File size: 7,454 Bytes
d61b9c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
#!/usr/bin/env python3
from typing import Any, Callable, List, Optional, TYPE_CHECKING

import torch
from torch import Tensor

if TYPE_CHECKING:
    from captum.attr._utils.summarizer import SummarizerSingleTensor


class Stat:
    """
    The Stat class represents a statistic that can be updated and retrieved
    at any point in time.

    The basic functionality this class provides is:
    1. A update/get method to actually compute the statistic
    2. A statistic store/cache to retrieve dependent information
       (e.g. other stat values that are required for computation)
    3. The name of the statistic that is used for the user to refer to
    """

    def __init__(self, name: Optional[str] = None, **kwargs: Any) -> None:
        """
        Args:
            name (str, optional):
                The name of the statistic. If not provided,
                the class name will be used alongside it's parameters
            kwargs (Any):
                Additional arguments used to construct the statistic
        """
        self.params = kwargs
        self._name = name

        self._other_stats: Optional[SummarizerSingleTensor] = None

    def init(self):
        pass

    def _get_stat(self, stat: "Stat") -> Optional["Stat"]:
        assert self._other_stats is not None
        return self._other_stats.get(stat)

    def update(self, x: Tensor):
        raise NotImplementedError()

    def get(self) -> Optional[Tensor]:
        raise NotImplementedError()

    def __hash__(self):
        return hash((self.__class__, frozenset(self.params.items())))

    def __eq__(self, other: object) -> bool:
        if isinstance(other, Stat):
            return self.__class__ == other.__class__ and frozenset(
                self.params.items()
            ) == frozenset(other.params.items())
        else:
            return False

    def __ne__(self, other: object) -> bool:
        return not self.__eq__(other)

    @property
    def name(self):
        """
        The name of the statistic. i.e. it is the key in a .summary

        This will be the class name or a custom name if provided.

        See Summarizer or SummarizerSingleTensor
        """
        default_name = self.__class__.__name__.lower()
        if len(self.params) > 0:
            default_name += f"({self.params})"

        return default_name if self._name is None else self._name


class Count(Stat):
    """
    Counts the number of elements, i.e. the
    number of `update`'s called
    """

    def __init__(self, name: Optional[str] = None) -> None:
        super().__init__(name=name)
        self.n = None

    def get(self):
        return self.n

    def update(self, x):
        if self.n is None:
            self.n = 0
        self.n += 1


class Mean(Stat):
    """
    Calculates the average of a tensor
    """

    def __init__(self, name: Optional[str] = None) -> None:
        super().__init__(name=name)
        self.rolling_mean: Optional[Tensor] = None
        self.n: Optional[Count] = None

    def get(self) -> Optional[Tensor]:
        return self.rolling_mean

    def init(self):
        self.n = self._get_stat(Count())

    def update(self, x):
        n = self.n.get()

        if self.rolling_mean is None:
            # Ensures rolling_mean is a float tensor
            self.rolling_mean = x.clone() if x.is_floating_point() else x.double()
        else:
            delta = x - self.rolling_mean
            self.rolling_mean += delta / n


class MSE(Stat):
    """
    Calculates the mean squared error of a tensor
    """

    def __init__(self, name: Optional[str] = None) -> None:
        super().__init__(name=name)
        self.prev_mean = None
        self.mse = None

    def init(self):
        self.mean = self._get_stat(Mean())

    def get(self) -> Optional[Tensor]:
        if self.mse is None and self.prev_mean is not None:
            return torch.zeros_like(self.prev_mean)
        return self.mse

    def update(self, x: Tensor):
        mean = self.mean.get()

        if mean is not None and self.prev_mean is not None:
            rhs = (x - self.prev_mean) * (x - mean)
            if self.mse is None:
                self.mse = rhs
            else:
                self.mse += rhs

        # do not not clone
        self.prev_mean = mean.clone()


class Var(Stat):
    """
    Calculates the variance of a tensor, with an order. e.g.
    if `order = 1` then it will calculate sample variance.

    This is equal to mse / (n - order)
    """

    def __init__(self, name: Optional[str] = None, order: int = 0) -> None:
        if name is None:
            if order == 0:
                name = "variance"
            elif order == 1:
                name = "sample_variance"
            else:
                name = f"variance({order})"

        super().__init__(name=name, order=order)
        self.order = order

    def init(self):
        self.mse = self._get_stat(MSE())
        self.n = self._get_stat(Count())

    def update(self, x: Tensor):
        pass

    def get(self) -> Optional[Tensor]:
        mse = self.mse.get()
        n = self.n.get()

        if mse is None:
            return None

        if n <= self.order:
            return torch.zeros_like(mse)

        # NOTE: The following ensures mse is a float tensor.
        #   torch.true_divide is available in PyTorch 1.5 and later.
        #   This is for compatibility with 1.4.
        return mse.to(torch.float64) / (n - self.order)


class StdDev(Stat):
    """
    The standard deviation, with an associated order.
    """

    def __init__(self, name: Optional[str] = None, order: int = 0) -> None:
        if name is None:
            if order == 0:
                name = "std_dev"
            elif order == 1:
                name = "sample_std_dev"
            else:
                name = f"std_dev{order})"

        super().__init__(name=name, order=order)
        self.order = order

    def init(self):
        self.var = self._get_stat(Var(order=self.order))

    def update(self, x: Tensor):
        pass

    def get(self) -> Optional[Tensor]:
        var = self.var.get()
        return var ** 0.5 if var is not None else None


class GeneralAccumFn(Stat):
    """
    Performs update(x): result = fn(result, x)
    where fn is a custom function
    """

    def __init__(self, fn: Callable, name: Optional[str] = None) -> None:
        super().__init__(name=name)
        self.result = None
        self.fn = fn

    def get(self) -> Optional[Tensor]:
        return self.result

    def update(self, x):
        if self.result is None:
            self.result = x
        else:
            self.result = self.fn(self.result, x)


class Min(GeneralAccumFn):
    def __init__(
        self, name: Optional[str] = None, min_fn: Callable = torch.min
    ) -> None:
        super().__init__(name=name, fn=min_fn)


class Max(GeneralAccumFn):
    def __init__(
        self, name: Optional[str] = None, max_fn: Callable = torch.max
    ) -> None:
        super().__init__(name=name, fn=max_fn)


class Sum(GeneralAccumFn):
    def __init__(
        self, name: Optional[str] = None, add_fn: Callable = torch.add
    ) -> None:
        super().__init__(name=name, fn=add_fn)


def CommonStats() -> List[Stat]:
    r"""
    Returns common summary statistics, specifically:
        Mean, Sample Variance, Sample Std Dev, Min, Max
    """
    return [Mean(), Var(order=1), StdDev(order=1), Min(), Max()]