marksverdhei commited on
Commit
2063af3
·
1 Parent(s): 644a030

Make points clickable

Browse files
Files changed (1) hide show
  1. app.py +4 -12
app.py CHANGED
@@ -17,8 +17,8 @@ tqdm.pandas()
17
  @st.cache_resource
18
  def vector_compressor_from_config():
19
  'TODO'
20
- # return PCA(2)
21
- return UMAP(2)
22
 
23
  # Caching the dataframe since loading from external source can be time-consuming
24
  @st.cache_data
@@ -86,25 +86,17 @@ if selected_points:
86
  clicked_point = selected_points[0]
87
  x_coord = x = clicked_point['x']
88
  y_coord = y = clicked_point['y']
89
- st.text(f"Embeddings shape: {embeddings.shape}")
90
- st.text(f"2dvector shapes shape: {vectors_2d.shape}")
91
- st.text(f"Clicked point coordinates: x = {x_coord}, y = {y_coord}")
92
- st.text("fOO")
93
- logging.info("Foo")
94
- inferred_embedding = reducer.inverse_transform(np.array([[x, y]]) if not isinstance(reducer, UMAP) else np.array([[x, y]]))
95
- logging.info("Bar")
96
 
97
- st.text("Bar")
 
98
 
99
  inferred_embedding = inferred_embedding.astype("float32")
100
- st.text("Bar")
101
 
102
  output = vec2text.invert_embeddings(
103
  embeddings=torch.tensor(inferred_embedding).cuda(),
104
  corrector=corrector,
105
  num_steps=20,
106
  )
107
- st.text("Bar")
108
 
109
  st.text(str(output))
110
  st.text(str(inferred_embedding))
 
17
  @st.cache_resource
18
  def vector_compressor_from_config():
19
  'TODO'
20
+ # return PCA(n:n_components=2)
21
+ return UMAP(n_components=2)
22
 
23
  # Caching the dataframe since loading from external source can be time-consuming
24
  @st.cache_data
 
86
  clicked_point = selected_points[0]
87
  x_coord = x = clicked_point['x']
88
  y_coord = y = clicked_point['y']
 
 
 
 
 
 
 
89
 
90
+
91
+ inferred_embedding = reducer.inverse_transform(np.array([[x, y]]) if not isinstance(reducer, UMAP) else np.array([[x, y]]))
92
 
93
  inferred_embedding = inferred_embedding.astype("float32")
 
94
 
95
  output = vec2text.invert_embeddings(
96
  embeddings=torch.tensor(inferred_embedding).cuda(),
97
  corrector=corrector,
98
  num_steps=20,
99
  )
 
100
 
101
  st.text(str(output))
102
  st.text(str(inferred_embedding))