|
import streamlit as st |
|
import torch |
|
import numpy as np |
|
import views |
|
from resources import load_corrector, load_data, load_model_and_tokenizer |
|
|
|
use_cpu = not torch.cuda.is_available() |
|
device = "cpu" if use_cpu else "cuda" |
|
|
|
df = load_data() |
|
|
|
encoder, tokenizer = load_model_and_tokenizer() |
|
|
|
|
|
|
|
corrector = load_corrector() |
|
|
|
|
|
@st.cache_data |
|
def load_embeddings(): |
|
return np.load("syac-title-embeddings.npy") |
|
|
|
embeddings = load_embeddings() |
|
|
|
|
|
tab1, tab2 = st.tabs(["plot", "diffs"]) |
|
|
|
with tab1: |
|
views.plot() |
|
|
|
with tab2: |
|
views.diffs() |
|
|