Spaces:
Build error
Build error
File size: 8,407 Bytes
d61b9c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
# Scene Text Recognition Model Hub
# Copyright 2022 Darwin Bautista
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import math
from typing import Any, Tuple, List, Optional
import torch
import torch.nn.functional as F
from torch import Tensor, nn
from torch.optim import AdamW
from torch.optim.lr_scheduler import OneCycleLR
from pytorch_lightning.utilities.types import STEP_OUTPUT
from timm.optim.optim_factory import param_groups_weight_decay
from strhub.models.base import CrossEntropySystem
from strhub.models.utils import init_weights
from .model_abinet_iter import ABINetIterModel as Model
log = logging.getLogger(__name__)
class ABINet(CrossEntropySystem):
def __init__(self, charset_train: str, charset_test: str, max_label_length: int,
batch_size: int, lr: float, warmup_pct: float, weight_decay: float,
iter_size: int, d_model: int, nhead: int, d_inner: int, dropout: float, activation: str,
v_loss_weight: float, v_attention: str, v_attention_mode: str, v_backbone: str, v_num_layers: int,
l_loss_weight: float, l_num_layers: int, l_detach: bool, l_use_self_attn: bool,
l_lr: float, a_loss_weight: float, lm_only: bool = False, **kwargs) -> None:
super().__init__(charset_train, charset_test, batch_size, lr, warmup_pct, weight_decay)
self.scheduler = None
self.save_hyperparameters()
self.max_label_length = max_label_length
self.num_classes = len(self.tokenizer) - 2 # We don't predict <bos> nor <pad>
self.model = Model(max_label_length, self.eos_id, self.num_classes, iter_size, d_model, nhead, d_inner,
dropout, activation, v_loss_weight, v_attention, v_attention_mode, v_backbone, v_num_layers,
l_loss_weight, l_num_layers, l_detach, l_use_self_attn, a_loss_weight)
self.model.apply(init_weights)
# FIXME: doesn't support resumption from checkpoint yet
self._reset_alignment = True
self._reset_optimizers = True
self.l_lr = l_lr
self.lm_only = lm_only
# Train LM only. Freeze other submodels.
if lm_only:
self.l_lr = lr # for tuning
self.model.vision.requires_grad_(False)
self.model.alignment.requires_grad_(False)
@property
def _pretraining(self):
# In the original work, VM was pretrained for 8 epochs while full model was trained for an additional 10 epochs.
total_steps = self.trainer.estimated_stepping_batches * self.trainer.accumulate_grad_batches
return self.global_step < (8 / (8 + 10)) * total_steps
@torch.jit.ignore
def no_weight_decay(self):
return {'model.language.proj.weight'}
def _add_weight_decay(self, model: nn.Module, skip_list=()):
if self.weight_decay:
return param_groups_weight_decay(model, self.weight_decay, skip_list)
else:
return [{'params': model.parameters()}]
def configure_optimizers(self):
agb = self.trainer.accumulate_grad_batches
# Linear scaling so that the effective learning rate is constant regardless of the number of GPUs used with DDP.
lr_scale = agb * math.sqrt(self.trainer.num_devices) * self.batch_size / 256.
lr = lr_scale * self.lr
l_lr = lr_scale * self.l_lr
params = []
params.extend(self._add_weight_decay(self.model.vision))
params.extend(self._add_weight_decay(self.model.alignment))
# We use a different learning rate for the LM.
for p in self._add_weight_decay(self.model.language, ('proj.weight',)):
p['lr'] = l_lr
params.append(p)
max_lr = [p.get('lr', lr) for p in params]
optim = AdamW(params, lr)
self.scheduler = OneCycleLR(optim, max_lr, self.trainer.estimated_stepping_batches,
pct_start=self.warmup_pct, cycle_momentum=False)
return {'optimizer': optim, 'lr_scheduler': {'scheduler': self.scheduler, 'interval': 'step'}}
def forward(self, images: Tensor, max_length: Optional[int] = None) -> Tensor:
max_length = self.max_label_length if max_length is None else min(max_length, self.max_label_length)
logits = self.model.forward(images)[0]['logits']
return logits[:, :max_length + 1] # truncate
def calc_loss(self, targets, *res_lists) -> Tensor:
total_loss = 0
for res_list in res_lists:
loss = 0
if isinstance(res_list, dict):
res_list = [res_list]
for res in res_list:
logits = res['logits'].flatten(end_dim=1)
loss += F.cross_entropy(logits, targets.flatten(), ignore_index=self.pad_id)
loss /= len(res_list)
self.log('loss_' + res_list[0]['name'], loss)
total_loss += res_list[0]['loss_weight'] * loss
return total_loss
def on_train_batch_start(self, batch: Any, batch_idx: int) -> None:
if not self._pretraining and self._reset_optimizers:
log.info('Pretraining ends. Updating base LRs.')
self._reset_optimizers = False
# Make base_lr the same for all groups
base_lr = self.scheduler.base_lrs[0] # base_lr of group 0 - VM
self.scheduler.base_lrs = [base_lr] * len(self.scheduler.base_lrs)
def _prepare_inputs_and_targets(self, labels):
# Use dummy label to ensure sequence length is constant.
dummy = ['0' * self.max_label_length]
targets = self.tokenizer.encode(dummy + list(labels), self.device)[1:]
targets = targets[:, 1:] # remove <bos>. Unused here.
# Inputs are padded with eos_id
inputs = torch.where(targets == self.pad_id, self.eos_id, targets)
inputs = F.one_hot(inputs, self.num_classes).float()
lengths = torch.as_tensor(list(map(len, labels)), device=self.device) + 1 # +1 for eos
return inputs, lengths, targets
def training_step(self, batch, batch_idx) -> STEP_OUTPUT:
images, labels = batch
inputs, lengths, targets = self._prepare_inputs_and_targets(labels)
if self.lm_only:
l_res = self.model.language(inputs, lengths)
loss = self.calc_loss(targets, l_res)
# Pretrain submodels independently first
elif self._pretraining:
# Vision
v_res = self.model.vision(images)
# Language
l_res = self.model.language(inputs, lengths)
# We also train the alignment model to 'satisfy' DDP requirements (all parameters should be used).
# We'll reset its parameters prior to joint training.
a_res = self.model.alignment(l_res['feature'].detach(), v_res['feature'].detach())
loss = self.calc_loss(targets, v_res, l_res, a_res)
else:
# Reset alignment model's parameters once prior to full model training.
if self._reset_alignment:
log.info('Pretraining ends. Resetting alignment model.')
self._reset_alignment = False
self.model.alignment.apply(init_weights)
all_a_res, all_l_res, v_res = self.model.forward(images)
loss = self.calc_loss(targets, v_res, all_l_res, all_a_res)
self.log('loss', loss)
return loss
def forward_logits_loss(self, images: Tensor, labels: List[str]) -> Tuple[Tensor, Tensor, int]:
if self.lm_only:
inputs, lengths, targets = self._prepare_inputs_and_targets(labels)
l_res = self.model.language(inputs, lengths)
loss = self.calc_loss(targets, l_res)
loss_numel = (targets != self.pad_id).sum()
return l_res['logits'], loss, loss_numel
else:
return super().forward_logits_loss(images, labels)
|