Spaces:
Sleeping
Sleeping
File size: 6,815 Bytes
41fee50 82b1468 89171ff 41fee50 89171ff 6fb1d1b 89171ff 6fb1d1b 41fee50 6fb1d1b 89171ff 6fb1d1b 41fee50 6fb1d1b 72ee182 6fb1d1b 89171ff 6fb1d1b 89171ff 6fb1d1b 89171ff d398fc9 89171ff d398fc9 89171ff d398fc9 89171ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import streamlit as st
import yfinance as yf
import pandas as pd
import plotly.graph_objs as go
import numpy as np
from plotly.subplots import make_subplots
import os
from langchain.embeddings import GooglePalmEmbeddings
from langchain.llms import GooglePalm
from langchain.document_loaders import UnstructuredURLLoader #load urls into docoument-loader
from langchain.chains.question_answering import load_qa_chain
from langchain.indexes import VectorstoreIndexCreator #vectorize db index with chromadb
from langchain.text_splitter import CharacterTextSplitter #text splitter
from langchain.chains import RetrievalQA
from langchain.document_loaders import UnstructuredPDFLoader #load pdf
from langchain.agents import create_pandas_dataframe_agent
import google.generativeai as palm
isPswdValid = True # Set to True to temporarily disable password checking
palm_api_key = st.secrets["PALM_API_KEY"]
try:
pswdVal = st.query_params()['pwd'][0]
if pswdVal==st.secrets["PSWD"]:
isPswdValid = True
except:
pass
if not isPswdValid:
st.write("Invalid Password")
else:
# Initialize language model
api_key = palm_api_key # put your API key here
os.environ["GOOGLE_API_KEY"] = palm_api_key
palm.configure(api_key=palm_api_key)
llm = GooglePalm()
llm.temperature = 0.1
# Set the Streamlit app title and icon
st.set_page_config(page_title="Stock Analysis", page_icon="📈")
# Create a Streamlit sidebar for user input
st.sidebar.title("Stock Analysis")
ticker_symbol = st.sidebar.text_input("Enter Stock Ticker Symbol:", value='AAPL')
start_date = st.sidebar.date_input("Start Date", pd.to_datetime('2024-01-01'))
end_date = st.sidebar.date_input("End Date", pd.to_datetime('2024-10-01'))
# Fetch stock data from Yahoo Finance
try:
stock_data = yf.download(ticker_symbol, start=start_date, end=end_date)
except Exception as e:
st.error("Error fetching stock data. Please check the ticker symbol and date range.")
df = stock_data
df.reset_index(inplace=True) # Reset index to ensure 'Date' becomes a column
# Create figure with secondary y-axis
fig = make_subplots(specs=[[{"secondary_y": True}]])
# include candlestick with rangeselector
fig.add_trace(go.Candlestick(x=df['Date'], # Except date, query all other data using Symbol
open=df['Open'][ticker_symbol], high=df['High'][ticker_symbol],
low=df['Low'][ticker_symbol], close=df['Close'][ticker_symbol]),
secondary_y=True)
# include a go.Bar trace for volumes
fig.add_trace(go.Bar(x=df['Date'], y=df['Volume'][ticker_symbol]),
secondary_y=False)
fig.layout.yaxis2.showgrid=False
st.plotly_chart(fig)
# Technical Indicators
st.header("Technical Indicators")
# Moving Averages
st.subheader("Moving Averages")
df['SMA_20'] = df['Close'][ticker_symbol].rolling(window=20).mean()
df['SMA_50'] = df['Close'][ticker_symbol].rolling(window=50).mean()
fig = go.Figure()
fig.add_trace(go.Scatter(x=df['Date'], y=df['Close'][ticker_symbol], mode='lines', name='Close Price'))
fig.add_trace(go.Scatter(x=df['Date'], y=df['SMA_20'], mode='lines', name='20-Day SMA'))
fig.add_trace(go.Scatter(x=df['Date'], y=df['SMA_50'], mode='lines', name='50-Day SMA'))
fig.update_layout(title="Moving Averages", xaxis_title="Date", yaxis_title="Price (USD)")
st.plotly_chart(fig)
# RSI (Manual Calculation)
st.subheader("Relative Strength Index (RSI)")
window_length = 14
# Calculate the daily price changes
delta = df['Close'][ticker_symbol].diff()
# Separate gains and losses
gain = delta.where(delta > 0, 0)
loss = -delta.where(delta < 0, 0)
# Calculate the average gain and average loss
avg_gain = gain.rolling(window=window_length, min_periods=1).mean()
avg_loss = loss.rolling(window=window_length, min_periods=1).mean()
# Calculate the RSI
rs = avg_gain / avg_loss
df['RSI'] = 100 - (100 / (1 + rs))
fig = go.Figure()
fig.add_trace(go.Scatter(x=df['Date'], y=df['RSI'], mode='lines', name='RSI'))
fig.add_hline(y=70, line_dash="dash", line_color="red", annotation_text="Overbought")
fig.add_hline(y=30, line_dash="dash", line_color="green", annotation_text="Oversold")
fig.update_layout(title="RSI Indicator", xaxis_title="Date", yaxis_title="RSI")
st.plotly_chart(fig)
# Volume Analysis
st.subheader("Volume Analysis")
fig = go.Figure()
fig.add_trace(go.Bar(x=df['Date'], y=df['Volume'][ticker_symbol], name='Volume'))
fig.update_layout(title="Volume Analysis", xaxis_title="Date", yaxis_title="Volume")
st.plotly_chart(fig)
from langchain.document_loaders import DataFrameLoader
loader = DataFrameLoader(df)
index = VectorstoreIndexCreator(embedding=GooglePalmEmbeddings()).from_loaders([loader])
# index = VectorstoreIndexCreator(
# embedding=GooglePalmEmbeddings(),
# text_splitter=CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)).from_loaders(loader)
chain = RetrievalQA.from_chain_type(llm=llm,
chain_type="stuff",
retriever=index.vectorstore.as_retriever(),
input_key="question")
# Additional Insights
st.header("In-depth Analysis")
# Prepare text for PaLM
chatTextStr = f"""
Analyze the following stock data for patterns, trends, and insights.
Provide a detailed summary of key market movements.
"""
# Initializing the agent
agent = create_pandas_dataframe_agent(llm, df[['Date', 'Open', 'High', 'Low', 'Close']].tail(10), verbose=False)
answer = agent.run(chatTextStr)
# # Query PaLM API
# try:
# response = palm.generate_text(
# prompt=chatTextStr,
# temperature=0.1,
# max_output_tokens=500
# )
# st.write(response.result)
# except Exception as e:
# st.error(f"Error using Google PaLM API: {e}")
st.markdown("""
Google Gemini API analysis:
{answer}
""")
# User Interaction
st.header("Custom Analysis")
start_date = st.date_input("Select start date:", value=pd.to_datetime("2024-01-01"))
end_date = st.date_input("Select end date:", value=pd.to_datetime("2024-09-30"))
# Ensure all dates are timezone-naive
df['Date'] = pd.to_datetime(df['Date']).dt.tz_localize(None)
start_date = pd.to_datetime(start_date).tz_localize(None)
end_date = pd.to_datetime(end_date).tz_localize(None)
# Filter the DataFrame based on the date range
filtered_df = df[(df['Date'] >= start_date) & (df['Date'] <= end_date)]
st.write(filtered_df) |