marksverdhei's picture
Apply ruff
78022ff
raw
history blame
617 Bytes
import streamlit as st
import torch
import numpy as np
import views
from resources import load_corrector, load_data, load_model_and_tokenizer
use_cpu = not torch.cuda.is_available()
device = "cpu" if use_cpu else "cuda"
df = load_data()
encoder, tokenizer = load_model_and_tokenizer()
corrector = load_corrector()
# Caching the precomputed embeddings since they are stored locally and large
@st.cache_data
def load_embeddings():
return np.load("syac-title-embeddings.npy")
embeddings = load_embeddings()
tab1, tab2 = st.tabs(["plot", "diffs"])
with tab1:
views.plot()
with tab2:
views.diffs()