File size: 40,417 Bytes
d61b9c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
#!/usr/bin/env python3

import itertools
import math
import warnings
from typing import Any, Callable, Iterable, Sequence, Tuple, Union
import sys

import torch
from captum._utils.common import (
    _expand_additional_forward_args,
    _expand_target,
    _format_additional_forward_args,
    _format_output,
    _format_tensor_into_tuples,
    _is_tuple,
    _run_forward,
)
from captum._utils.progress import progress
from captum._utils.typing import BaselineType, TargetType, TensorOrTupleOfTensorsGeneric
from captum.attr._utils.attribution import PerturbationAttribution
from captum.attr._utils.common import (
    _construct_default_feature_mask,
    _find_output_mode_and_verify,
    _format_input_baseline,
    _tensorize_baseline,
)
from captum.log import log_usage
from torch import Tensor


def _all_perm_generator(num_features: int, num_samples: int) -> Iterable[Sequence[int]]:
    for perm in itertools.permutations(range(num_features)):
        yield perm


def _perm_generator(num_features: int, num_samples: int) -> Iterable[Sequence[int]]:
    for _ in range(num_samples):
        yield torch.randperm(num_features).tolist()


class ShapleyValueSampling(PerturbationAttribution):
    """
    A perturbation based approach to compute attribution, based on the concept
    of Shapley Values from cooperative game theory. This method involves taking
    a random permutation of the input features and adding them one-by-one to the
    given baseline. The output difference after adding each feature corresponds
    to its attribution, and these difference are averaged when repeating this
    process n_samples times, each time choosing a new random permutation of
    the input features.

    By default, each scalar value within
    the input tensors are taken as a feature and added independently. Passing
    a feature mask, allows grouping features to be added together. This can
    be used in cases such as images, where an entire segment or region
    can be grouped together, measuring the importance of the segment
    (feature group). Each input scalar in the group will be given the same
    attribution value equal to the change in output as a result of adding back
    the entire feature group.

    More details regarding Shapley Value sampling can be found in these papers:
    https://www.sciencedirect.com/science/article/pii/S0305054808000804
    https://pdfs.semanticscholar.org/7715/bb1070691455d1fcfc6346ff458dbca77b2c.pdf
    """

    def __init__(self, forward_func: Callable) -> None:
        r"""
        Args:

            forward_func (callable): The forward function of the model or
                        any modification of it. The forward function can either
                        return a scalar per example, or a single scalar for the
                        full batch. If a single scalar is returned for the batch,
                        `perturbations_per_eval` must be 1, and the returned
                        attributions will have first dimension 1, corresponding to
                        feature importance across all examples in the batch.
        """
        PerturbationAttribution.__init__(self, forward_func)
        self.permutation_generator = _perm_generator

    @log_usage()
    def attribute(
        self,
        inputs: TensorOrTupleOfTensorsGeneric,
        baselines: BaselineType = None,
        target: TargetType = None,
        additional_forward_args: Any = None,
        feature_mask: Union[None, TensorOrTupleOfTensorsGeneric] = None,
        n_samples: int = 25,
        perturbations_per_eval: int = 1,
        show_progress: bool = False,
    ) -> TensorOrTupleOfTensorsGeneric:
        r"""
        NOTE: The feature_mask argument differs from other perturbation based
        methods, since feature indices can overlap across tensors. See the
        description of the feature_mask argument below for more details.

        Args:

                inputs (tensor or tuple of tensors):  Input for which Shapley value
                            sampling attributions are computed. If forward_func takes
                            a single tensor as input, a single input tensor should
                            be provided.
                            If forward_func takes multiple tensors as input, a tuple
                            of the input tensors should be provided. It is assumed
                            that for all given input tensors, dimension 0 corresponds
                            to the number of examples (aka batch size), and if
                            multiple input tensors are provided, the examples must
                            be aligned appropriately.
                baselines (scalar, tensor, tuple of scalars or tensors, optional):
                            Baselines define reference value which replaces each
                            feature when ablated.
                            Baselines can be provided as:

                            - a single tensor, if inputs is a single tensor, with
                              exactly the same dimensions as inputs or the first
                              dimension is one and the remaining dimensions match
                              with inputs.

                            - a single scalar, if inputs is a single tensor, which will
                              be broadcasted for each input value in input tensor.

                            - a tuple of tensors or scalars, the baseline corresponding
                              to each tensor in the inputs' tuple can be:

                              - either a tensor with matching dimensions to
                                corresponding tensor in the inputs' tuple
                                or the first dimension is one and the remaining
                                dimensions match with the corresponding
                                input tensor.

                              - or a scalar, corresponding to a tensor in the
                                inputs' tuple. This scalar value is broadcasted
                                for corresponding input tensor.
                            In the cases when `baselines` is not provided, we internally
                            use zero scalar corresponding to each input tensor.
                            Default: None
                target (int, tuple, tensor or list, optional):  Output indices for
                            which difference is computed (for classification cases,
                            this is usually the target class).
                            If the network returns a scalar value per example,
                            no target index is necessary.
                            For general 2D outputs, targets can be either:

                            - a single integer or a tensor containing a single
                              integer, which is applied to all input examples

                            - a list of integers or a 1D tensor, with length matching
                              the number of examples in inputs (dim 0). Each integer
                              is applied as the target for the corresponding example.

                            For outputs with > 2 dimensions, targets can be either:

                            - A single tuple, which contains #output_dims - 1
                              elements. This target index is applied to all examples.

                            - A list of tuples with length equal to the number of
                              examples in inputs (dim 0), and each tuple containing
                              #output_dims - 1 elements. Each tuple is applied as the
                              target for the corresponding example.

                            Default: None
                additional_forward_args (any, optional): If the forward function
                            requires additional arguments other than the inputs for
                            which attributions should not be computed, this argument
                            can be provided. It must be either a single additional
                            argument of a Tensor or arbitrary (non-tuple) type or a
                            tuple containing multiple additional arguments including
                            tensors or any arbitrary python types. These arguments
                            are provided to forward_func in order following the
                            arguments in inputs.
                            For a tensor, the first dimension of the tensor must
                            correspond to the number of examples. For all other types,
                            the given argument is used for all forward evaluations.
                            Note that attributions are not computed with respect
                            to these arguments.
                            Default: None
                feature_mask (tensor or tuple of tensors, optional):
                            feature_mask defines a mask for the input, grouping
                            features which should be added together. feature_mask
                            should contain the same number of tensors as inputs.
                            Each tensor should
                            be the same size as the corresponding input or
                            broadcastable to match the input tensor. Values across
                            all tensors should be integers in the range 0 to
                            num_features - 1, and indices corresponding to the same
                            feature should have the same value.
                            Note that features are grouped across tensors
                            (unlike feature ablation and occlusion), so
                            if the same index is used in different tensors, those
                            features are still grouped and added simultaneously.
                            If the forward function returns a single scalar per batch,
                            we enforce that the first dimension of each mask must be 1,
                            since attributions are returned batch-wise rather than per
                            example, so the attributions must correspond to the
                            same features (indices) in each input example.
                            If None, then a feature mask is constructed which assigns
                            each scalar within a tensor as a separate feature
                            Default: None
                n_samples (int, optional):  The number of feature permutations
                            tested.
                            Default: `25` if `n_samples` is not provided.
                perturbations_per_eval (int, optional): Allows multiple ablations
                            to be processed simultaneously in one call to forward_fn.
                            Each forward pass will contain a maximum of
                            perturbations_per_eval * #examples samples.
                            For DataParallel models, each batch is split among the
                            available devices, so evaluations on each available
                            device contain at most
                            (perturbations_per_eval * #examples) / num_devices
                            samples.
                            If the forward function returns a single scalar per batch,
                            perturbations_per_eval must be set to 1.
                            Default: 1
                show_progress (bool, optional): Displays the progress of computation.
                            It will try to use tqdm if available for advanced features
                            (e.g. time estimation). Otherwise, it will fallback to
                            a simple output of progress.
                            Default: False

        Returns:
                *tensor* or tuple of *tensors* of **attributions**:
                - **attributions** (*tensor* or tuple of *tensors*):
                            The attributions with respect to each input feature.
                            If the forward function returns
                            a scalar value per example, attributions will be
                            the same size as the provided inputs, with each value
                            providing the attribution of the corresponding input index.
                            If the forward function returns a scalar per batch, then
                            attribution tensor(s) will have first dimension 1 and
                            the remaining dimensions will match the input.
                            If a single tensor is provided as inputs, a single tensor is
                            returned. If a tuple is provided for inputs, a tuple of
                            corresponding sized tensors is returned.


        Examples::

            >>> # SimpleClassifier takes a single input tensor of size Nx4x4,
            >>> # and returns an Nx3 tensor of class probabilities.
            >>> net = SimpleClassifier()
            >>> # Generating random input with size 2 x 4 x 4
            >>> input = torch.randn(2, 4, 4)
            >>> # Defining ShapleyValueSampling interpreter
            >>> svs = ShapleyValueSampling(net)
            >>> # Computes attribution, taking random orderings
            >>> # of the 16 features and computing the output change when adding
            >>> # each feature. We average over 200 trials (random permutations).
            >>> attr = svs.attribute(input, target=1, n_samples=200)

            >>> # Alternatively, we may want to add features in groups, e.g.
            >>> # grouping each 2x2 square of the inputs and adding them together.
            >>> # This can be done by creating a feature mask as follows, which
            >>> # defines the feature groups, e.g.:
            >>> # +---+---+---+---+
            >>> # | 0 | 0 | 1 | 1 |
            >>> # +---+---+---+---+
            >>> # | 0 | 0 | 1 | 1 |
            >>> # +---+---+---+---+
            >>> # | 2 | 2 | 3 | 3 |
            >>> # +---+---+---+---+
            >>> # | 2 | 2 | 3 | 3 |
            >>> # +---+---+---+---+
            >>> # With this mask, all inputs with the same value are added
            >>> # together, and the attribution for each input in the same
            >>> # group (0, 1, 2, and 3) per example are the same.
            >>> # The attributions can be calculated as follows:
            >>> # feature mask has dimensions 1 x 4 x 4
            >>> feature_mask = torch.tensor([[[0,0,1,1],[0,0,1,1],
            >>>                             [2,2,3,3],[2,2,3,3]]])
            >>> attr = svs.attribute(input, target=1, feature_mask=feature_mask)
        """
        # Keeps track whether original input is a tuple or not before
        # converting it into a tuple.
        is_inputs_tuple = _is_tuple(inputs)
        inputs, baselines = _format_input_baseline(inputs, baselines)
        additional_forward_args = _format_additional_forward_args(
            additional_forward_args
        )
        feature_mask = (
            _format_tensor_into_tuples(feature_mask)
            if feature_mask is not None
            else None
        )
        assert (
            isinstance(perturbations_per_eval, int) and perturbations_per_eval >= 1
        ), "Ablations per evaluation must be at least 1."

        with torch.no_grad():
            baselines = _tensorize_baseline(inputs, baselines)
            num_examples = inputs[0].shape[0]

            if feature_mask is None:
                feature_mask, total_features = _construct_default_feature_mask(inputs)
            else:
                total_features = int(
                    max(torch.max(single_mask).item() for single_mask in feature_mask)
                    + 1
                )

            if show_progress:
                attr_progress = progress(
                    desc=f"{self.get_name()} attribution",
                    total=self._get_n_evaluations(
                        total_features, n_samples, perturbations_per_eval
                    )
                    + 1,  # add 1 for the initial eval
                )
                attr_progress.update(0)

            initial_eval = _run_forward(
                self.forward_func, baselines, target, additional_forward_args
            )

            if show_progress:
                attr_progress.update()

            agg_output_mode = _find_output_mode_and_verify(
                initial_eval, num_examples, perturbations_per_eval, feature_mask
            )
            # print("agg_output_mode: ", agg_output_mode) # Single boolean False

            # Initialize attribution totals and counts
            total_attrib = [
                torch.zeros_like(
                    input[0:1] if agg_output_mode else input, dtype=torch.float
                )
                for input in inputs
            ]
            # print("total_features: ", total_features) # Total unique instance segmentations
            # print("total_attrib len: ", len(total_attrib)) 1
            # print("total_attrib shape: ", total_attrib[0].shape) # Same as input (1,1,224,224)
            # print("total_attrib min: ", total_attrib[0].min()) 0
            # print("total_attrib max: ", total_attrib[0].max()) 0

            iter_count = 0
            # Iterate for number of samples, generate a permutation of the features
            # and evalute the incremental increase for each feature.
            for feature_permutation in self.permutation_generator(
                total_features, n_samples
            ):
                iter_count += 1
                prev_results = initial_eval
                for (
                    current_inputs,
                    current_add_args,
                    current_target,
                    current_masks,
                ) in self._perturbation_generator(
                    inputs,
                    additional_forward_args,
                    target,
                    baselines,
                    feature_mask,
                    feature_permutation,
                    perturbations_per_eval,
                ):
                    if sum(torch.sum(mask).item() for mask in current_masks) == 0:
                        warnings.warn(
                            "Feature mask is missing some integers between 0 and "
                            "num_features, for optimal performance, make sure each"
                            " consecutive integer corresponds to a feature."
                        )
                    # modified_eval dimensions: 1D tensor with length
                    # equal to #num_examples * #features in batch
                    modified_eval = _run_forward(
                        self.forward_func,
                        current_inputs,
                        current_target,
                        current_add_args,
                    )
                    if show_progress:
                        attr_progress.update()
                    # print("current_masks len: ", len(current_masks)) 1
                    # print("current_masks[0] shape: ", current_masks[0].shape) # 1, 1, 1, 224, 224
                    # print("current_masks unique: ", torch.unique(current_masks[0])) tensor([False,  True]
                    # print("modified_eval shape: ", modified_eval.shape) # 1-dim (1)
                    # print("modified_eval: ", modified_eval) tensor([0.2161]
                    # print("num_examples: ", num_examples) 1
                    # sys.exit()

                    if agg_output_mode:
                        eval_diff = modified_eval - prev_results
                        prev_results = modified_eval
                    else:
                        all_eval = torch.cat((prev_results, modified_eval), dim=0)
                        # print("all_eval shape: ", all_eval.shape) 2
                        eval_diff = all_eval[num_examples:] - all_eval[:-num_examples]
                        # print("all_eval: ", all_eval)
                        # print("eval_diff: ", eval_diff) # if 1-dim, modified_eval - prev_results (minus)
                        prev_results = all_eval[-num_examples:]
                    for j in range(len(total_attrib)):
                        current_eval_diff = eval_diff
                        if not agg_output_mode:
                            # current_eval_diff dimensions:
                            # (#features in batch, #num_examples, 1,.. 1)
                            # (contains 1 more dimension than inputs). This adds extra
                            # dimensions of 1 to make the tensor broadcastable with the
                            # inputs tensor.
                            current_eval_diff = current_eval_diff.reshape(
                                (-1, num_examples) + (len(inputs[j].shape) - 1) * (1,)
                            )
                        total_attrib[j] += (
                            current_eval_diff * current_masks[j].float()
                        ).sum(dim=0) # Sum of all masks(0,1) X eval diff

            if show_progress:
                attr_progress.close()

            # Divide total attributions by number of random permutations and return
            # formatted attributions.
            attrib = tuple(
                tensor_attrib_total / iter_count for tensor_attrib_total in total_attrib
            )
            formatted_attr = _format_output(is_inputs_tuple, attrib)
        return formatted_attr

    def _perturbation_generator(
        self,
        inputs: Tuple[Tensor, ...],
        additional_args: Any,
        target: TargetType,
        baselines: Tuple[Tensor, ...],
        input_masks: TensorOrTupleOfTensorsGeneric,
        feature_permutation: Sequence[int],
        perturbations_per_eval: int,
    ) -> Iterable[Tuple[Tuple[Tensor, ...], Any, TargetType, Tuple[Tensor, ...]]]:
        """
        This method is a generator which yields each perturbation to be evaluated
        including inputs, additional_forward_args, targets, and mask.
        """
        # current_tensors starts at baselines and includes each additional feature as
        # added based on the permutation order.
        current_tensors = baselines
        current_tensors_list = []
        current_mask_list = []

        # Compute repeated additional args and targets
        additional_args_repeated = (
            _expand_additional_forward_args(additional_args, perturbations_per_eval)
            if additional_args is not None
            else None
        )
        target_repeated = _expand_target(target, perturbations_per_eval)
        for i in range(len(feature_permutation)):
            current_tensors = tuple(
                current * (~(mask == feature_permutation[i])).to(current.dtype)
                + input * (mask == feature_permutation[i]).to(input.dtype)
                for input, current, mask in zip(inputs, current_tensors, input_masks)
            )
            current_tensors_list.append(current_tensors)
            current_mask_list.append(
                tuple(mask == feature_permutation[i] for mask in input_masks)
            )
            if len(current_tensors_list) == perturbations_per_eval:
                combined_inputs = tuple(
                    torch.cat(aligned_tensors, dim=0)
                    for aligned_tensors in zip(*current_tensors_list)
                )
                combined_masks = tuple(
                    torch.stack(aligned_masks, dim=0)
                    for aligned_masks in zip(*current_mask_list)
                )
                yield (
                    combined_inputs,
                    additional_args_repeated,
                    target_repeated,
                    combined_masks,
                )
                current_tensors_list = []
                current_mask_list = []

        # Create batch with remaining evaluations, may not be a complete batch
        # (= perturbations_per_eval)
        if len(current_tensors_list) != 0:
            additional_args_repeated = (
                _expand_additional_forward_args(
                    additional_args, len(current_tensors_list)
                )
                if additional_args is not None
                else None
            )
            target_repeated = _expand_target(target, len(current_tensors_list))
            combined_inputs = tuple(
                torch.cat(aligned_tensors, dim=0)
                for aligned_tensors in zip(*current_tensors_list)
            )
            combined_masks = tuple(
                torch.stack(aligned_masks, dim=0)
                for aligned_masks in zip(*current_mask_list)
            )
            yield (
                combined_inputs,
                additional_args_repeated,
                target_repeated,
                combined_masks,
            )

    def _get_n_evaluations(self, total_features, n_samples, perturbations_per_eval):
        """return the total number of forward evaluations needed"""
        return math.ceil(total_features / perturbations_per_eval) * n_samples


class ShapleyValues(ShapleyValueSampling):
    """
    A perturbation based approach to compute attribution, based on the concept
    of Shapley Values from cooperative game theory. This method involves taking
    each permutation of the input features and adding them one-by-one to the
    given baseline. The output difference after adding each feature corresponds
    to its attribution, and these difference are averaged over all possible
    random permutations of the input features.

    By default, each scalar value within
    the input tensors are taken as a feature and added independently. Passing
    a feature mask, allows grouping features to be added together. This can
    be used in cases such as images, where an entire segment or region
    can be grouped together, measuring the importance of the segment
    (feature group). Each input scalar in the group will be given the same
    attribution value equal to the change in output as a result of adding back
    the entire feature group.

    More details regarding Shapley Values can be found in these papers:
    https://apps.dtic.mil/dtic/tr/fulltext/u2/604084.pdf
    https://www.sciencedirect.com/science/article/pii/S0305054808000804
    https://pdfs.semanticscholar.org/7715/bb1070691455d1fcfc6346ff458dbca77b2c.pdf

    NOTE: The method implemented here is very computationally intensive, and
    should only be used with a very small number of features (e.g. < 7).
    This implementation simply extends ShapleyValueSampling and
    evaluates all permutations, leading to a total of n * n! evaluations for n
    features. Shapley values can alternatively be computed with only 2^n
    evaluations, and we plan to add this approach in the future.
    """

    def __init__(self, forward_func: Callable) -> None:
        r"""
        Args:

            forward_func (callable): The forward function of the model or
                        any modification of it. The forward function can either
                        return a scalar per example, or a single scalar for the
                        full batch. If a single scalar is returned for the batch,
                        `perturbations_per_eval` must be 1, and the returned
                        attributions will have first dimension 1, corresponding to
                        feature importance across all examples in the batch.
        """
        ShapleyValueSampling.__init__(self, forward_func)
        self.permutation_generator = _all_perm_generator

    @log_usage()
    def attribute(
        self,
        inputs: TensorOrTupleOfTensorsGeneric,
        baselines: BaselineType = None,
        target: TargetType = None,
        additional_forward_args: Any = None,
        feature_mask: Union[None, TensorOrTupleOfTensorsGeneric] = None,
        perturbations_per_eval: int = 1,
        show_progress: bool = False,
    ) -> TensorOrTupleOfTensorsGeneric:
        r"""
        NOTE: The feature_mask argument differs from other perturbation based
        methods, since feature indices can overlap across tensors. See the
        description of the feature_mask argument below for more details.

        Args:

                inputs (tensor or tuple of tensors):  Input for which Shapley value
                            sampling attributions are computed. If forward_func takes
                            a single tensor as input, a single input tensor should
                            be provided.
                            If forward_func takes multiple tensors as input, a tuple
                            of the input tensors should be provided. It is assumed
                            that for all given input tensors, dimension 0 corresponds
                            to the number of examples (aka batch size), and if
                            multiple input tensors are provided, the examples must
                            be aligned appropriately.
                baselines (scalar, tensor, tuple of scalars or tensors, optional):
                            Baselines define reference value which replaces each
                            feature when ablated.
                            Baselines can be provided as:

                            - a single tensor, if inputs is a single tensor, with
                              exactly the same dimensions as inputs or the first
                              dimension is one and the remaining dimensions match
                              with inputs.

                            - a single scalar, if inputs is a single tensor, which will
                              be broadcasted for each input value in input tensor.

                            - a tuple of tensors or scalars, the baseline corresponding
                              to each tensor in the inputs' tuple can be:

                              - either a tensor with matching dimensions to
                                corresponding tensor in the inputs' tuple
                                or the first dimension is one and the remaining
                                dimensions match with the corresponding
                                input tensor.

                              - or a scalar, corresponding to a tensor in the
                                inputs' tuple. This scalar value is broadcasted
                                for corresponding input tensor.
                            In the cases when `baselines` is not provided, we internally
                            use zero scalar corresponding to each input tensor.
                            Default: None
                target (int, tuple, tensor or list, optional):  Output indices for
                            which difference is computed (for classification cases,
                            this is usually the target class).
                            If the network returns a scalar value per example,
                            no target index is necessary.
                            For general 2D outputs, targets can be either:

                            - a single integer or a tensor containing a single
                              integer, which is applied to all input examples

                            - a list of integers or a 1D tensor, with length matching
                              the number of examples in inputs (dim 0). Each integer
                              is applied as the target for the corresponding example.

                            For outputs with > 2 dimensions, targets can be either:

                            - A single tuple, which contains #output_dims - 1
                              elements. This target index is applied to all examples.

                            - A list of tuples with length equal to the number of
                              examples in inputs (dim 0), and each tuple containing
                              #output_dims - 1 elements. Each tuple is applied as the
                              target for the corresponding example.

                            Default: None
                additional_forward_args (any, optional): If the forward function
                            requires additional arguments other than the inputs for
                            which attributions should not be computed, this argument
                            can be provided. It must be either a single additional
                            argument of a Tensor or arbitrary (non-tuple) type or a
                            tuple containing multiple additional arguments including
                            tensors or any arbitrary python types. These arguments
                            are provided to forward_func in order following the
                            arguments in inputs.
                            For a tensor, the first dimension of the tensor must
                            correspond to the number of examples. For all other types,
                            the given argument is used for all forward evaluations.
                            Note that attributions are not computed with respect
                            to these arguments.
                            Default: None
                feature_mask (tensor or tuple of tensors, optional):
                            feature_mask defines a mask for the input, grouping
                            features which should be added together. feature_mask
                            should contain the same number of tensors as inputs.
                            Each tensor should
                            be the same size as the corresponding input or
                            broadcastable to match the input tensor. Values across
                            all tensors should be integers in the range 0 to
                            num_features - 1, and indices corresponding to the same
                            feature should have the same value.
                            Note that features are grouped across tensors
                            (unlike feature ablation and occlusion), so
                            if the same index is used in different tensors, those
                            features are still grouped and added simultaneously.
                            If the forward function returns a single scalar per batch,
                            we enforce that the first dimension of each mask must be 1,
                            since attributions are returned batch-wise rather than per
                            example, so the attributions must correspond to the
                            same features (indices) in each input example.
                            If None, then a feature mask is constructed which assigns
                            each scalar within a tensor as a separate feature
                            Default: None
                perturbations_per_eval (int, optional): Allows multiple ablations
                            to be processed simultaneously in one call to forward_fn.
                            Each forward pass will contain a maximum of
                            perturbations_per_eval * #examples samples.
                            For DataParallel models, each batch is split among the
                            available devices, so evaluations on each available
                            device contain at most
                            (perturbations_per_eval * #examples) / num_devices
                            samples.
                            If the forward function returns a single scalar per batch,
                            perturbations_per_eval must be set to 1.
                            Default: 1
                show_progress (bool, optional): Displays the progress of computation.
                            It will try to use tqdm if available for advanced features
                            (e.g. time estimation). Otherwise, it will fallback to
                            a simple output of progress.
                            Default: False
        Returns:
                *tensor* or tuple of *tensors* of **attributions**:
                - **attributions** (*tensor* or tuple of *tensors*):
                            The attributions with respect to each input feature.
                            If the forward function returns
                            a scalar value per example, attributions will be
                            the same size as the provided inputs, with each value
                            providing the attribution of the corresponding input index.
                            If the forward function returns a scalar per batch, then
                            attribution tensor(s) will have first dimension 1 and
                            the remaining dimensions will match the input.
                            If a single tensor is provided as inputs, a single tensor is
                            returned. If a tuple is provided for inputs, a tuple of
                            corresponding sized tensors is returned.


        Examples::

            >>> # SimpleClassifier takes a single input tensor of size Nx4x4,
            >>> # and returns an Nx3 tensor of class probabilities.
            >>> net = SimpleClassifier()
            >>> # Generating random input with size 2 x 4 x 4
            >>> input = torch.randn(2, 4, 4)

            >>> # We may want to add features in groups, e.g.
            >>> # grouping each 2x2 square of the inputs and adding them together.
            >>> # This can be done by creating a feature mask as follows, which
            >>> # defines the feature groups, e.g.:
            >>> # +---+---+---+---+
            >>> # | 0 | 0 | 1 | 1 |
            >>> # +---+---+---+---+
            >>> # | 0 | 0 | 1 | 1 |
            >>> # +---+---+---+---+
            >>> # | 2 | 2 | 3 | 3 |
            >>> # +---+---+---+---+
            >>> # | 2 | 2 | 3 | 3 |
            >>> # +---+---+---+---+
            >>> # With this mask, all inputs with the same value are added
            >>> # together, and the attribution for each input in the same
            >>> # group (0, 1, 2, and 3) per example are the same.
            >>> # The attributions can be calculated as follows:
            >>> # feature mask has dimensions 1 x 4 x 4
            >>> feature_mask = torch.tensor([[[0,0,1,1],[0,0,1,1],
            >>>                             [2,2,3,3],[2,2,3,3]]])

            >>> # With only 4 features, it is feasible to compute exact
            >>> # Shapley Values. These can be computed as follows:
            >>> sv = ShapleyValues(net)
            >>> attr = sv.attribute(input, target=1, feature_mask=feature_mask)
        """
        if feature_mask is None:
            total_features = sum(
                torch.numel(inp[0]) for inp in _format_tensor_into_tuples(inputs)
            )
        else:
            total_features = (
                int(max(torch.max(single_mask).item() for single_mask in feature_mask))
                + 1
            )

        if total_features >= 10:
            warnings.warn(
                "You are attempting to compute Shapley Values with at least 10 "
                "features, which will likely be very computationally expensive."
                "Consider using Shapley Value Sampling instead."
            )

        return super().attribute.__wrapped__(
            self,
            inputs=inputs,
            baselines=baselines,
            target=target,
            additional_forward_args=additional_forward_args,
            feature_mask=feature_mask,
            perturbations_per_eval=perturbations_per_eval,
            show_progress=show_progress,
        )

    def _get_n_evaluations(self, total_features, n_samples, perturbations_per_eval):
        """return the total number of forward evaluations needed"""
        return math.ceil(total_features / perturbations_per_eval) * math.factorial(
            total_features
        )