Spaces:
Build error
Build error
File size: 13,033 Bytes
d61b9c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
#!/usr/bin/env python3
import typing
from inspect import signature
from typing import Any, Callable, List, Tuple, TYPE_CHECKING, Union
import torch
from captum._utils.common import (
_format_baseline,
_format_output,
_format_tensor_into_tuples,
_validate_input as _validate_input_basic,
)
from captum._utils.typing import (
BaselineType,
Literal,
TargetType,
TensorOrTupleOfTensorsGeneric,
)
from captum.attr._utils.approximation_methods import SUPPORTED_METHODS
from torch import Tensor
if TYPE_CHECKING:
from captum.attr._utils.attribution import GradientAttribution
def _sum_rows(input: Tensor) -> Tensor:
return input.reshape(input.shape[0], -1).sum(1)
def _validate_target(num_samples: int, target: TargetType) -> None:
if isinstance(target, list) or (
isinstance(target, torch.Tensor) and torch.numel(target) > 1
):
assert num_samples == len(target), (
"The number of samples provied in the"
"input {} does not match with the number of targets. {}".format(
num_samples, len(target)
)
)
def _validate_input(
inputs: Tuple[Tensor, ...],
baselines: Tuple[Union[Tensor, int, float], ...],
n_steps: int = 50,
method: str = "riemann_trapezoid",
draw_baseline_from_distrib: bool = False,
) -> None:
_validate_input_basic(inputs, baselines, draw_baseline_from_distrib)
assert (
n_steps >= 0
), "The number of steps must be a positive integer. " "Given: {}".format(n_steps)
assert (
method in SUPPORTED_METHODS
), "Approximation method must be one for the following {}. " "Given {}".format(
SUPPORTED_METHODS, method
)
def _validate_noise_tunnel_type(
nt_type: str, supported_noise_tunnel_types: List[str]
) -> None:
assert nt_type in supported_noise_tunnel_types, (
"Noise types must be either `smoothgrad`, `smoothgrad_sq` or `vargrad`. "
"Given {}".format(nt_type)
)
@typing.overload
def _format_input_baseline(
inputs: Union[Tensor, Tuple[Tensor, ...]],
baselines: Union[Tensor, Tuple[Tensor, ...]],
) -> Tuple[Tuple[Tensor, ...], Tuple[Tensor, ...]]:
...
@typing.overload
def _format_input_baseline(
inputs: Union[Tensor, Tuple[Tensor, ...]], baselines: BaselineType
) -> Tuple[Tuple[Tensor, ...], Tuple[Union[Tensor, int, float], ...]]:
...
def _format_input_baseline(
inputs: Union[Tensor, Tuple[Tensor, ...]], baselines: BaselineType
) -> Tuple[Tuple[Tensor, ...], Tuple[Union[Tensor, int, float], ...]]:
inputs = _format_tensor_into_tuples(inputs)
baselines = _format_baseline(baselines, inputs)
return inputs, baselines
# This function can potentially be merged with the `format_baseline` function
# however, since currently not all algorithms support baselines of type
# callable this will be kept in a separate function.
@typing.overload
def _format_callable_baseline(
baselines: Union[
None,
Callable[..., Union[Tensor, Tuple[Tensor, ...]]],
Tensor,
Tuple[Tensor, ...],
],
inputs: Union[Tensor, Tuple[Tensor, ...]],
) -> Tuple[Tensor, ...]:
...
@typing.overload
def _format_callable_baseline(
baselines: Union[
None,
Callable[..., Union[Tensor, Tuple[Tensor, ...]]],
Tensor,
int,
float,
Tuple[Union[Tensor, int, float], ...],
],
inputs: Union[Tensor, Tuple[Tensor, ...]],
) -> Tuple[Union[Tensor, int, float], ...]:
...
def _format_callable_baseline(
baselines: Union[
None,
Callable[..., Union[Tensor, Tuple[Tensor, ...]]],
Tensor,
int,
float,
Tuple[Union[Tensor, int, float], ...],
],
inputs: Union[Tensor, Tuple[Tensor, ...]],
) -> Tuple[Union[Tensor, int, float], ...]:
if callable(baselines):
# Note: this assumes that if baselines is a function and if it takes
# arguments, then the first argument is the `inputs`.
# This can be expanded in the future with better type checks
baseline_parameters = signature(baselines).parameters
if len(baseline_parameters) == 0:
baselines = baselines()
else:
baselines = baselines(inputs)
return _format_baseline(baselines, _format_tensor_into_tuples(inputs))
def _format_and_verify_strides(
strides: Union[None, int, Tuple[int, ...], Tuple[Union[int, Tuple[int, ...]], ...]],
inputs: Tuple[Tensor, ...],
) -> Tuple[Union[int, Tuple[int, ...]], ...]:
# Formats strides, which are necessary for occlusion
# Assumes inputs are already formatted (in tuple)
if strides is None:
strides = tuple(1 for input in inputs)
if len(inputs) == 1 and not (isinstance(strides, tuple) and len(strides) == 1):
strides = (strides,) # type: ignore
assert isinstance(strides, tuple) and len(strides) == len(
inputs
), "Strides must be provided for each input tensor."
for i in range(len(inputs)):
assert isinstance(strides[i], int) or (
isinstance(strides[i], tuple)
and len(strides[i]) == len(inputs[i].shape) - 1 # type: ignore
), (
"Stride for input index {} is {}, which is invalid for input with "
"shape {}. It must be either an int or a tuple with length equal to "
"len(input_shape) - 1."
).format(
i, strides[i], inputs[i].shape
)
return strides
def _format_and_verify_sliding_window_shapes(
sliding_window_shapes: Union[Tuple[int, ...], Tuple[Tuple[int, ...], ...]],
inputs: Tuple[Tensor, ...],
) -> Tuple[Tuple[int, ...], ...]:
# Formats shapes of sliding windows, which is necessary for occlusion
# Assumes inputs is already formatted (in tuple)
if isinstance(sliding_window_shapes[0], int):
sliding_window_shapes = (sliding_window_shapes,) # type: ignore
sliding_window_shapes: Tuple[Tuple[int, ...], ...]
assert len(sliding_window_shapes) == len(
inputs
), "Must provide sliding window dimensions for each input tensor."
for i in range(len(inputs)):
assert (
isinstance(sliding_window_shapes[i], tuple)
and len(sliding_window_shapes[i]) == len(inputs[i].shape) - 1
), (
"Occlusion shape for input index {} is {} but should be a tuple with "
"{} dimensions."
).format(
i, sliding_window_shapes[i], len(inputs[i].shape) - 1
)
return sliding_window_shapes
@typing.overload
def _compute_conv_delta_and_format_attrs(
attr_algo: "GradientAttribution",
return_convergence_delta: bool,
attributions: Tuple[Tensor, ...],
start_point: Union[int, float, Tensor, Tuple[Union[int, float, Tensor], ...]],
end_point: Union[Tensor, Tuple[Tensor, ...]],
additional_forward_args: Any,
target: TargetType,
is_inputs_tuple: Literal[False] = False,
) -> Union[Tensor, Tuple[Tensor, Tensor]]:
...
@typing.overload
def _compute_conv_delta_and_format_attrs(
attr_algo: "GradientAttribution",
return_convergence_delta: bool,
attributions: Tuple[Tensor, ...],
start_point: Union[int, float, Tensor, Tuple[Union[int, float, Tensor], ...]],
end_point: Union[Tensor, Tuple[Tensor, ...]],
additional_forward_args: Any,
target: TargetType,
is_inputs_tuple: Literal[True],
) -> Union[Tuple[Tensor, ...], Tuple[Tuple[Tensor, ...], Tensor]]:
...
# FIXME: GradientAttribution is provided as a string due to a circular import.
# This should be fixed when common is refactored into separate files.
def _compute_conv_delta_and_format_attrs(
attr_algo: "GradientAttribution",
return_convergence_delta: bool,
attributions: Tuple[Tensor, ...],
start_point: Union[int, float, Tensor, Tuple[Union[int, float, Tensor], ...]],
end_point: Union[Tensor, Tuple[Tensor, ...]],
additional_forward_args: Any,
target: TargetType,
is_inputs_tuple: bool = False,
) -> Union[
Tensor, Tuple[Tensor, ...], Tuple[Union[Tensor, Tuple[Tensor, ...]], Tensor]
]:
if return_convergence_delta:
# computes convergence error
delta = attr_algo.compute_convergence_delta(
attributions,
start_point,
end_point,
additional_forward_args=additional_forward_args,
target=target,
)
return _format_output(is_inputs_tuple, attributions), delta
else:
return _format_output(is_inputs_tuple, attributions)
def _tensorize_baseline(
inputs: Tuple[Tensor, ...], baselines: Tuple[Union[int, float, Tensor], ...]
) -> Tuple[Tensor, ...]:
def _tensorize_single_baseline(baseline, input):
if isinstance(baseline, (int, float)):
return torch.full_like(input, baseline)
if input.shape[0] > baseline.shape[0] and baseline.shape[0] == 1:
return torch.cat([baseline] * input.shape[0])
return baseline
assert isinstance(inputs, tuple) and isinstance(baselines, tuple), (
"inputs and baselines must"
"have tuple type but found baselines: {} and inputs: {}".format(
type(baselines), type(inputs)
)
)
return tuple(
_tensorize_single_baseline(baseline, input)
for baseline, input in zip(baselines, inputs)
)
def _reshape_and_sum(
tensor_input: Tensor, num_steps: int, num_examples: int, layer_size: Tuple[int, ...]
) -> Tensor:
# Used for attribution methods which perform integration
# Sums across integration steps by reshaping tensor to
# (num_steps, num_examples, (layer_size)) and summing over
# dimension 0. Returns a tensor of size (num_examples, (layer_size))
return torch.sum(
tensor_input.reshape((num_steps, num_examples) + layer_size), dim=0
)
def _call_custom_attribution_func(
custom_attribution_func: Callable[..., Tuple[Tensor, ...]],
multipliers: Tuple[Tensor, ...],
inputs: Tuple[Tensor, ...],
baselines: Tuple[Tensor, ...],
) -> Tuple[Tensor, ...]:
assert callable(custom_attribution_func), (
"`custom_attribution_func`"
" must be a callable function but {} provided".format(
type(custom_attribution_func)
)
)
custom_attr_func_params = signature(custom_attribution_func).parameters
if len(custom_attr_func_params) == 1:
return custom_attribution_func(multipliers)
elif len(custom_attr_func_params) == 2:
return custom_attribution_func(multipliers, inputs)
elif len(custom_attr_func_params) == 3:
return custom_attribution_func(multipliers, inputs, baselines)
else:
raise AssertionError(
"`custom_attribution_func` must take at least one and at most 3 arguments."
)
def _find_output_mode_and_verify(
initial_eval: Union[int, float, Tensor],
num_examples: int,
perturbations_per_eval: int,
feature_mask: Union[None, TensorOrTupleOfTensorsGeneric],
) -> bool:
"""
This method identifies whether the model outputs a single output for a batch
(agg_output_mode = True) or whether it outputs a single output per example
(agg_output_mode = False) and returns agg_output_mode. The method also
verifies that perturbations_per_eval is 1 in the case that agg_output_mode is True
and also verifies that the first dimension of each feature mask if the model
returns a single output for a batch.
"""
if isinstance(initial_eval, (int, float)) or (
isinstance(initial_eval, torch.Tensor)
and (
len(initial_eval.shape) == 0
or (num_examples > 1 and initial_eval.numel() == 1)
)
):
agg_output_mode = True
assert (
perturbations_per_eval == 1
), "Cannot have perturbations_per_eval > 1 when function returns scalar."
if feature_mask is not None:
for single_mask in feature_mask:
assert single_mask.shape[0] == 1, (
"Cannot provide different masks for each example when function "
"returns a scalar."
)
else:
agg_output_mode = False
assert (
isinstance(initial_eval, torch.Tensor) and initial_eval[0].numel() == 1
), "Target should identify a single element in the model output."
return agg_output_mode
def _construct_default_feature_mask(
inputs: Tuple[Tensor, ...]
) -> Tuple[Tuple[Tensor, ...], int]:
feature_mask = []
current_num_features = 0
for i in range(len(inputs)):
num_features = torch.numel(inputs[i][0])
feature_mask.append(
current_num_features
+ torch.reshape(
torch.arange(num_features, device=inputs[i].device),
inputs[i][0:1].shape,
)
)
current_num_features += num_features
total_features = current_num_features
feature_mask = tuple(feature_mask)
return feature_mask, total_features
|