File size: 13,033 Bytes
d61b9c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
#!/usr/bin/env python3
import typing
from inspect import signature
from typing import Any, Callable, List, Tuple, TYPE_CHECKING, Union

import torch
from captum._utils.common import (
    _format_baseline,
    _format_output,
    _format_tensor_into_tuples,
    _validate_input as _validate_input_basic,
)
from captum._utils.typing import (
    BaselineType,
    Literal,
    TargetType,
    TensorOrTupleOfTensorsGeneric,
)
from captum.attr._utils.approximation_methods import SUPPORTED_METHODS
from torch import Tensor

if TYPE_CHECKING:
    from captum.attr._utils.attribution import GradientAttribution


def _sum_rows(input: Tensor) -> Tensor:
    return input.reshape(input.shape[0], -1).sum(1)


def _validate_target(num_samples: int, target: TargetType) -> None:
    if isinstance(target, list) or (
        isinstance(target, torch.Tensor) and torch.numel(target) > 1
    ):
        assert num_samples == len(target), (
            "The number of samples provied in the"
            "input {} does not match with the number of targets. {}".format(
                num_samples, len(target)
            )
        )


def _validate_input(
    inputs: Tuple[Tensor, ...],
    baselines: Tuple[Union[Tensor, int, float], ...],
    n_steps: int = 50,
    method: str = "riemann_trapezoid",
    draw_baseline_from_distrib: bool = False,
) -> None:
    _validate_input_basic(inputs, baselines, draw_baseline_from_distrib)
    assert (
        n_steps >= 0
    ), "The number of steps must be a positive integer. " "Given: {}".format(n_steps)

    assert (
        method in SUPPORTED_METHODS
    ), "Approximation method must be one for the following {}. " "Given {}".format(
        SUPPORTED_METHODS, method
    )


def _validate_noise_tunnel_type(
    nt_type: str, supported_noise_tunnel_types: List[str]
) -> None:
    assert nt_type in supported_noise_tunnel_types, (
        "Noise types must be either `smoothgrad`, `smoothgrad_sq` or `vargrad`. "
        "Given {}".format(nt_type)
    )


@typing.overload
def _format_input_baseline(
    inputs: Union[Tensor, Tuple[Tensor, ...]],
    baselines: Union[Tensor, Tuple[Tensor, ...]],
) -> Tuple[Tuple[Tensor, ...], Tuple[Tensor, ...]]:
    ...


@typing.overload
def _format_input_baseline(
    inputs: Union[Tensor, Tuple[Tensor, ...]], baselines: BaselineType
) -> Tuple[Tuple[Tensor, ...], Tuple[Union[Tensor, int, float], ...]]:
    ...


def _format_input_baseline(
    inputs: Union[Tensor, Tuple[Tensor, ...]], baselines: BaselineType
) -> Tuple[Tuple[Tensor, ...], Tuple[Union[Tensor, int, float], ...]]:
    inputs = _format_tensor_into_tuples(inputs)
    baselines = _format_baseline(baselines, inputs)
    return inputs, baselines


# This function can potentially be merged with the `format_baseline` function
# however, since currently not all algorithms support baselines of type
# callable this will be kept in a separate function.
@typing.overload
def _format_callable_baseline(
    baselines: Union[
        None,
        Callable[..., Union[Tensor, Tuple[Tensor, ...]]],
        Tensor,
        Tuple[Tensor, ...],
    ],
    inputs: Union[Tensor, Tuple[Tensor, ...]],
) -> Tuple[Tensor, ...]:
    ...


@typing.overload
def _format_callable_baseline(
    baselines: Union[
        None,
        Callable[..., Union[Tensor, Tuple[Tensor, ...]]],
        Tensor,
        int,
        float,
        Tuple[Union[Tensor, int, float], ...],
    ],
    inputs: Union[Tensor, Tuple[Tensor, ...]],
) -> Tuple[Union[Tensor, int, float], ...]:
    ...


def _format_callable_baseline(
    baselines: Union[
        None,
        Callable[..., Union[Tensor, Tuple[Tensor, ...]]],
        Tensor,
        int,
        float,
        Tuple[Union[Tensor, int, float], ...],
    ],
    inputs: Union[Tensor, Tuple[Tensor, ...]],
) -> Tuple[Union[Tensor, int, float], ...]:
    if callable(baselines):
        # Note: this assumes that if baselines is a function and if it takes
        # arguments, then the first argument is the `inputs`.
        # This can be expanded in the future with better type checks
        baseline_parameters = signature(baselines).parameters
        if len(baseline_parameters) == 0:
            baselines = baselines()
        else:
            baselines = baselines(inputs)
    return _format_baseline(baselines, _format_tensor_into_tuples(inputs))


def _format_and_verify_strides(
    strides: Union[None, int, Tuple[int, ...], Tuple[Union[int, Tuple[int, ...]], ...]],
    inputs: Tuple[Tensor, ...],
) -> Tuple[Union[int, Tuple[int, ...]], ...]:
    # Formats strides, which are necessary for occlusion
    # Assumes inputs are already formatted (in tuple)
    if strides is None:
        strides = tuple(1 for input in inputs)
    if len(inputs) == 1 and not (isinstance(strides, tuple) and len(strides) == 1):
        strides = (strides,)  # type: ignore
    assert isinstance(strides, tuple) and len(strides) == len(
        inputs
    ), "Strides must be provided for each input tensor."
    for i in range(len(inputs)):
        assert isinstance(strides[i], int) or (
            isinstance(strides[i], tuple)
            and len(strides[i]) == len(inputs[i].shape) - 1  # type: ignore
        ), (
            "Stride for input index {} is {}, which is invalid for input with "
            "shape {}. It must be either an int or a tuple with length equal to "
            "len(input_shape) - 1."
        ).format(
            i, strides[i], inputs[i].shape
        )

    return strides


def _format_and_verify_sliding_window_shapes(
    sliding_window_shapes: Union[Tuple[int, ...], Tuple[Tuple[int, ...], ...]],
    inputs: Tuple[Tensor, ...],
) -> Tuple[Tuple[int, ...], ...]:
    # Formats shapes of sliding windows, which is necessary for occlusion
    # Assumes inputs is already formatted (in tuple)
    if isinstance(sliding_window_shapes[0], int):
        sliding_window_shapes = (sliding_window_shapes,)  # type: ignore
    sliding_window_shapes: Tuple[Tuple[int, ...], ...]
    assert len(sliding_window_shapes) == len(
        inputs
    ), "Must provide sliding window dimensions for each input tensor."
    for i in range(len(inputs)):
        assert (
            isinstance(sliding_window_shapes[i], tuple)
            and len(sliding_window_shapes[i]) == len(inputs[i].shape) - 1
        ), (
            "Occlusion shape for input index {} is {} but should be a tuple with "
            "{} dimensions."
        ).format(
            i, sliding_window_shapes[i], len(inputs[i].shape) - 1
        )
    return sliding_window_shapes


@typing.overload
def _compute_conv_delta_and_format_attrs(
    attr_algo: "GradientAttribution",
    return_convergence_delta: bool,
    attributions: Tuple[Tensor, ...],
    start_point: Union[int, float, Tensor, Tuple[Union[int, float, Tensor], ...]],
    end_point: Union[Tensor, Tuple[Tensor, ...]],
    additional_forward_args: Any,
    target: TargetType,
    is_inputs_tuple: Literal[False] = False,
) -> Union[Tensor, Tuple[Tensor, Tensor]]:
    ...


@typing.overload
def _compute_conv_delta_and_format_attrs(
    attr_algo: "GradientAttribution",
    return_convergence_delta: bool,
    attributions: Tuple[Tensor, ...],
    start_point: Union[int, float, Tensor, Tuple[Union[int, float, Tensor], ...]],
    end_point: Union[Tensor, Tuple[Tensor, ...]],
    additional_forward_args: Any,
    target: TargetType,
    is_inputs_tuple: Literal[True],
) -> Union[Tuple[Tensor, ...], Tuple[Tuple[Tensor, ...], Tensor]]:
    ...


# FIXME: GradientAttribution is provided as a string due to a circular import.
# This should be fixed when common is refactored into separate files.
def _compute_conv_delta_and_format_attrs(
    attr_algo: "GradientAttribution",
    return_convergence_delta: bool,
    attributions: Tuple[Tensor, ...],
    start_point: Union[int, float, Tensor, Tuple[Union[int, float, Tensor], ...]],
    end_point: Union[Tensor, Tuple[Tensor, ...]],
    additional_forward_args: Any,
    target: TargetType,
    is_inputs_tuple: bool = False,
) -> Union[
    Tensor, Tuple[Tensor, ...], Tuple[Union[Tensor, Tuple[Tensor, ...]], Tensor]
]:
    if return_convergence_delta:
        # computes convergence error
        delta = attr_algo.compute_convergence_delta(
            attributions,
            start_point,
            end_point,
            additional_forward_args=additional_forward_args,
            target=target,
        )
        return _format_output(is_inputs_tuple, attributions), delta
    else:
        return _format_output(is_inputs_tuple, attributions)


def _tensorize_baseline(
    inputs: Tuple[Tensor, ...], baselines: Tuple[Union[int, float, Tensor], ...]
) -> Tuple[Tensor, ...]:
    def _tensorize_single_baseline(baseline, input):
        if isinstance(baseline, (int, float)):
            return torch.full_like(input, baseline)
        if input.shape[0] > baseline.shape[0] and baseline.shape[0] == 1:
            return torch.cat([baseline] * input.shape[0])
        return baseline

    assert isinstance(inputs, tuple) and isinstance(baselines, tuple), (
        "inputs and baselines must"
        "have tuple type but found baselines: {} and inputs: {}".format(
            type(baselines), type(inputs)
        )
    )
    return tuple(
        _tensorize_single_baseline(baseline, input)
        for baseline, input in zip(baselines, inputs)
    )


def _reshape_and_sum(
    tensor_input: Tensor, num_steps: int, num_examples: int, layer_size: Tuple[int, ...]
) -> Tensor:
    # Used for attribution methods which perform integration
    # Sums across integration steps by reshaping tensor to
    # (num_steps, num_examples, (layer_size)) and summing over
    # dimension 0. Returns a tensor of size (num_examples, (layer_size))
    return torch.sum(
        tensor_input.reshape((num_steps, num_examples) + layer_size), dim=0
    )


def _call_custom_attribution_func(
    custom_attribution_func: Callable[..., Tuple[Tensor, ...]],
    multipliers: Tuple[Tensor, ...],
    inputs: Tuple[Tensor, ...],
    baselines: Tuple[Tensor, ...],
) -> Tuple[Tensor, ...]:
    assert callable(custom_attribution_func), (
        "`custom_attribution_func`"
        " must be a callable function but {} provided".format(
            type(custom_attribution_func)
        )
    )
    custom_attr_func_params = signature(custom_attribution_func).parameters

    if len(custom_attr_func_params) == 1:
        return custom_attribution_func(multipliers)
    elif len(custom_attr_func_params) == 2:
        return custom_attribution_func(multipliers, inputs)
    elif len(custom_attr_func_params) == 3:
        return custom_attribution_func(multipliers, inputs, baselines)
    else:
        raise AssertionError(
            "`custom_attribution_func` must take at least one and at most 3 arguments."
        )


def _find_output_mode_and_verify(
    initial_eval: Union[int, float, Tensor],
    num_examples: int,
    perturbations_per_eval: int,
    feature_mask: Union[None, TensorOrTupleOfTensorsGeneric],
) -> bool:
    """
    This method identifies whether the model outputs a single output for a batch
    (agg_output_mode = True) or whether it outputs a single output per example
    (agg_output_mode = False) and returns agg_output_mode. The method also
    verifies that perturbations_per_eval is 1 in the case that agg_output_mode is True
    and also verifies that the first dimension of each feature mask if the model
    returns a single output for a batch.
    """
    if isinstance(initial_eval, (int, float)) or (
        isinstance(initial_eval, torch.Tensor)
        and (
            len(initial_eval.shape) == 0
            or (num_examples > 1 and initial_eval.numel() == 1)
        )
    ):
        agg_output_mode = True
        assert (
            perturbations_per_eval == 1
        ), "Cannot have perturbations_per_eval > 1 when function returns scalar."
        if feature_mask is not None:
            for single_mask in feature_mask:
                assert single_mask.shape[0] == 1, (
                    "Cannot provide different masks for each example when function "
                    "returns a scalar."
                )
    else:
        agg_output_mode = False
        assert (
            isinstance(initial_eval, torch.Tensor) and initial_eval[0].numel() == 1
        ), "Target should identify a single element in the model output."
    return agg_output_mode


def _construct_default_feature_mask(
    inputs: Tuple[Tensor, ...]
) -> Tuple[Tuple[Tensor, ...], int]:
    feature_mask = []
    current_num_features = 0
    for i in range(len(inputs)):
        num_features = torch.numel(inputs[i][0])
        feature_mask.append(
            current_num_features
            + torch.reshape(
                torch.arange(num_features, device=inputs[i].device),
                inputs[i][0:1].shape,
            )
        )
        current_num_features += num_features
    total_features = current_num_features
    feature_mask = tuple(feature_mask)
    return feature_mask, total_features