Commit
·
2063af3
1
Parent(s):
644a030
Make points clickable
Browse files
app.py
CHANGED
@@ -17,8 +17,8 @@ tqdm.pandas()
|
|
17 |
@st.cache_resource
|
18 |
def vector_compressor_from_config():
|
19 |
'TODO'
|
20 |
-
# return PCA(2)
|
21 |
-
return UMAP(2)
|
22 |
|
23 |
# Caching the dataframe since loading from external source can be time-consuming
|
24 |
@st.cache_data
|
@@ -86,25 +86,17 @@ if selected_points:
|
|
86 |
clicked_point = selected_points[0]
|
87 |
x_coord = x = clicked_point['x']
|
88 |
y_coord = y = clicked_point['y']
|
89 |
-
st.text(f"Embeddings shape: {embeddings.shape}")
|
90 |
-
st.text(f"2dvector shapes shape: {vectors_2d.shape}")
|
91 |
-
st.text(f"Clicked point coordinates: x = {x_coord}, y = {y_coord}")
|
92 |
-
st.text("fOO")
|
93 |
-
logging.info("Foo")
|
94 |
-
inferred_embedding = reducer.inverse_transform(np.array([[x, y]]) if not isinstance(reducer, UMAP) else np.array([[x, y]]))
|
95 |
-
logging.info("Bar")
|
96 |
|
97 |
-
|
|
|
98 |
|
99 |
inferred_embedding = inferred_embedding.astype("float32")
|
100 |
-
st.text("Bar")
|
101 |
|
102 |
output = vec2text.invert_embeddings(
|
103 |
embeddings=torch.tensor(inferred_embedding).cuda(),
|
104 |
corrector=corrector,
|
105 |
num_steps=20,
|
106 |
)
|
107 |
-
st.text("Bar")
|
108 |
|
109 |
st.text(str(output))
|
110 |
st.text(str(inferred_embedding))
|
|
|
17 |
@st.cache_resource
|
18 |
def vector_compressor_from_config():
|
19 |
'TODO'
|
20 |
+
# return PCA(n:n_components=2)
|
21 |
+
return UMAP(n_components=2)
|
22 |
|
23 |
# Caching the dataframe since loading from external source can be time-consuming
|
24 |
@st.cache_data
|
|
|
86 |
clicked_point = selected_points[0]
|
87 |
x_coord = x = clicked_point['x']
|
88 |
y_coord = y = clicked_point['y']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
+
|
91 |
+
inferred_embedding = reducer.inverse_transform(np.array([[x, y]]) if not isinstance(reducer, UMAP) else np.array([[x, y]]))
|
92 |
|
93 |
inferred_embedding = inferred_embedding.astype("float32")
|
|
|
94 |
|
95 |
output = vec2text.invert_embeddings(
|
96 |
embeddings=torch.tensor(inferred_embedding).cuda(),
|
97 |
corrector=corrector,
|
98 |
num_steps=20,
|
99 |
)
|
|
|
100 |
|
101 |
st.text(str(output))
|
102 |
st.text(str(inferred_embedding))
|