preprocessing: passes the uploaded file as a {file-object} or {List[file-object]} depending on `file_count` (or a {bytes}/{List{bytes}} depending on `type`) Postprocessing: expects function to return a {str} path to a file, or {List[str]} consisting of paths to files. Examples-format: a {str} path to a local file that populates the component. Demos: upload_button """ def __init__( self, label: str = "Upload a File", value: str | List[str] | Callable | None = None, *, visible: bool = True, elem_id: str | None = None, type: str = "file", file_count: str = "single", file_types: List[str] | None = None, **kwargs, ): """ Parameters: value: Default text for the button to display. type: Type of value to be returned by component. "file" returns a temporary file object whose path can be retrieved by file_obj.name and original filename can be retrieved with file_obj.orig_name, "binary" returns an bytes object. file_count: if single, allows user to upload one file. If "multiple", user uploads multiple files. If "directory", user uploads all files in selected directory. Return type will be list for each file in case of "multiple" or "directory". file_types: List of type of files to be uploaded. "file" allows any file to be uploaded, "image" allows only image files to be uploaded, "audio" allows only audio files to be uploaded, "video" allows only video files to be uploaded, "text" allows only text files to be uploaded. label: Text to display on the button. Defaults to "Upload a File". visible: If False, component will be hidden. elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles. """ self.type = type self.file_count = file_count if file_count == "directory" and file_types is not None: warnings.warn( "The `file_types` parameter is ignored when `file_count` is 'directory'." ) if file_types is not None and not isinstance(file_types, list): raise ValueError( f"Parameter file_types must be a list. Received {file_types.__class__.__name__}" ) self.file_types = file_types self.label = label TempFileManager.__init__(self) IOComponent.__init__( self, label=label, visible=visible, elem_id=elem_id, value=value, **kwargs ) def get_config(self): return { "label": self.label, "value": self.value, "file_count": self.file_count, "file_types": self.file_types, **Component.get_config(self), } @staticmethod def update( value: str | Literal[_Keywords.NO_VALUE] | None = _Keywords.NO_VALUE, interactive: bool | None = None, visible: bool | None = None, ): updated_config = { "interactive": interactive, "visible": visible, "value": value, "__type__": "update", } return IOComponent.add_interactive_to_config(updated_config, interactive) def preprocess( self, x: List[Dict[str, Any]] | None ) -> bytes | tempfile._TemporaryFileWrapper | List[ bytes | tempfile._TemporaryFileWrapper ] | None: """ Parameters: x: List of JSON objects with filename as 'name' property and base64 data as 'data' property Returns: File objects in requested format """ if x is None: return None def process_single_file(f) -> bytes | tempfile._TemporaryFileWrapper: file_name, data, is_file = ( f["name"], f["data"], f.get("is_file", False), ) if self.type == "file": if is_file: temp_file_path = self.make_temp_copy_if_needed(file_name) file = tempfile.NamedTemporaryFile(delete=False) file.name = temp_file_path file.orig_name = file_name # type: ignore else: file = processing_utils.decode_base64_to_file( data, file_path=file_name ) file.orig_name = file_name # type: ignore self.temp_files.add(str(utils.abspath(file.name))) return file elif self.type == "bytes": if is_file: with open(file_name, "rb") as file_data: return file_data.read() return processing_utils.decode_base64_to_binary(data)[0] else: raise ValueError( "Unknown type: " + str(self.type) + ". Please choose from: 'file', 'bytes'." ) if self.file_count == "single": if isinstance(x, list): return process_single_file(x[0]) else: return process_single_file(x) else: if isinstance(x, list): return [process_single_file(f) for f in x] else: return process_single_file(x) def generate_sample(self): return deepcopy(media_data.BASE64_FILE) def serialize( self, x: str | None, load_dir: str = "", encryption_key: bytes | None = None ) -> Dict | None: serialized = FileSerializable.serialize(self, x, load_dir, encryption_key) if serialized is None: return None serialized["size"] = Path(serialized["name"]).stat().st_size return serialized def style(self, *, full_width: bool | None = None, **kwargs): """ This method can be used to change the appearance of the button component. Parameters: full_width: If True, will expand to fill parent container. """ if full_width is not None: self._style["full_width"] = full_width return Component.style(self, **kwargs) @document("change", "submit", "style") class ColorPicker(Changeable, Submittable, IOComponent, SimpleSerializable): """ Creates a color picker for user to select a color as string input. Preprocessing: passes selected color value as a {str} into the function. Postprocessing: expects a {str} returned from function and sets color picker value to it. Examples-format: a {str} with a hexadecimal representation of a color, e.g. "#ff0000" for red. Demos: color_picker, color_generator """ def __init__( self, value: str | Callable | None = None, *, label: str | None = None, info: str | None = None, every: float | None = None, show_label: bool = True, interactive: bool | None = None, visible: bool = True, elem_id: str | None = None, **kwargs, ): """ Parameters: value: default text to provide in color picker. If callable, the function will be called whenever the app loads to set the initial value of the component. label: component name in interface. info: additional component description. every: If `value` is a callable, run the function 'every' number of seconds while the client connection is open. Has no effect otherwise. Queue must be enabled. The event can be accessed (e.g. to cancel it) via this component's .load_event attribute. show_label: if True, will display label. interactive: if True, will be rendered as an editable color picker; if False, editing will be disabled. If not provided, this is inferred based on whether the component is used as an input or output. visible: If False, component will be hidden. elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles. """ self.cleared_value = "#000000" self.test_input = value IOComponent.__init__( self, label=label, info=info, every=every, show_label=show_label, interactive=interactive, visible=visible, elem_id=elem_id, value=value, **kwargs, ) def get_config(self): return { "value": self.value, **IOComponent.get_config(self), } @staticmethod def update( value: str | Literal[_Keywords.NO_VALUE] | None = _Keywords.NO_VALUE, label: str | None = None, show_label: bool | None = None, visible: bool | None = None, interactive: bool | None = None, ): updated_config = { "value": value, "label": label, "show_label": show_label, "visible": visible, "__type__": "update", } return IOComponent.add_interactive_to_config(updated_config, interactive) def preprocess(self, x: str | None) -> str | None: """ Any preprocessing needed to be performed on function input. Parameters: x: text Returns: text """ if x is None: return None else: return str(x) def generate_sample(self) -> str: return "#000000" def postprocess(self, y: str | None) -> str | None: """ Any postprocessing needed to be performed on function output. Parameters: y: text Returns: text """ if y is None: return None else: return str(y) ############################ # Only Output Components ############################ @document("change", "style") class Label(Changeable, IOComponent, JSONSerializable): """ Displays a classification label, along with confidence scores of top categories, if provided. Preprocessing: this component does *not* accept input. Postprocessing: expects a {Dict[str, float]} of classes and confidences, or {str} with just the class or an {int}/{float} for regression outputs, or a {str} path to a .json file containing a json dictionary in the structure produced by Label.postprocess(). Demos: main_note, titanic_survival Guides: Gradio_and_ONNX_on_Hugging_Face, image_classification_in_pytorch, image_classification_in_tensorflow, image_classification_with_vision_transformers, building_a_pictionary_app """ CONFIDENCES_KEY = "confidences" def __init__( self, value: Dict[str, float] | str | float | Callable | None = None, *, num_top_classes: int | None = None, label: str | None = None, every: float | None = None, show_label: bool = True, visible: bool = True, elem_id: str | None = None, color: str | None = None, **kwargs, ): """ Parameters: value: Default value to show in the component. If a str or number is provided, simply displays the string or number. If a {Dict[str, float]} of classes and confidences is provided, displays the top class on top and the `num_top_classes` below, along with their confidence bars. If callable, the function will be called whenever the app loads to set the initial value of the component. num_top_classes: number of most confident classes to show. label: component name in interface. every: If `value` is a callable, run the function 'every' number of seconds while the client connection is open. Has no effect otherwise. Queue must be enabled. The event can be accessed (e.g. to cancel it) via this component's .load_event attribute. show_label: if True, will display label. visible: If False, component will be hidden. elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles. color: The background color of the label (either a valid css color name or hexadecimal string). """ self.num_top_classes = num_top_classes self.color = color IOComponent.__init__( self, label=label, every=every, show_label=show_label, visible=visible, elem_id=elem_id, value=value, **kwargs, ) def get_config(self): return { "num_top_classes": self.num_top_classes, "value": self.value, "color": self.color, **IOComponent.get_config(self), } def postprocess(self, y: Dict[str, float] | str | float | None) -> Dict | None: """ Parameters: y: a dictionary mapping labels to confidence value, or just a string/numerical label by itself Returns: Object with key 'label' representing primary label, and key 'confidences' representing a list of label-confidence pairs """ if y is None or y == {}: return None if isinstance(y, str) and y.endswith(".json") and Path(y).exists(): return self.serialize(y) if isinstance(y, (str, float, int)): return {"label": str(y)} if isinstance(y, dict): if "confidences" in y and isinstance(y["confidences"], dict): y = y["confidences"] y = {c["label"]: c["confidence"] for c in y} sorted_pred = sorted(y.items(), key=operator.itemgetter(1), reverse=True) if self.num_top_classes is not None: sorted_pred = sorted_pred[: self.num_top_classes] return { "label": sorted_pred[0][0], "confidences": [ {"label": pred[0], "confidence": pred[1]} for pred in sorted_pred ], } raise ValueError( "The `Label` output interface expects one of: a string label, or an int label, a " "float label, or a dictionary whose keys are labels and values are confidences. " "Instead, got a {}".format(type(y)) ) @staticmethod def update( value: Dict[str, float] | str | float | Literal[_Keywords.NO_VALUE] | None = _Keywords.NO_VALUE, label: str | None = None, show_label: bool | None = None, visible: bool | None = None, color: str | Literal[_Keywords.NO_VALUE] | None = _Keywords.NO_VALUE, ): # If color is not specified (NO_VALUE) map it to None so that # it gets filtered out in postprocess. This will mean the color # will not be updated in the front-end if color is _Keywords.NO_VALUE: color = None # If the color was specified by the developer as None # Map is so that the color is updated to be transparent, # e.g. no background default state. elif color is None: color = "transparent" updated_config = { "label": label, "show_label": show_label, "visible": visible, "value": value, "color": color, "__type__": "update", } return updated_config def style( self, *, container: bool | None = None, ): """ This method can be used to change the appearance of the label component. Parameters: container: If True, will add a container to the label - providing some extra padding around the border. """ return Component.style(self, container=container) @document("change", "style") class HighlightedText(Changeable, IOComponent, JSONSerializable): """ Displays text that contains spans that are highlighted by category or numerical value. Preprocessing: this component does *not* accept input. Postprocessing: expects a {List[Tuple[str, float | str]]]} consisting of spans of text and their associated labels, or a {Dict} with two keys: (1) "text" whose value is the complete text, and "entities", which is a list of dictionaries, each of which have the keys: "entity" (consisting of the entity label), "start" (the character index where the label starts), and "end" (the character index where the label ends). Entities should not overlap. Demos: diff_texts, text_analysis Guides: named_entity_recognition """ def __init__( self, value: List[Tuple[str, str | float | None]] | Dict | Callable | None = None, *, color_map: Dict[str, str] | None = None, # Parameter moved to HighlightedText.style() show_legend: bool = False, combine_adjacent: bool = False, adjacent_separator: str = "", label: str | None = None, every: float | None = None, show_label: bool = True, visible: bool = True, elem_id: str | None = None, **kwargs, ): """ Parameters: value: Default value to show. If callable, the function will be called whenever the app loads to set the initial value of the component. show_legend: whether to show span categories in a separate legend or inline. combine_adjacent: If True, will merge the labels of adjacent tokens belonging to the same category. adjacent_separator: Specifies the separator to be used between tokens if combine_adjacent is True. label: component name in interface. every: If `value` is a callable, run the function 'every' number of seconds while the client connection is open. Has no effect otherwise. Queue must be enabled. The event can be accessed (e.g. to cancel it) via this component's .load_event attribute. show_label: if True, will display label. visible: If False, component will be hidden. elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles. """ self.color_map = color_map if color_map is not None: warnings.warn( "The 'color_map' parameter has been moved from the constructor to `HighlightedText.style()` ", ) self.show_legend = show_legend self.combine_adjacent = combine_adjacent self.adjacent_separator = adjacent_separator IOComponent.__init__( self, label=label, every=every, show_label=show_label, visible=visible, elem_id=elem_id, value=value, **kwargs, ) def get_config(self): return { "color_map": self.color_map, "show_legend": self.show_legend, "value": self.value, **IOComponent.get_config(self), } @staticmethod def update( value: List[Tuple[str, str | float | None]] | Dict | Literal[_Keywords.NO_VALUE] | None = _Keywords.NO_VALUE, color_map: Dict[str, str] | None = None, show_legend: bool | None = None, label: str | None = None, show_label: bool | None = None, visible: bool | None = None, ): updated_config = { "color_map": color_map, "show_legend": show_legend, "label": label, "show_label": show_label, "visible": visible, "value": value, "__type__": "update", } return updated_config def postprocess( self, y: List[Tuple[str, str | float | None]] | Dict | None ) -> List[Tuple[str, str | float | None]] | None: """ Parameters: y: List of (word, category) tuples Returns: List of (word, category) tuples """ if y is None: return None if isinstance(y, dict): try: text = y["text"] entities = y["entities"] except KeyError: raise ValueError( "Expected a dictionary with keys 'text' and 'entities' for the value of the HighlightedText component." ) if len(entities) == 0: y = [(text, None)] else: list_format = [] index = 0 entities = sorted(entities, key=lambda x: x["start"]) for entity in entities: list_format.append((text[index : entity["start"]], None)) list_format.append( (text[entity["start"] : entity["end"]], entity["entity"]) ) index = entity["end"] list_format.append((text[index:], None)) y = list_format if self.combine_adjacent: output = [] running_text, running_category = None, None for text, category in y: if running_text is None: running_text = text running_category = category elif category == running_category: running_text += self.adjacent_separator + text elif not text: # Skip fully empty item, these get added in processing # of dictionaries. pass else: output.append((running_text, running_category)) running_text = text running_category = category if running_text is not None: output.append((running_text, running_category)) return output else: return y def style( self, *, color_map: Dict[str, str] | None = None, container: bool | None = None, **kwargs, ): """ This method can be used to change the appearance of the HighlightedText component. Parameters: color_map: Map between category and respective colors. container: If True, will place the component in a container - providing some extra padding around the border. """ if color_map is not None: self._style["color_map"] = color_map return Component.style(self, container=container, **kwargs) @document("change", "style") class JSON(Changeable, IOComponent, JSONSerializable): """ Used to display arbitrary JSON output prettily. Preprocessing: this component does *not* accept input. Postprocessing: expects a valid JSON {str} -- or a {list} or {dict} that is JSON serializable. Demos: zip_to_json, blocks_xray """ def __init__( self, value: str | Callable | None = None, *, label: str | None = None, every: float | None = None, show_label: bool = True, visible: bool = True, elem_id: str | None = None, **kwargs, ): """ Parameters: value: Default value. If callable, the function will be called whenever the app loads to set the initial value of the component. label: component name in interface. every: If `value` is a callable, run the function 'every' number of seconds while the client connection is open. Has no effect otherwise. Queue must be enabled. The event can be accessed (e.g. to cancel it) via this component's .load_event attribute. show_label: if True, will display label. visible: If False, component will be hidden. elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles. """ IOComponent.__init__( self, label=label, every=every, show_label=show_label, visible=visible, elem_id=elem_id, value=value, **kwargs, ) def get_config(self): return { "value": self.value, **IOComponent.get_config(self), } @staticmethod def update( value: Any | Literal[_Keywords.NO_VALUE] | None = _Keywords.NO_VALUE, label: str | None = None, show_label: bool | None = None, visible: bool | None = None, interactive: bool | None = None, ): updated_config = { "label": label, "show_label": show_label, "visible": visible, "value": value, "__type__": "update", } return updated_config def postprocess(self, y: Dict | List | str | None) -> Dict | List | None: """ Parameters: y: JSON output Returns: JSON output """ if y is None: return None if isinstance(y, str): return json.loads(y) else: return y def style(self, *, container: bool | None = None, **kwargs): """ This method can be used to change the appearance of the JSON component. Parameters: container: If True, will place the JSON in a container - providing some extra padding around the border. """ return Component.style(self, container=container, **kwargs) @document("change") class HTML(Changeable, IOComponent, SimpleSerializable): """ Used to display arbitrary HTML output. Preprocessing: this component does *not* accept input. Postprocessing: expects a valid HTML {str}. Demos: text_analysis Guides: key_features """ def __init__( self, value: str | Callable = "", *, label: str | None = None, every: float | None = None, show_label: bool = True, visible: bool = True, elem_id: str | None = None, **kwargs, ): """ Parameters: value: Default value. If callable, the function will be called whenever the app loads to set the initial value of the component. label: component name in interface. every: If `value` is a callable, run the function 'every' number of seconds while the client connection is open. Has no effect otherwise. Queue must be enabled. The event can be accessed (e.g. to cancel it) via this component's .load_event attribute. show_label: if True, will display label. visible: If False, component will be hidden. elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles. """ IOComponent.__init__( self, label=label, every=every, show_label=show_label, visible=visible, elem_id=elem_id, value=value, **kwargs, ) def get_config(self): return { "value": self.value, **IOComponent.get_config(self), } @staticmethod def update( value: Any | Literal[_Keywords.NO_VALUE] | None = _Keywords.NO_VALUE, label: str | None = None, show_label: bool | None = None, visible: bool | None = None, ): updated_config = { "label": label, "show_label": show_label, "visible": visible, "value": value, "__type__": "update", } return updated_config def style(self): return self @document("style") class Gallery(IOComponent, TempFileManager, FileSerializable): """ Used to display a list of images as a gallery that can be scrolled through. Preprocessing: this component does *not* accept input. Postprocessing: expects a list of images in any format, {List[numpy.array | PIL.Image | str]}, or a {List} of (image, {str} caption) tuples and displays them. Demos: fake_gan """ def __init__( self, value: List[np.ndarray | _Image.Image | str] | Callable | None = None, *, label: str | None = None, every: float | None = None, show_label: bool = True, visible: bool = True, elem_id: str | None = None, **kwargs, ): """ Parameters: value: List of images to display in the gallery by default. If callable, the function will be called whenever the app loads to set the initial value of the component. label: component name in interface. every: If `value` is a callable, run the function 'every' number of seconds while the client connection is open. Has no effect otherwise. Queue must be enabled. The event can be accessed (e.g. to cancel it) via this component's .load_event attribute. show_label: if True, will display label. visible: If False, component will be hidden. elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles. """ TempFileManager.__init__(self) super().__init__( label=label, every=every, show_label=show_label, visible=visible, elem_id=elem_id, value=value, **kwargs, ) @staticmethod def update( value: Any | Literal[_Keywords.NO_VALUE] | None = _Keywords.NO_VALUE, label: str | None = None, show_label: bool | None = None, visible: bool | None = None, ): updated_config = { "label": label, "show_label": show_label, "visible": visible, "value": value, "__type__": "update", } return updated_config def get_config(self): return { "value": self.value, **IOComponent.get_config(self), } def postprocess( self, y: List[np.ndarray | _Image.Image | str] | List[Tuple[np.ndarray | _Image.Image | str, str]] | None, ) -> List[str]: """ Parameters: y: list of images, or list of (image, caption) tuples Returns: list of string file paths to images in temp directory """ if y is None: return [] output = [] for img in y: caption = None if isinstance(img, tuple) or isinstance(img, list): img, caption = img if isinstance(img, np.ndarray): file = processing_utils.save_array_to_file(img) file_path = str(utils.abspath(file.name)) self.temp_files.add(file_path) elif isinstance(img, _Image.Image): file = processing_utils.save_pil_to_file(img) file_path = str(utils.abspath(file.name)) self.temp_files.add(file_path) elif isinstance(img, str): if utils.validate_url(img): file_path = img else: file_path = self.make_temp_copy_if_needed(img) else: raise ValueError(f"Cannot process type as image: {type(img)}") if caption is not None: output.append( [{"name": file_path, "data": None, "is_file": True}, caption] ) else: output.append({"name": file_path, "data": None, "is_file": True}) return output def style( self, *, grid: int | Tuple | None = None, height: str | None = None, container: bool | None = None, preview: bool | None = None, **kwargs, ): """ This method can be used to change the appearance of the gallery component. Parameters: grid: Represents the number of images that should be shown in one row, for each of the six standard screen sizes (<576px, <768px, <992px, <1200px, <1400px, >1400px). if fewer that 6 are given then the last will be used for all subsequent breakpoints height: Height of the gallery. container: If True, will place gallery in a container - providing some extra padding around the border. """ if grid is not None: self._style["grid"] = grid if height is not None: self._style["height"] = height if preview is not None: self._style["preview"] = preview return Component.style(self, container=container, **kwargs) def deserialize( self, x: Any, save_dir: str = "", encryption_key: bytes | None = None, root_url: str | None = None, ) -> None | str: if x is None: return None gallery_path = Path(save_dir) / str(uuid.uuid4()) gallery_path.mkdir(exist_ok=True, parents=True) captions = {} for img_data in x: if isinstance(img_data, list) or isinstance(img_data, tuple): img_data, caption = img_data else: caption = None name = FileSerializable.deserialize( self, img_data, gallery_path, root_url=root_url ) captions[name] = caption captions_file = gallery_path / "captions.json" with captions_file.open("w") as captions_json: json.dump(captions, captions_json) return str(utils.abspath(gallery_path)) def serialize(self, x: Any, load_dir: str = "", called_directly: bool = False): files = [] captions_file = Path(x) / "captions.json" with captions_file.open("r") as captions_json: captions = json.load(captions_json) for file_name, caption in captions.items(): img = FileSerializable.serialize(self, file_name) files.append([img, caption]) return files class Carousel(IOComponent, Changeable, SimpleSerializable): """ Deprecated Component """ def __init__( self, *args, **kwargs, ): raise DeprecationWarning( "The Carousel component is deprecated. Please consider using the Gallery " "component, which can be used to display images (and optional captions).", ) @document("change", "style") class ChuanhuChatbot(Changeable, IOComponent, JSONSerializable): """ Displays a chatbot output showing both user submitted messages and responses. Supports a subset of Markdown including bold, italics, code, and images. Preprocessing: this component does *not* accept input. Postprocessing: expects function to return a {List[Tuple[str | None, str | None]]}, a list of tuples with user inputs and responses as strings of HTML or Nones. Messages that are `None` are not displayed. Demos: chatbot_demo, chatbot_multimodal """ def __init__( self, value: List[Tuple[str | None, str | None]] | Callable | None = None, color_map: Dict[str, str] | None = None, # Parameter moved to Chatbot.style() *, label: str | None = None, every: float | None = None, show_label: bool = True, visible: bool = True, elem_id: str | None = None, **kwargs, ): """ Parameters: value: Default value to show in chatbot. If callable, the function will be called whenever the app loads to set the initial value of the component. label: component name in interface. every: If `value` is a callable, run the function 'every' number of seconds while the client connection is open. Has no effect otherwise. Queue must be enabled. The event can be accessed (e.g. to cancel it) via this component's .load_event attribute. show_label: if True, will display label. visible: If False, component will be hidden. elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles. """ if color_map is not None: warnings.warn( "The 'color_map' parameter has been moved from the constructor to `Chatbot.style()` ", ) self.color_map = color_map self.md = utils.get_markdown_parser() IOComponent.__init__( self, label=label, every=every, show_label=show_label, visible=visible, elem_id=elem_id, value=value, **kwargs, ) def get_config(self): return { "value": self.value, "color_map": self.color_map, **IOComponent.get_config(self), } @staticmethod def update( value: Any | Literal[_Keywords.NO_VALUE] | None = _Keywords.NO_VALUE, color_map: Tuple[str, str] | None = None, label: str | None = None, show_label: bool | None = None, visible: bool | None = None, ): updated_config = { "color_map": color_map, "label": label, "show_label": show_label, "visible": visible, "value": value, "__type__": "update", } return updated_config def postprocess( self, y: List[Tuple[str | None, str | None]] ) -> List[Tuple[str | None, str | None]]: """ Parameters: y: List of tuples representing the message and response pairs. Each message and response should be a string, which may be in Markdown format. Returns: List of tuples representing the message and response. Each message and response will be a string of HTML. """ if y is None: return [] # for i, (message, response) in enumerate(y): # y[i] = ( # None if message is None else self.md.renderInline(message), # None if response is None else self.md.renderInline(response), # ) return y def style(self, **kwargs): """ This method can be used to change the appearance of the Chatbot component. """ if kwargs.get("color_map") is not None: warnings.warn("The 'color_map' parameter has been deprecated.") return Component.style( self, **kwargs, ) @document("change", "edit", "clear", "style") class Model3D( Changeable, Editable, Clearable, IOComponent, FileSerializable, TempFileManager ): """ Component allows users to upload or view 3D Model files (.obj, .glb, or .gltf). Preprocessing: This component passes the uploaded file as a {str} filepath. Postprocessing: expects function to return a {str} path to a file of type (.obj, glb, or .gltf) Demos: model3D Guides: how_to_use_3D_model_component """ def __init__( self, value: str | Callable | None = None, *, clear_color: List[float] | None = None, label: str | None = None, every: float | None = None, show_label: bool = True, visible: bool = True, elem_id: str | None = None, **kwargs, ): """ Parameters: value: path to (.obj, glb, or .gltf) file to show in model3D viewer. If callable, the function will be called whenever the app loads to set the initial value of the component. clear_color: background color of scene label: component name in interface. every: If `value` is a callable, run the function 'every' number of seconds while the client connection is open. Has no effect otherwise. Queue must be enabled. The event can be accessed (e.g. to cancel it) via this component's .load_event attribute. show_label: if True, will display label. visible: If False, component will be hidden. elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles. """ self.clear_color = clear_color or [0, 0, 0, 0] TempFileManager.__init__(self) IOComponent.__init__( self, label=label, every=every, show_label=show_label, visible=visible, elem_id=elem_id, value=value, **kwargs, ) def get_config(self): return { "clearColor": self.clear_color, "value": self.value, **IOComponent.get_config(self), } @staticmethod def update( value: Any | Literal[_Keywords.NO_VALUE] | None = _Keywords.NO_VALUE, label: str | None = None, show_label: bool | None = None, visible: bool | None = None, ): updated_config = { "label": label, "show_label": show_label, "visible": visible, "value": value, "__type__": "update", } return updated_config def preprocess(self, x: Dict[str, str] | None) -> str | None: """ Parameters: x: JSON object with filename as 'name' property and base64 data as 'data' property Returns: string file path to temporary file with the 3D image model """ if x is None: return x file_name, file_data, is_file = ( x["name"], x["data"], x.get("is_file", False), ) if is_file: temp_file_path = self.make_temp_copy_if_needed(file_name) else: temp_file_path = self.base64_to_temp_file_if_needed(file_data, file_name) return temp_file_path def generate_sample(self): return media_data.BASE64_MODEL3D def postprocess(self, y: str | None) -> Dict[str, str] | None: """ Parameters: y: path to the model Returns: file name mapped to base64 url data """ if y is None: return y data = { "name": self.make_temp_copy_if_needed(y), "data": None, "is_file": True, } return data def style(self, **kwargs): """ This method can be used to change the appearance of the Model3D component. """ return Component.style( self, **kwargs, ) def as_example(self, input_data: str | None) -> str: return Path(input_data).name if input_data else "" @document("change", "clear") class Plot(Changeable, Clearable, IOComponent, JSONSerializable): """ Used to display various kinds of plots (matplotlib, plotly, or bokeh are supported) Preprocessing: this component does *not* accept input. Postprocessing: expects either a {matplotlib.figure.Figure}, a {plotly.graph_objects._figure.Figure}, or a {dict} corresponding to a bokeh plot (json_item format) Demos: altair_plot, outbreak_forecast, blocks_kinematics, stock_forecast, map_airbnb Guides: plot_component_for_maps """ def __init__( self, value: Callable | None | pd.DataFrame = None, *, label: str | None = None, every: float | None = None, show_label: bool = True, visible: bool = True, elem_id: str | None = None, **kwargs, ): """ Parameters: value: Optionally, supply a default plot object to display, must be a matplotlib, plotly, altair, or bokeh figure, or a callable. If callable, the function will be called whenever the app loads to set the initial value of the component. label: component name in interface. every: If `value` is a callable, run the function 'every' number of seconds while the client connection is open. Has no effect otherwise. Queue must be enabled. The event can be accessed (e.g. to cancel it) via this component's .load_event attribute. show_label: if True, will display label. visible: If False, component will be hidden. elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles. """ IOComponent.__init__( self, label=label, every=every, show_label=show_label, visible=visible, elem_id=elem_id, value=value, **kwargs, ) def get_config(self): try: import bokeh # type: ignore bokeh_version = bokeh.__version__ except ImportError: bokeh_version = None return { "value": self.value, "bokeh_version": bokeh_version, **IOComponent.get_config(self), } @staticmethod def update( value: Any | Literal[_Keywords.NO_VALUE] | None = _Keywords.NO_VALUE, label: str | None = None, show_label: bool | None = None, visible: bool | None = None, ): updated_config = { "label": label, "show_label": show_label, "visible": visible, "value": value, "__type__": "update", } return updated_config def postprocess(self, y) -> Dict[str, str] | None: """ Parameters: y: plot data Returns: plot type mapped to plot base64 data """ if y is None: return None if isinstance(y, (ModuleType, matplotlib.figure.Figure)): dtype = "matplotlib" out_y = processing_utils.encode_plot_to_base64(y) elif "bokeh" in y.__module__: dtype = "bokeh" from bokeh.embed import json_item # type: ignore out_y = json.dumps(json_item(y)) else: is_altair = "altair" in y.__module__ if is_altair: dtype = "altair" else: dtype = "plotly" out_y = y.to_json() return {"type": dtype, "plot": out_y} def style(self, container: bool | None = None): return Component.style( self, container=container, ) class AltairPlot: @staticmethod def create_legend(position, title): if position == "none": legend = None else: position = {"orient": position} if position else {} legend = {"title": title, **position} return legend @staticmethod def create_scale(limit): return alt.Scale(domain=limit) if limit else alt.Undefined @document("change", "clear") class ScatterPlot(Plot): """ Create a scatter plot. Preprocessing: this component does *not* accept input. Postprocessing: expects a pandas dataframe with the data to plot. Demos: native_plots Guides: creating_a_dashboard_from_bigquery_data """ def __init__( self, value: pd.DataFrame | Callable | None = None, x: str | None = None, y: str | None = None, *, color: str | None = None, size: str | None = None, shape: str | None = None, title: str | None = None, tooltip: List[str] | str | None = None, x_title: str | None = None, y_title: str | None = None, color_legend_title: str | None = None, size_legend_title: str | None = None, shape_legend_title: str | None = None, color_legend_position: str | None = None, size_legend_position: str | None = None, shape_legend_position: str | None = None, height: int | None = None, width: int | None = None, x_lim: List[int | float] | None = None, y_lim: List[int | float] | None = None, caption: str | None = None, interactive: bool | None = True, label: str | None = None, every: float | None = None, show_label: bool = True, visible: bool = True, elem_id: str | None = None, ): """ Parameters: value: The pandas dataframe containing the data to display in a scatter plot, or a callable. If callable, the function will be called whenever the app loads to set the initial value of the component. x: Column corresponding to the x axis. y: Column corresponding to the y axis. color: The column to determine the point color. If the column contains numeric data, gradio will interpolate the column data so that small values correspond to light colors and large values correspond to dark values. size: The column used to determine the point size. Should contain numeric data so that gradio can map the data to the point size. shape: The column used to determine the point shape. Should contain categorical data. Gradio will map each unique value to a different shape. title: The title to display on top of the chart. tooltip: The column (or list of columns) to display on the tooltip when a user hovers a point on the plot. x_title: The title given to the x axis. By default, uses the value of the x parameter. y_title: The title given to the y axis. By default, uses the value of the y parameter. color_legend_title: The title given to the color legend. By default, uses the value of color parameter. size_legend_title: The title given to the size legend. By default, uses the value of the size parameter. shape_legend_title: The title given to the shape legend. By default, uses the value of the shape parameter. color_legend_position: The position of the color legend. If the string value 'none' is passed, this legend is omitted. For other valid position values see: https://vega.github.io/vega/docs/legends/#orientation. size_legend_position: The position of the size legend. If the string value 'none' is passed, this legend is omitted. For other valid position values see: https://vega.github.io/vega/docs/legends/#orientation. shape_legend_position: The position of the shape legend. If the string value 'none' is passed, this legend is omitted. For other valid position values see: https://vega.github.io/vega/docs/legends/#orientation. height: The height of the plot in pixels. width: The width of the plot in pixels. x_lim: A tuple or list containing the limits for the x-axis, specified as [x_min, x_max]. y_lim: A tuple of list containing the limits for the y-axis, specified as [y_min, y_max]. caption: The (optional) caption to display below the plot. interactive: Whether users should be able to interact with the plot by panning or zooming with their mouse or trackpad. label: The (optional) label to display on the top left corner of the plot. every: If `value` is a callable, run the function 'every' number of seconds while the client connection is open. Has no effect otherwise. Queue must be enabled. The event can be accessed (e.g. to cancel it) via this component's .load_event attribute. show_label: Whether the label should be displayed. visible: Whether the plot should be visible. elem_id: Unique id used for custom css targetting. """ self.x = x self.y = y self.color = color self.size = size self.shape = shape self.tooltip = tooltip self.title = title self.x_title = x_title self.y_title = y_title self.color_legend_title = color_legend_title self.color_legend_position = color_legend_position self.size_legend_title = size_legend_title self.size_legend_position = size_legend_position self.shape_legend_title = shape_legend_title self.shape_legend_position = shape_legend_position self.caption = caption self.interactive_chart = interactive self.width = width self.height = height self.x_lim = x_lim self.y_lim = y_lim super().__init__( value=value, label=label, every=every, show_label=show_label, visible=visible, elem_id=elem_id, ) def get_config(self): config = super().get_config() config["caption"] = self.caption return config def get_block_name(self) -> str: return "plot" @staticmethod def update( value: DataFrame | Dict | Literal[_Keywords.NO_VALUE] = _Keywords.NO_VALUE, x: str | None = None, y: str | None = None, color: str | None = None, size: str | None = None, shape: str | None = None, title: str | None = None, tooltip: List[str] | str | None = None, x_title: str | None = None, y_title: str | None = None, color_legend_title: str | None = None, size_legend_title: str | None = None, shape_legend_title: str | None = None, color_legend_position: str | None = None, size_legend_position: str | None = None, shape_legend_position: str | None = None, height: int | None = None, width: int | None = None, x_lim: List[int | float] | None = None, y_lim: List[int | float] | None = None, interactive: bool | None = None, caption: str | None = None, label: str | None = None, show_label: bool | None = None, visible: bool | None = None, ): """Update an existing plot component. If updating any of the plot properties (color, size, etc) the value, x, and y parameters must be specified. Parameters: value: The pandas dataframe containing the data to display in a scatter plot. x: Column corresponding to the x axis. y: Column corresponding to the y axis. color: The column to determine the point color. If the column contains numeric data, gradio will interpolate the column data so that small values correspond to light colors and large values correspond to dark values. size: The column used to determine the point size. Should contain numeric data so that gradio can map the data to the point size. shape: The column used to determine the point shape. Should contain categorical data. Gradio will map each unique value to a different shape. title: The title to display on top of the chart. tooltip: The column (or list of columns) to display on the tooltip when a user hovers a point on the plot. x_title: The title given to the x axis. By default, uses the value of the x parameter. y_title: The title given to the y axis. By default, uses the value of the y parameter. color_legend_title: The title given to the color legend. By default, uses the value of color parameter. size_legend_title: The title given to the size legend. By default, uses the value of the size parameter. shape_legend_title: The title given to the shape legend. By default, uses the value of the shape parameter. color_legend_position: The position of the color legend. If the string value 'none' is passed, this legend is omitted. For other valid position values see: https://vega.github.io/vega/docs/legends/#orientation. size_legend_position: The position of the size legend. If the string value 'none' is passed, this legend is omitted. For other valid position values see: https://vega.github.io/vega/docs/legends/#orientation. shape_legend_position: The position of the shape legend. If the string value 'none' is passed, this legend is omitted. For other valid position values see: https://vega.github.io/vega/docs/legends/#orientation. height: The height of the plot in pixels. width: The width of the plot in pixels. x_lim: A tuple or list containing the limits for the x-axis, specified as [x_min, x_max]. y_lim: A tuple of list containing the limits for the y-axis, specified as [y_min, y_max]. interactive: Whether users should be able to interact with the plot by panning or zooming with their mouse or trackpad. caption: The (optional) caption to display below the plot. label: The (optional) label to display in the top left corner of the plot. show_label: Whether the label should be displayed. visible: Whether the plot should be visible. """ properties = [ x, y, color, size, shape, title, tooltip, x_title, y_title, color_legend_title, size_legend_title, shape_legend_title, color_legend_position, size_legend_position, shape_legend_position, height, width, x_lim, y_lim, interactive, ] if any(properties): if not isinstance(value, pd.DataFrame): raise ValueError( "In order to update plot properties the value parameter " "must be provided, and it must be a Dataframe. Please pass a value " "parameter to gr.ScatterPlot.update." ) if x is None or y is None: raise ValueError( "In order to update plot properties, the x and y axis data " "must be specified. Please pass valid values for x an y to " "gr.ScatterPlot.update." ) chart = ScatterPlot.create_plot(value, *properties) value = {"type": "altair", "plot": chart.to_json(), "chart": "scatter"} updated_config = { "label": label, "show_label": show_label, "visible": visible, "value": value, "caption": caption, "__type__": "update", } return updated_config @staticmethod def create_plot( value: pd.DataFrame, x: str, y: str, color: str | None = None, size: str | None = None, shape: str | None = None, title: str | None = None, tooltip: List[str] | str | None = None, x_title: str | None = None, y_title: str | None = None, color_legend_title: str | None = None, size_legend_title: str | None = None, shape_legend_title: str | None = None, color_legend_position: str | None = None, size_legend_position: str | None = None, shape_legend_position: str | None = None, height: int | None = None, width: int | None = None, x_lim: List[int | float] | None = None, y_lim: List[int | float] | None = None, interactive: bool | None = True, ): """Helper for creating the scatter plot.""" interactive = True if interactive is None else interactive encodings = dict( x=alt.X( x, # type: ignore title=x_title or x, # type: ignore scale=AltairPlot.create_scale(x_lim), # type: ignore ), # ignore: type y=alt.Y( y, # type: ignore title=y_title or y, # type: ignore scale=AltairPlot.create_scale(y_lim), # type: ignore ), ) properties = {} if title: properties["title"] = title if height: properties["height"] = height if width: properties["width"] = width if color: if is_numeric_dtype(value[color]): domain = [value[color].min(), value[color].max()] range_ = [0, 1] type_ = "quantitative" else: domain = value[color].unique().tolist() range_ = list(range(len(domain))) type_ = "nominal" encodings["color"] = { "field": color, "type": type_, "legend": AltairPlot.create_legend( position=color_legend_position, title=color_legend_title or color ), "scale": {"domain": domain, "range": range_}, } if tooltip: encodings["tooltip"] = tooltip if size: encodings["size"] = { "field": size, "type": "quantitative" if is_numeric_dtype(value[size]) else "nominal", "legend": AltairPlot.create_legend( position=size_legend_position, title=size_legend_title or size ), } if shape: encodings["shape"] = { "field": shape, "type": "quantitative" if is_numeric_dtype(value[shape]) else "nominal", "legend": AltairPlot.create_legend( position=shape_legend_position, title=shape_legend_title or shape ), } chart = ( alt.Chart(value) # type: ignore .mark_point(clip=True) # type: ignore .encode(**encodings) .properties(background="transparent", **properties) ) if interactive: chart = chart.interactive() return chart def postprocess(self, y: pd.DataFrame | Dict | None) -> Dict[str, str] | None: # if None or update if y is None or isinstance(y, Dict): return y if self.x is None or self.y is None: raise ValueError("No value provided for required parameters `x` and `y`.") chart = self.create_plot( value=y, x=self.x, y=self.y, color=self.color, size=self.size, shape=self.shape, title=self.title, tooltip=self.tooltip, x_title=self.x_title, y_title=self.y_title, color_legend_title=self.color_legend_title, size_legend_title=self.size_legend_title, shape_legend_title=self.size_legend_title, color_legend_position=self.color_legend_position, size_legend_position=self.size_legend_position, shape_legend_position=self.shape_legend_position, interactive=self.interactive_chart, height=self.height, width=self.width, x_lim=self.x_lim, y_lim=self.y_lim, ) return {"type": "altair", "plot": chart.to_json(), "chart": "scatter"} @document("change", "clear") class LinePlot(Plot): """ Create a line plot. Preprocessing: this component does *not* accept input. Postprocessing: expects a pandas dataframe with the data to plot. Demos: native_plots, live_dashboard """ def __init__( self, value: pd.DataFrame | Callable | None = None, x: str | None = None, y: str | None = None, *, color: str | None = None, stroke_dash: str | None = None, overlay_point: bool | None = None, title: str | None = None, tooltip: List[str] | str | None = None, x_title: str | None = None, y_title: str | None = None, color_legend_title: str | None = None, stroke_dash_legend_title: str | None = None, color_legend_position: str | None = None, stroke_dash_legend_position: str | None = None, height: int | None = None, width: int | None = None, x_lim: List[int] | None = None, y_lim: List[int] | None = None, caption: str | None = None, interactive: bool | None = True, label: str | None = None, show_label: bool = True, every: float | None = None, visible: bool = True, elem_id: str | None = None, ): """ Parameters: value: The pandas dataframe containing the data to display in a scatter plot. x: Column corresponding to the x axis. y: Column corresponding to the y axis. color: The column to determine the point color. If the column contains numeric data, gradio will interpolate the column data so that small values correspond to light colors and large values correspond to dark values. stroke_dash: The column to determine the symbol used to draw the line, e.g. dashed lines, dashed lines with points. overlay_point: Whether to draw a point on the line for each (x, y) coordinate pair. title: The title to display on top of the chart. tooltip: The column (or list of columns) to display on the tooltip when a user hovers a point on the plot. x_title: The title given to the x axis. By default, uses the value of the x parameter. y_title: The title given to the y axis. By default, uses the value of the y parameter. color_legend_title: The title given to the color legend. By default, uses the value of color parameter. stroke_dash_legend_title: The title given to the stroke_dash legend. By default, uses the value of the stroke_dash parameter. color_legend_position: The position of the color legend. If the string value 'none' is passed, this legend is omitted. For other valid position values see: https://vega.github.io/vega/docs/legends/#orientation. stroke_dash_legend_position: The position of the stoke_dash legend. If the string value 'none' is passed, this legend is omitted. For other valid position values see: https://vega.github.io/vega/docs/legends/#orientation. height: The height of the plot in pixels. width: The width of the plot in pixels. x_lim: A tuple or list containing the limits for the x-axis, specified as [x_min, x_max]. y_lim: A tuple of list containing the limits for the y-axis, specified as [y_min, y_max]. caption: The (optional) caption to display below the plot. interactive: Whether users should be able to interact with the plot by panning or zooming with their mouse or trackpad. label: The (optional) label to display on the top left corner of the plot. show_label: Whether the label should be displayed. every: If `value` is a callable, run the function 'every' number of seconds while the client connection is open. Has no effect otherwise. Queue must be enabled. The event can be accessed (e.g. to cancel it) via this component's .load_event attribute. visible: Whether the plot should be visible. elem_id: Unique id used for custom css targetting. """ self.x = x self.y = y self.color = color self.stroke_dash = stroke_dash self.tooltip = tooltip self.title = title self.x_title = x_title self.y_title = y_title self.color_legend_title = color_legend_title self.stroke_dash_legend_title = stroke_dash_legend_title self.color_legend_position = color_legend_position self.stroke_dash_legend_position = stroke_dash_legend_position self.overlay_point = overlay_point self.x_lim = x_lim self.y_lim = y_lim self.caption = caption self.interactive_chart = interactive self.width = width self.height = height super().__init__( value=value, label=label, show_label=show_label, visible=visible, elem_id=elem_id, every=every, ) def get_config(self): config = super().get_config() config["caption"] = self.caption return config def get_block_name(self) -> str: return "plot" @staticmethod def update( value: pd.DataFrame | Dict | Literal[_Keywords.NO_VALUE] = _Keywords.NO_VALUE, x: str | None = None, y: str | None = None, color: str | None = None, stroke_dash: str | None = None, overlay_point: bool | None = None, title: str | None = None, tooltip: List[str] | str | None = None, x_title: str | None = None, y_title: str | None = None, color_legend_title: str | None = None, stroke_dash_legend_title: str | None = None, color_legend_position: str | None = None, stroke_dash_legend_position: str | None = None, height: int | None = None, width: int | None = None, x_lim: List[int] | None = None, y_lim: List[int] | None = None, interactive: bool | None = None, caption: str | None = None, label: str | None = None, show_label: bool | None = None, visible: bool | None = None, ): """Update an existing plot component. If updating any of the plot properties (color, size, etc) the value, x, and y parameters must be specified. Parameters: value: The pandas dataframe containing the data to display in a scatter plot. x: Column corresponding to the x axis. y: Column corresponding to the y axis. color: The column to determine the point color. If the column contains numeric data, gradio will interpolate the column data so that small values correspond to light colors and large values correspond to dark values. stroke_dash: The column to determine the symbol used to draw the line, e.g. dashed lines, dashed lines with points. overlay_point: Whether to draw a point on the line for each (x, y) coordinate pair. title: The title to display on top of the chart. tooltip: The column (or list of columns) to display on the tooltip when a user hovers a point on the plot. x_title: The title given to the x axis. By default, uses the value of the x parameter. y_title: The title given to the y axis. By default, uses the value of the y parameter. color_legend_title: The title given to the color legend. By default, uses the value of color parameter. stroke_dash_legend_title: The title given to the stroke legend. By default, uses the value of stroke parameter. color_legend_position: The position of the color legend. If the string value 'none' is passed, this legend is omitted. For other valid position values see: https://vega.github.io/vega/docs/legends/#orientation stroke_dash_legend_position: The position of the stoke_dash legend. If the string value 'none' is passed, this legend is omitted. For other valid position values see: https://vega.github.io/vega/docs/legends/#orientation height: The height of the plot in pixels. width: The width of the plot in pixels. x_lim: A tuple or list containing the limits for the x-axis, specified as [x_min, x_max]. y_lim: A tuple of list containing the limits for the y-axis, specified as [y_min, y_max]. caption: The (optional) caption to display below the plot. interactive: Whether users should be able to interact with the plot by panning or zooming with their mouse or trackpad. label: The (optional) label to display in the top left corner of the plot. show_label: Whether the label should be displayed. visible: Whether the plot should be visible. """ properties = [ x, y, color, stroke_dash, overlay_point, title, tooltip, x_title, y_title, color_legend_title, stroke_dash_legend_title, color_legend_position, stroke_dash_legend_position, height, width, x_lim, y_lim, interactive, ] if any(properties): if not isinstance(value, pd.DataFrame): raise ValueError( "In order to update plot properties the value parameter " "must be provided, and it must be a Dataframe. Please pass a value " "parameter to gr.LinePlot.update." ) if x is None or y is None: raise ValueError( "In order to update plot properties, the x and y axis data " "must be specified. Please pass valid values for x an y to " "gr.LinePlot.update." ) chart = LinePlot.create_plot(value, *properties) value = {"type": "altair", "plot": chart.to_json(), "chart": "line"} updated_config = { "label": label, "show_label": show_label, "visible": visible, "value": value, "caption": caption, "__type__": "update", } return updated_config @staticmethod def create_plot( value: pd.DataFrame, x: str, y: str, color: str | None = None, stroke_dash: str | None = None, overlay_point: bool | None = None, title: str | None = None, tooltip: List[str] | str | None = None, x_title: str | None = None, y_title: str | None = None, color_legend_title: str | None = None, stroke_dash_legend_title: str | None = None, color_legend_position: str | None = None, stroke_dash_legend_position: str | None = None, height: int | None = None, width: int | None = None, x_lim: List[int] | None = None, y_lim: List[int] | None = None, interactive: bool | None = None, ): """Helper for creating the scatter plot.""" interactive = True if interactive is None else interactive encodings = dict( x=alt.X( x, # type: ignore title=x_title or x, # type: ignore scale=AltairPlot.create_scale(x_lim), # type: ignore ), y=alt.Y( y, # type: ignore title=y_title or y, # type: ignore scale=AltairPlot.create_scale(y_lim), # type: ignore ), ) properties = {} if title: properties["title"] = title if height: properties["height"] = height if width: properties["width"] = width if color: domain = value[color].unique().tolist() range_ = list(range(len(domain))) encodings["color"] = { "field": color, "type": "nominal", "scale": {"domain": domain, "range": range_}, "legend": AltairPlot.create_legend( position=color_legend_position, title=color_legend_title or color ), } highlight = None if interactive and any([color, stroke_dash]): highlight = alt.selection( type="single", # type: ignore on="mouseover", fields=[c for c in [color, stroke_dash] if c], nearest=True, ) if stroke_dash: stroke_dash = { "field": stroke_dash, # type: ignore "legend": AltairPlot.create_legend( # type: ignore position=stroke_dash_legend_position, # type: ignore title=stroke_dash_legend_title or stroke_dash, # type: ignore ), # type: ignore } # type: ignore else: stroke_dash = alt.value(alt.Undefined) # type: ignore if tooltip: encodings["tooltip"] = tooltip chart = alt.Chart(value).encode(**encodings) # type: ignore points = chart.mark_point(clip=True).encode( opacity=alt.value(alt.Undefined) if overlay_point else alt.value(0), ) lines = chart.mark_line(clip=True).encode(strokeDash=stroke_dash) if highlight: points = points.add_selection(highlight) lines = lines.encode( size=alt.condition(highlight, alt.value(4), alt.value(1)), ) chart = (lines + points).properties(background="transparent", **properties) if interactive: chart = chart.interactive() return chart def postprocess(self, y: pd.DataFrame | Dict | None) -> Dict[str, str] | None: # if None or update if y is None or isinstance(y, Dict): return y if self.x is None or self.y is None: raise ValueError("No value provided for required parameters `x` and `y`.") chart = self.create_plot( value=y, x=self.x, y=self.y, color=self.color, overlay_point=self.overlay_point, title=self.title, tooltip=self.tooltip, x_title=self.x_title, y_title=self.y_title, color_legend_title=self.color_legend_title, color_legend_position=self.color_legend_position, stroke_dash_legend_title=self.stroke_dash_legend_title, stroke_dash_legend_position=self.stroke_dash_legend_position, x_lim=self.x_lim, y_lim=self.y_lim, stroke_dash=self.stroke_dash, interactive=self.interactive_chart, height=self.height, width=self.width, ) return {"type": "altair", "plot": chart.to_json(), "chart": "line"} @document("change", "clear") class BarPlot(Plot): """ Create a bar plot. Preprocessing: this component does *not* accept input. Postprocessing: expects a pandas dataframe with the data to plot. Demos: native_plots, chicago-bikeshare-dashboard """ def __init__( self, value: pd.DataFrame | Callable | None = None, x: str | None = None, y: str | None = None, *, color: str | None = None, vertical: bool = True, group: str | None = None, title: str | None = None, tooltip: List[str] | str | None = None, x_title: str | None = None, y_title: str | None = None, color_legend_title: str | None = None, group_title: str | None = None, color_legend_position: str | None = None, height: int | None = None, width: int | None = None, y_lim: List[int] | None = None, caption: str | None = None, interactive: bool | None = True, label: str | None = None, show_label: bool = True, every: float | None = None, visible: bool = True, elem_id: str | None = None, ): """ Parameters: value: The pandas dataframe containing the data to display in a scatter plot. x: Column corresponding to the x axis. y: Column corresponding to the y axis. color: The column to determine the bar color. Must be categorical (discrete values). vertical: If True, the bars will be displayed vertically. If False, the x and y axis will be switched, displaying the bars horizontally. Default is True. group: The column with which to split the overall plot into smaller subplots. title: The title to display on top of the chart. tooltip: The column (or list of columns) to display on the tooltip when a user hovers over a bar. x_title: The title given to the x axis. By default, uses the value of the x parameter. y_title: The title given to the y axis. By default, uses the value of the y parameter. color_legend_title: The title given to the color legend. By default, uses the value of color parameter. group_title: The label displayed on top of the subplot columns (or rows if vertical=True). Use an empty string to omit. color_legend_position: The position of the color legend. If the string value 'none' is passed, this legend is omitted. For other valid position values see: https://vega.github.io/vega/docs/legends/#orientation. height: The height of the plot in pixels. width: The width of the plot in pixels. y_lim: A tuple of list containing the limits for the y-axis, specified as [y_min, y_max]. caption: The (optional) caption to display below the plot. interactive: Whether users should be able to interact with the plot by panning or zooming with their mouse or trackpad. label: The (optional) label to display on the top left corner of the plot. show_label: Whether the label should be displayed. every: If `value` is a callable, run the function 'every' number of seconds while the client connection is open. Has no effect otherwise. Queue must be enabled. The event can be accessed (e.g. to cancel it) via this component's .load_event attribute. visible: Whether the plot should be visible. elem_id: Unique id used for custom css targetting. """ self.x = x self.y = y self.color = color self.vertical = vertical self.group = group self.group_title = group_title self.tooltip = tooltip self.title = title self.x_title = x_title self.y_title = y_title self.color_legend_title = color_legend_title self.group_title = group_title self.color_legend_position = color_legend_position self.y_lim = y_lim self.caption = caption self.interactive_chart = interactive self.width = width self.height = height super().__init__( value=value, label=label, show_label=show_label, visible=visible, elem_id=elem_id, every=every, ) def get_config(self): config = super().get_config() config["caption"] = self.caption return config def get_block_name(self) -> str: return "plot" @staticmethod def update( value: pd.DataFrame | Dict | Literal[_Keywords.NO_VALUE] = _Keywords.NO_VALUE, x: str | None = None, y: str | None = None, color: str | None = None, vertical: bool = True, group: str | None = None, title: str | None = None, tooltip: List[str] | str | None = None, x_title: str | None = None, y_title: str | None = None, color_legend_title: str | None = None, group_title: str | None = None, color_legend_position: str | None = None, height: int | None = None, width: int | None = None, y_lim: List[int] | None = None, caption: str | None = None, interactive: bool | None = True, label: str | None = None, show_label: bool = True, visible: bool = True, ): """Update an existing BarPlot component. If updating any of the plot properties (color, size, etc) the value, x, and y parameters must be specified. Parameters: value: The pandas dataframe containing the data to display in a scatter plot. x: Column corresponding to the x axis. y: Column corresponding to the y axis. color: The column to determine the bar color. Must be categorical (discrete values). vertical: If True, the bars will be displayed vertically. If False, the x and y axis will be switched, displaying the bars horizontally. Default is True. group: The column with which to split the overall plot into smaller subplots. title: The title to display on top of the chart. tooltip: The column (or list of columns) to display on the tooltip when a user hovers over a bar. x_title: The title given to the x axis. By default, uses the value of the x parameter. y_title: The title given to the y axis. By default, uses the value of the y parameter. color_legend_title: The title given to the color legend. By default, uses the value of color parameter. group_title: The label displayed on top of the subplot columns (or rows if vertical=True). Use an empty string to omit. color_legend_position: The position of the color legend. If the string value 'none' is passed, this legend is omitted. For other valid position values see: https://vega.github.io/vega/docs/legends/#orientation. height: The height of the plot in pixels. width: The width of the plot in pixels. y_lim: A tuple of list containing the limits for the y-axis, specified as [y_min, y_max]. caption: The (optional) caption to display below the plot. interactive: Whether users should be able to interact with the plot by panning or zooming with their mouse or trackpad. label: The (optional) label to display on the top left corner of the plot. show_label: Whether the label should be displayed. visible: Whether the plot should be visible. """ properties = [ x, y, color, vertical, group, title, tooltip, x_title, y_title, color_legend_title, group_title, color_legend_position, height, width, y_lim, interactive, ] if any(properties): if not isinstance(value, pd.DataFrame): raise ValueError( "In order to update plot properties the value parameter " "must be provided, and it must be a Dataframe. Please pass a value " "parameter to gr.BarPlot.update." ) if x is None or y is None: raise ValueError( "In order to update plot properties, the x and y axis data " "must be specified. Please pass valid values for x an y to " "gr.BarPlot.update." ) chart = BarPlot.create_plot(value, *properties) value = {"type": "altair", "plot": chart.to_json(), "chart": "bar"} updated_config = { "label": label, "show_label": show_label, "visible": visible, "value": value, "caption": caption, "__type__": "update", } return updated_config @staticmethod def create_plot( value: pd.DataFrame, x: str, y: str, color: str | None = None, vertical: bool = True, group: str | None = None, title: str | None = None, tooltip: List[str] | str | None = None, x_title: str | None = None, y_title: str | None = None, color_legend_title: str | None = None, group_title: str | None = None, color_legend_position: str | None = None, height: int | None = None, width: int | None = None, y_lim: List[int] | None = None, interactive: bool | None = True, ): """Helper for creating the scatter plot.""" interactive = True if interactive is None else interactive orientation = ( dict(field=group, title=group_title if group_title is not None else group) if group else {} ) x_title = x_title or x y_title = y_title or y # If horizontal, switch x and y if not vertical: y, x = x, y x = f"sum({x}):Q" y_title, x_title = x_title, y_title orientation = {"row": alt.Row(**orientation)} if orientation else {} # type: ignore x_lim = y_lim y_lim = None else: y = f"sum({y}):Q" x_lim = None orientation = {"column": alt.Column(**orientation)} if orientation else {} # type: ignore encodings = dict( x=alt.X( x, # type: ignore title=x_title, # type: ignore scale=AltairPlot.create_scale(x_lim), # type: ignore ), y=alt.Y( y, # type: ignore title=y_title, # type: ignore scale=AltairPlot.create_scale(y_lim), # type: ignore ), **orientation, ) properties = {} if title: properties["title"] = title if height: properties["height"] = height if width: properties["width"] = width if color: domain = value[color].unique().tolist() range_ = list(range(len(domain))) encodings["color"] = { "field": color, "type": "nominal", "scale": {"domain": domain, "range": range_}, "legend": AltairPlot.create_legend( position=color_legend_position, title=color_legend_title or color ), } if tooltip: encodings["tooltip"] = tooltip chart = ( alt.Chart(value) # type: ignore .mark_bar() # type: ignore .encode(**encodings) .properties(background="transparent", **properties) ) if interactive: chart = chart.interactive() return chart def postprocess(self, y: pd.DataFrame | Dict | None) -> Dict[str, str] | None: # if None or update if y is None or isinstance(y, Dict): return y if self.x is None or self.y is None: raise ValueError("No value provided for required parameters `x` and `y`.") chart = self.create_plot( value=y, x=self.x, y=self.y, color=self.color, vertical=self.vertical, group=self.group, title=self.title, tooltip=self.tooltip, x_title=self.x_title, y_title=self.y_title, color_legend_title=self.color_legend_title, color_legend_position=self.color_legend_position, group_title=self.group_title, y_lim=self.y_lim, interactive=self.interactive_chart, height=self.height, width=self.width, ) return {"type": "altair", "plot": chart.to_json(), "chart": "bar"} @document("change") class Markdown(IOComponent, Changeable, SimpleSerializable): """ Used to render arbitrary Markdown output. Can also render latex enclosed by dollar signs. Preprocessing: this component does *not* accept input. Postprocessing: expects a valid {str} that can be rendered as Markdown. Demos: blocks_hello, blocks_kinematics Guides: key_features """ def __init__( self, value: str | Callable = "", *, visible: bool = True, elem_id: str | None = None, **kwargs, ): """ Parameters: value: Value to show in Markdown component. If callable, the function will be called whenever the app loads to set the initial value of the component. visible: If False, component will be hidden. elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles. """ self.md = utils.get_markdown_parser() IOComponent.__init__( self, visible=visible, elem_id=elem_id, value=value, **kwargs ) def postprocess(self, y: str | None) -> str | None: """ Parameters: y: markdown representation Returns: HTML rendering of markdown """ if y is None: return None unindented_y = inspect.cleandoc(y) return self.md.render(unindented_y) def get_config(self): return { "value": self.value, **Component.get_config(self), } @staticmethod def update( value: Any | Literal[_Keywords.NO_VALUE] | None = _Keywords.NO_VALUE, visible: bool | None = None, ): updated_config = { "visible": visible, "value": value, "__type__": "update", } return updated_config def style(self): return self def as_example(self, input_data: str | None) -> str: postprocessed = self.postprocess(input_data) return postprocessed if postprocessed else "" ############################ # Special Components ############################ @document("click", "style") class Dataset(Clickable, Component): """ Used to create an output widget for showing datasets. Used to render the examples box. Preprocessing: passes the selected sample either as a {list} of data (if type="value") or as an {int} index (if type="index") Postprocessing: expects a {list} of {lists} corresponding to the dataset data. """ def __init__( self, *, label: str | None = None, components: List[IOComponent] | List[str], samples: List[List[Any]] | None = None, headers: List[str] | None = None, type: str = "values", samples_per_page: int = 10, visible: bool = True, elem_id: str | None = None, **kwargs, ): """ Parameters: components: Which component types to show in this dataset widget, can be passed in as a list of string names or Components instances. The following components are supported in a Dataset: Audio, Checkbox, CheckboxGroup, ColorPicker, Dataframe, Dropdown, File, HTML, Image, Markdown, Model3D, Number, Radio, Slider, Textbox, TimeSeries, Video samples: a nested list of samples. Each sublist within the outer list represents a data sample, and each element within the sublist represents an value for each component headers: Column headers in the Dataset widget, should be the same len as components. If not provided, inferred from component labels type: 'values' if clicking on a sample should pass the value of the sample, or "index" if it should pass the index of the sample samples_per_page: how many examples to show per page. visible: If False, component will be hidden. elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles. """ Component.__init__(self, visible=visible, elem_id=elem_id, **kwargs) self.components = [get_component_instance(c, render=False) for c in components] # Narrow type to IOComponent assert all( [isinstance(c, IOComponent) for c in self.components] ), "All components in a `Dataset` must be subclasses of `IOComponent`" self.components = [c for c in self.components if isinstance(c, IOComponent)] for component in self.components: component.root_url = self.root_url self.samples = [[]] if samples is None else samples for example in self.samples: for i, (component, ex) in enumerate(zip(self.components, example)): example[i] = component.as_example(ex) self.type = type self.label = label if headers is not None: self.headers = headers elif all([c.label is None for c in self.components]): self.headers = [] else: self.headers = [c.label or "" for c in self.components] self.samples_per_page = samples_per_page def get_config(self): return { "components": [component.get_block_name() for component in self.components], "headers": self.headers, "samples": self.samples, "type": self.type, "label": self.label, "samples_per_page": self.samples_per_page, **Component.get_config(self), } @staticmethod def update( samples: Any | Literal[_Keywords.NO_VALUE] | None = _Keywords.NO_VALUE, visible: bool | None = None, label: str | None = None, ): return { "samples": samples, "visible": visible, "label": label, "__type__": "update", } def preprocess(self, x: Any) -> Any: """ Any preprocessing needed to be performed on function input. """ if self.type == "index": return x elif self.type == "values": return self.samples[x] def postprocess(self, samples: List[List[Any]]) -> Dict: return { "samples": samples, "__type__": "update", } def style(self, **kwargs): """ This method can be used to change the appearance of the Dataset component. """ return Component.style(self, **kwargs) @document() class Interpretation(Component): """ Used to create an interpretation widget for a component. Preprocessing: this component does *not* accept input. Postprocessing: expects a {dict} with keys "original" and "interpretation". Guides: custom_interpretations_with_blocks """ def __init__( self, component: Component, *, visible: bool = True, elem_id: str | None = None, **kwargs, ): """ Parameters: component: Which component to show in the interpretation widget. visible: Whether or not the interpretation is visible. elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles. """ Component.__init__(self, visible=visible, elem_id=elem_id, **kwargs) self.component = component def get_config(self): return { "component": self.component.get_block_name(), "component_props": self.component.get_config(), } @staticmethod def update( value: Any | Literal[_Keywords.NO_VALUE] | None = _Keywords.NO_VALUE, visible: bool | None = None, ): return { "visible": visible, "value": value, "__type__": "update", } def style(self): return self class StatusTracker(Component): def __init__( self, **kwargs, ): warnings.warn("The StatusTracker component is deprecated.") def component(cls_name: str) -> Component: obj = utils.component_or_layout_class(cls_name)() if isinstance(obj, BlockContext): raise ValueError(f"Invalid component: {obj.__class__}") return obj def get_component_instance(comp: str | dict | Component, render=True) -> Component: if isinstance(comp, str): component_obj = component(comp) if not (render): component_obj.unrender() return component_obj elif isinstance(comp, dict): name = comp.pop("name") component_cls = utils.component_or_layout_class(name) component_obj = component_cls(**comp) if isinstance(component_obj, BlockContext): raise ValueError(f"Invalid component: {name}") if not (render): component_obj.unrender() return component_obj elif isinstance(comp, Component): return comp else: raise ValueError( f"Component must provided as a `str` or `dict` or `Component` but is {comp}" ) Text = Textbox DataFrame = Dataframe Highlightedtext = HighlightedText Highlight = HighlightedText Checkboxgroup = CheckboxGroup TimeSeries = Timeseries Json = JSON