File size: 6,815 Bytes
41fee50
 
 
 
82b1468
89171ff
 
41fee50
89171ff
 
 
 
 
 
 
 
 
 
 
 
 
 
6fb1d1b
89171ff
6fb1d1b
 
 
 
41fee50
6fb1d1b
 
 
89171ff
 
 
 
 
 
 
6fb1d1b
 
41fee50
6fb1d1b
 
 
72ee182
 
6fb1d1b
 
 
 
 
 
89171ff
 
 
 
 
 
 
 
 
 
 
6fb1d1b
89171ff
 
 
 
 
6fb1d1b
 
89171ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d398fc9
 
89171ff
d398fc9
 
 
 
 
89171ff
 
 
d398fc9
89171ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import streamlit as st
import yfinance as yf
import pandas as pd
import plotly.graph_objs as go
import numpy as np
from plotly.subplots import make_subplots
import os

from langchain.embeddings import GooglePalmEmbeddings
from langchain.llms import GooglePalm

from langchain.document_loaders import UnstructuredURLLoader  #load urls into docoument-loader
from langchain.chains.question_answering import load_qa_chain
from langchain.indexes import VectorstoreIndexCreator #vectorize db index with chromadb
from langchain.text_splitter import CharacterTextSplitter #text splitter
from langchain.chains import RetrievalQA
from langchain.document_loaders import UnstructuredPDFLoader  #load pdf
from langchain.agents import create_pandas_dataframe_agent
import google.generativeai as palm

isPswdValid = True # Set to True to temporarily disable password checking
palm_api_key = st.secrets["PALM_API_KEY"]
try:
    pswdVal = st.query_params()['pwd'][0]
    if pswdVal==st.secrets["PSWD"]:
        isPswdValid = True
except:
    pass

if not isPswdValid:
    st.write("Invalid Password")
else:
    # Initialize language model
    api_key = palm_api_key # put your API key here
    os.environ["GOOGLE_API_KEY"] = palm_api_key
    palm.configure(api_key=palm_api_key)
    llm = GooglePalm()
    llm.temperature = 0.1

    # Set the Streamlit app title and icon
    st.set_page_config(page_title="Stock Analysis", page_icon="📈")

    # Create a Streamlit sidebar for user input
    st.sidebar.title("Stock Analysis")
    ticker_symbol = st.sidebar.text_input("Enter Stock Ticker Symbol:", value='AAPL')
    start_date = st.sidebar.date_input("Start Date", pd.to_datetime('2024-01-01'))
    end_date = st.sidebar.date_input("End Date", pd.to_datetime('2024-10-01'))

    # Fetch stock data from Yahoo Finance
    try:
        stock_data = yf.download(ticker_symbol, start=start_date, end=end_date)
    except Exception as e:
        st.error("Error fetching stock data. Please check the ticker symbol and date range.")
    df = stock_data
    df.reset_index(inplace=True)  # Reset index to ensure 'Date' becomes a column
    
    # Create figure with secondary y-axis
    fig = make_subplots(specs=[[{"secondary_y": True}]])

    # include candlestick with rangeselector
    fig.add_trace(go.Candlestick(x=df['Date'], # Except date, query all other data using Symbol
                    open=df['Open'][ticker_symbol], high=df['High'][ticker_symbol],
                    low=df['Low'][ticker_symbol], close=df['Close'][ticker_symbol]),
                secondary_y=True)

    # include a go.Bar trace for volumes
    fig.add_trace(go.Bar(x=df['Date'], y=df['Volume'][ticker_symbol]),
                secondary_y=False)

    fig.layout.yaxis2.showgrid=False
    st.plotly_chart(fig)

    # Technical Indicators
    st.header("Technical Indicators")

    # Moving Averages
    st.subheader("Moving Averages")
    df['SMA_20'] = df['Close'][ticker_symbol].rolling(window=20).mean()
    df['SMA_50'] = df['Close'][ticker_symbol].rolling(window=50).mean()
    fig = go.Figure()
    fig.add_trace(go.Scatter(x=df['Date'], y=df['Close'][ticker_symbol], mode='lines', name='Close Price'))
    fig.add_trace(go.Scatter(x=df['Date'], y=df['SMA_20'], mode='lines', name='20-Day SMA'))
    fig.add_trace(go.Scatter(x=df['Date'], y=df['SMA_50'], mode='lines', name='50-Day SMA'))
    fig.update_layout(title="Moving Averages", xaxis_title="Date", yaxis_title="Price (USD)")
    st.plotly_chart(fig)

    # RSI (Manual Calculation)
    st.subheader("Relative Strength Index (RSI)")
    window_length = 14

    # Calculate the daily price changes
    delta = df['Close'][ticker_symbol].diff()

    # Separate gains and losses
    gain = delta.where(delta > 0, 0)
    loss = -delta.where(delta < 0, 0)

    # Calculate the average gain and average loss
    avg_gain = gain.rolling(window=window_length, min_periods=1).mean()
    avg_loss = loss.rolling(window=window_length, min_periods=1).mean()

    # Calculate the RSI
    rs = avg_gain / avg_loss
    df['RSI'] = 100 - (100 / (1 + rs))

    fig = go.Figure()
    fig.add_trace(go.Scatter(x=df['Date'], y=df['RSI'], mode='lines', name='RSI'))
    fig.add_hline(y=70, line_dash="dash", line_color="red", annotation_text="Overbought")
    fig.add_hline(y=30, line_dash="dash", line_color="green", annotation_text="Oversold")
    fig.update_layout(title="RSI Indicator", xaxis_title="Date", yaxis_title="RSI")
    st.plotly_chart(fig)

    # Volume Analysis
    st.subheader("Volume Analysis")
    fig = go.Figure()
    fig.add_trace(go.Bar(x=df['Date'], y=df['Volume'][ticker_symbol], name='Volume'))
    fig.update_layout(title="Volume Analysis", xaxis_title="Date", yaxis_title="Volume")
    st.plotly_chart(fig)
    
    from langchain.document_loaders import DataFrameLoader

    loader = DataFrameLoader(df)
    index = VectorstoreIndexCreator(embedding=GooglePalmEmbeddings()).from_loaders([loader])
    # index = VectorstoreIndexCreator(
    #         embedding=GooglePalmEmbeddings(),
    #         text_splitter=CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)).from_loaders(loader)
    chain = RetrievalQA.from_chain_type(llm=llm,
                            chain_type="stuff",
                            retriever=index.vectorstore.as_retriever(),
                            
                            input_key="question")

    # Additional Insights
    st.header("In-depth Analysis")
    # Prepare text for PaLM
    chatTextStr = f"""
    Analyze the following stock data for patterns, trends, and insights.
    Provide a detailed summary of key market movements.
    """

    # Initializing the agent
    agent = create_pandas_dataframe_agent(llm, df[['Date', 'Open', 'High', 'Low', 'Close']].tail(10), verbose=False)
    answer = agent.run(chatTextStr)

    # # Query PaLM API
    # try:
    #     response = palm.generate_text(
    #         prompt=chatTextStr,
    #         temperature=0.1,
    #         max_output_tokens=500
    #     )
    #     st.write(response.result)
    # except Exception as e:
    #     st.error(f"Error using Google PaLM API: {e}")

    st.markdown("""
        Google Gemini API analysis:
        {answer}
    """)

    # User Interaction
    st.header("Custom Analysis")
    start_date = st.date_input("Select start date:", value=pd.to_datetime("2024-01-01"))
    end_date = st.date_input("Select end date:", value=pd.to_datetime("2024-09-30"))

    # Ensure all dates are timezone-naive
    df['Date'] = pd.to_datetime(df['Date']).dt.tz_localize(None)
    start_date = pd.to_datetime(start_date).tz_localize(None)
    end_date = pd.to_datetime(end_date).tz_localize(None)

    # Filter the DataFrame based on the date range
    filtered_df = df[(df['Date'] >= start_date) & (df['Date'] <= end_date)]

    st.write(filtered_df)