Spaces:
Sleeping
Sleeping
File size: 6,875 Bytes
bb0cbef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
import streamlit as st
from tempfile import NamedTemporaryFile
import pprint
import os
from dotenv import load_dotenv, find_dotenv
import os
from langchain_openai import ChatOpenAI
from langchain_community.document_loaders import PyPDFLoader
from langchain.document_loaders.csv_loader import CSVLoader
from langchain.document_loaders import WebBaseLoader
import pandas as pd
import numpy as np
import pprint
defaultGoogleURL = "https://www.google.com/search?q=google+earnings"
OPEN_ROUTER_KEY = st.secrets["OPEN_ROUTER_KEY"]
OPEN_ROUTER_MODEL = "meta-llama/llama-3.1-70b-instruct:free"
def pretty_print_columns(text):
"""
Beautifies the provided CSV column description text.
Args:
text (str): The input string containing the column descriptions.
Returns:
str: The beautified string with neatly formatted column descriptions.
"""
return " ".join([line.strip() for line in text.splitlines() if line.strip()])
isPswdValid = True
try:
pswdVal = st.experimental_get_query_params()['pwd'][0]
if pswdVal==st.secrets["PSWD"]:
isPswdValid = True
except:
pass
if not isPswdValid:
st.write("Invalid Password")
else:
radioButtonList = ["E-commerce CSV (https://www.kaggle.com/datasets/mervemenekse/ecommerce-dataset)",
"Upload my own CSV",
"Upload my own PDF",
f"URL Chat with Google's Latest Earnings ({defaultGoogleURL})",
"Enter my own URL"]
# Add some designs to the radio buttons
st.markdown("""
<style>
.stRadio {
padding: 10px;
border-radius: 5px;
background-color: #f5f5f5;
}
.stRadio input[type="radio"] {
position: absolute;
opacity: 0;
cursor: pointer;
}
.stRadio label {
display: flex;
justify-content: center;
align-items: center;
cursor: pointer;
font-size: 16px;
color: #333;
}
.stRadio label:hover {
color: #000;
}
.stRadio.st-selected input[type="radio"] ~ label {
color: #000;
background-color: #d9d9d9;
}
</style>
""", unsafe_allow_html=True)
genre = st.radio(
"Tired of reading your files? Chat with it using AI! Choose dataset to finetune", radioButtonList, index=0
)
# Initialize language model
load_dotenv(find_dotenv()) # read local .env file
llm = ChatOpenAI(model=OPEN_ROUTER_MODEL, temperature=0.1, openai_api_key=OPEN_ROUTER_KEY, openai_api_base="https://openrouter.ai/api/v1")
pdfCSVURLText = ""
if genre==radioButtonList[0]:
pdfCSVURLText = "CSV"
exampleQuestion = "Question1: What was the most sold item? Question2: What was the most common payment?"
loader = CSVLoader(file_path='EcommerceDataset.csv')
csv_data = loader.load()
# st.write('You selected comedy.')
# else:
# st.write(f'''Password streamlit app: {st.secrets["PSWD"]}''')
elif genre==radioButtonList[1]:
pdfCSVURLText = "CSV"
exampleQuestion = "What are the data columns?"
elif genre==radioButtonList[2]:
pdfCSVURLText = "PDF"
exampleQuestion = "Can you summarize the contents?"
elif genre==radioButtonList[3]:
pdfCSVURLText = "URL"
exampleQuestion = "What is Google's latest earnings?"
elif genre==radioButtonList[4]:
pdfCSVURLText = "URL"
exampleQuestion = "Can you summarize the contents?"
isCustomURL = genre==radioButtonList[4]
urlInput = st.text_input('Enter your own URL', '', placeholder=f"Type your URL here (e.g. {defaultGoogleURL})", disabled=not isCustomURL)
isCustomPDF = genre==radioButtonList[1] or genre==radioButtonList[2]
uploaded_file = st.file_uploader(f"Upload your own {pdfCSVURLText} here", type=pdfCSVURLText.lower(), disabled=not isCustomPDF)
uploadedFilename = ""
if uploaded_file is not None:
with NamedTemporaryFile(dir='.', suffix=f'.{pdfCSVURLText.lower()}') as f:
f.write(uploaded_file.getbuffer())
uploadedFilename = f.name
if genre==radioButtonList[1]: # Custom CSV Upload
loader = CSVLoader(file_path=uploadedFilename)
csv_data = loader.load()
elif genre==radioButtonList[2]: # Custom PDF Upload
loader = PyPDFLoader(uploadedFilename)
pdf_pages = loader.load_and_split()
enableChatBox = False
if genre==radioButtonList[0]: # E-commerce CSV
enableChatBox = True
elif genre==radioButtonList[1]: # Custom CSV Upload
enableChatBox = uploadedFilename[-4:]==".csv"
elif genre==radioButtonList[2]: # Custom PDF Upload
enableChatBox = uploadedFilename[-4:]==".pdf"
elif genre==radioButtonList[3]: # Google Alphabet URL Earnings Report
enableChatBox = True
elif genre==radioButtonList[4]: # Custom URL
enableChatBox = True
chatTextStr = st.text_input(f'Ask me anything about this {pdfCSVURLText}', '', placeholder=f"Type here (e.g. {exampleQuestion})", disabled=not enableChatBox)
chatWithPDFButton = "CLICK HERE TO START CHATTING"
if st.button(chatWithPDFButton, disabled=not enableChatBox and not chatTextStr): # Button Cliked
if genre==radioButtonList[0]: # E-commerce CSV
# Initializing the agent
answer = llm.predict(f'''
I have CSV file contents below:
{str(csv_data)}
{chatTextStr}
''')
st.write(answer)
elif genre==radioButtonList[1]: # Custom CSV Upload
# Initializing the agent
answer = llm.predict(f'''
I have CSV file contents below:
{str(csv_data)}
{chatTextStr}
''')
st.write(answer)
elif genre==radioButtonList[2]: # Custom PDF Upload
pdf_answer = llm.predict(f'''
I have PDF file contents below:
{str(pdf_pages)}
{chatTextStr}
''')
st.write(pdf_answer)
elif genre==radioButtonList[3]: # Google Alphabet URL Earnings Report
loader = WebBaseLoader(defaultGoogleURL)
web_data = loader.load()
answer = llm.predict(f'''
I have website contents below:
{str(web_data)}
{chatTextStr}
''')
st.write(answer)
elif genre==radioButtonList[4]: # Custom URL
loader = WebBaseLoader(urlInput)
web_data = loader.load()
answer = llm.predict(f'''
I have website contents below:
{str(web_data)}
{chatTextStr}
''')
st.write(answer)
|