File size: 40,125 Bytes
d61b9c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
import os
import time
import string
import argparse
import re
import sys
import random
import pickle
import logging
from fastai.distributed import *
from fastai.vision import *

import settings
import torch
import torch.backends.cudnn as cudnn
import torch.utils.data
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
from skimage.color import gray2rgb
from nltk.metrics.distance import edit_distance
import cv2
import pickle
import copy

# from dataset import hierarchical_dataset, AlignCollate
# from model import Model, SuperPixler, CastNumpy, STRScore
# import hiddenlayer as hl
from callbacks import DumpPrediction, IterationCallback, TextAccuracy, TopKTextAccuracy
from dataset_abinet import ImageDataset, CustomImageDataset, TextDataset
from losses import MultiLosses
import matplotlib.pyplot as plt
import random
from utils_abinet import Config, Logger, MyDataParallel, MyConcatDataset, CharsetMapper
from utils import SRNConverter
from model_abinet import STRScore
from lime.wrappers.scikit_image import SegmentationAlgorithm
from captum._utils.models.linear_model import SkLearnLinearModel, SkLearnRidge
from captum_test import acquire_average_auc, saveAttrData, acquire_bestacc_attr, acquireAttribution

device = torch.device('cpu')

from captum.attr import (
    GradientShap,
    DeepLift,
    DeepLiftShap,
    IntegratedGradients,
    LayerConductance,
    NeuronConductance,
    NoiseTunnel,
    Saliency,
    InputXGradient,
    GuidedBackprop,
    Deconvolution,
    GuidedGradCam,
    FeatureAblation,
    ShapleyValueSampling,
    Lime,
    KernelShap
)

from captum.metrics import (
    infidelity,
    sensitivity_max
)

from captum.attr._utils.visualization import visualize_image_attr

### Acquire pixelwise attributions and replace them with ranked numbers averaged
### across segmentation with the largest contribution having the largest number
### and the smallest set to 1, which is the minimum number.
### attr - original attribution
### segm - image segmentations
def rankedAttributionsBySegm(attr, segm):
    aveSegmentations, sortedDict = averageSegmentsOut(attr[0,0], segm)
    totalSegm = len(sortedDict.keys()) # total segmentations
    sortedKeys = [k for k, v in sorted(sortedDict.items(), key=lambda item: item[1])]
    sortedKeys = sortedKeys[::-1] ### A list that should contain largest to smallest score
    currentRank = totalSegm
    rankedSegmImg = torch.clone(attr)
    for totalSegToHide in range(0, len(sortedKeys)):
        currentSegmentToHide = sortedKeys[totalSegToHide]
        rankedSegmImg[0,0][segm == currentSegmentToHide] = currentRank
        currentRank -= 1
    return rankedSegmImg

### Returns the mean for each segmentation having shape as the same as the input
### This function can only one attribution image at a time
def averageSegmentsOut(attr, segments):
    averagedInput = torch.clone(attr)
    sortedDict = {}
    for x in np.unique(segments):
        segmentMean = torch.mean(attr[segments == x][:])
        sortedDict[x] = float(segmentMean.detach().cpu().numpy())
        averagedInput[segments == x] = segmentMean
    return averagedInput, sortedDict

def acquireSelectivityHit(origImg, attributions, segmentations, model, charset, labels, scoring):
    # print("segmentations unique len: ", np.unique(segmentations))
    aveSegmentations, sortedDict = averageSegmentsOut(attributions[0,0], segmentations)
    sortedKeys = [k for k, v in sorted(sortedDict.items(), key=lambda item: item[1])]
    sortedKeys = sortedKeys[::-1] ### A list that should contain largest to smallest score
    # print("sortedDict: ", sortedDict) # {0: -5.51e-06, 1: -1.469e-05, 2: -3.06e-05,...}
    # print("aveSegmentations unique len: ", np.unique(aveSegmentations))
    # print("aveSegmentations device: ", aveSegmentations.device) # cuda:0
    # print("aveSegmentations shape: ", aveSegmentations.shape) # (224,224)
    # print("aveSegmentations: ", aveSegmentations)

    n_correct = []
    confidenceList = [] # First index is one feature removed, second index two features removed, and so on...
    clonedImg = torch.clone(origImg)
    gt = labels
    for totalSegToHide in range(0, len(sortedKeys)):
        ### Acquire LIME prediction result
        currentSegmentToHide = sortedKeys[totalSegToHide]
        clonedImg[0,0][segmentations == currentSegmentToHide] = 0.0
        modelOut = model(clonedImg) ### Returns a tuple of dictionaries
        confScore = scoring(modelOut).cpu().detach().numpy()
        pred, _, __ = postprocess(modelOut[0], charset, config.model_eval)
        pred = pred[0] # outputs a list, so query [0]
        if pred.lower() == gt.lower(): ### not lowercase gt labels, pred only predicts lowercase
            n_correct.append(1)
        else:
            n_correct.append(0)
        confScore = confScore[0][0]*100
        confidenceList.append(confScore)
    return n_correct, confidenceList

def _set_random_seed(seed):
    if seed is not None:
        random.seed(seed)
        torch.manual_seed(seed)
        cudnn.deterministic = True
        logging.warning('You have chosen to seed training. '
                        'This will slow down your training!')

def get_model(config):
    import importlib
    names = config.model_name.split('.')
    module_name, class_name = '.'.join(names[:-1]), names[-1]
    cls = getattr(importlib.import_module(module_name), class_name)
    model = cls(config)
    logging.info(model)
    model = model.eval()
    return model

def load(model, file, device=None, strict=True):
    if device is None: device = 'cpu'
    elif isinstance(device, int): device = torch.device('cuda', device)
    assert os.path.isfile(file)
    state = torch.load(file, map_location=device)
    if set(state.keys()) == {'model', 'opt'}:
        state = state['model']
    model.load_state_dict(state, strict=strict)
    return model

def _get_dataset(ds_type, paths, is_training, config, **kwargs):
    kwargs.update({
        'img_h': config.dataset_image_height,
        'img_w': config.dataset_image_width,
        'max_length': config.dataset_max_length,
        'case_sensitive': config.dataset_case_sensitive,
        'charset_path': config.dataset_charset_path,
        'data_aug': config.dataset_data_aug,
        'deteriorate_ratio': config.dataset_deteriorate_ratio,
        'is_training': is_training,
        'multiscales': config.dataset_multiscales,
        'one_hot_y': config.dataset_one_hot_y,
    })
    datasets = [ds_type(p, **kwargs) for p in paths]
    if len(datasets) > 1: return MyConcatDataset(datasets)
    else: return datasets[0]

def _get_databaunch(config):
    # An awkward way to reduce loadding data time during test
    if config.global_phase == 'test': config.dataset_train_roots = config.dataset_test_roots
    train_ds = _get_dataset(ImageDataset, config.dataset_train_roots, True, config)
    valid_ds = _get_dataset(ImageDataset, config.dataset_test_roots, False, config)
    data = ImageDataBunch.create(
        train_ds=train_ds,
        valid_ds=valid_ds,
        bs=config.dataset_train_batch_size,
        val_bs=config.dataset_test_batch_size,
        num_workers=config.dataset_num_workers,
        pin_memory=config.dataset_pin_memory).normalize(imagenet_stats)
    ar_tfm = lambda x: ((x[0], x[1]), x[1])  # auto-regression only for dtd
    data.add_tfm(ar_tfm)

    logging.info(f'{len(data.train_ds)} training items found.')
    if not data.empty_val:
        logging.info(f'{len(data.valid_ds)} valid items found.')

    return data

def postprocess(output, charset, model_eval):
    def _get_output(last_output, model_eval):
        if isinstance(last_output, (tuple, list)):
            for res in last_output:
                if res['name'] == model_eval: return res
        return last_output

    def _decode(logit):
        """ Greed decode """
        out = F.softmax(logit, dim=2)
        pt_text, pt_scores, pt_lengths = [], [], []
        for o in out:
            text = charset.get_text(o.argmax(dim=1), padding=False, trim=False)
            text = text.split(charset.null_char)[0]  # end at end-token
            pt_text.append(text)
            pt_scores.append(o.max(dim=1)[0])
            pt_lengths.append(min(len(text) + 1, charset.max_length))  # one for end-token
        return pt_text, pt_scores, pt_lengths

    output = _get_output(output, model_eval)
    # print("output type: ", type(output))
    logits, pt_lengths = output['logits'], output['pt_lengths']
    pt_text, pt_scores, pt_lengths_ = _decode(logits)

    return pt_text, pt_scores, pt_lengths_

def main(config):
    height = config.imgH
    width = config.imgW
    # 'IIIT5k_3000', 'SVT', 'IC03_860', 'IC03_867', 'IC13_857', 'IC13_1015', 'IC15_1811', 'IC15_2077', 'SVTP', 'CUTE80'
    targetDataset = settings.TARGET_DATASET # Change also the configs/train_abinet.yaml test.roots test folder
    segmRootDir = "{}/{}X{}/{}/".format(settings.SEGM_DIR, height, width, targetDataset)
    outputSelectivityPkl = "strexp_ave_{}_{}.pkl".format(settings.MODEL, targetDataset)
    outputDir = "./attributionImgs/{}/{}/".format(settings.MODEL, targetDataset)
    attrOutputDir = "./attributionData/{}/{}/".format(settings.MODEL, targetDataset)
    resumePkl = "" # Use to resume when session destroyed. Set to "" to disable
    acquireSelectivity = True
    acquireInfidelity = False
    acquireSensitivity = False
    if not os.path.exists(outputDir):
        os.makedirs(outputDir)
    if not os.path.exists(attrOutputDir):
        os.makedirs(attrOutputDir)
    charset = CharsetMapper(filename=config.dataset_charset_path,
                            max_length=config.dataset_max_length + 1)
    config.character = "abcdefghijklmnopqrstuvwxyz1234567890$#" # See charset_36.txt
    converter = SRNConverter(config.character, 36)

    model = get_model(config).to(device)
    model = load(model, config.model_checkpoint, device=device)

    """ evaluation """
    modelCopy = copy.deepcopy(model)
    scoring_singlechar = STRScore(config=config, charsetMapper=charset, postprocessFunc=postprocess, device=device, enableSingleCharAttrAve=True)
    super_pixel_model_singlechar = torch.nn.Sequential(
        modelCopy,
        scoring_singlechar
    ).to(device)
    modelCopy.eval()
    scoring_singlechar.eval()
    super_pixel_model_singlechar.eval()

    scoring = STRScore(config=config, charsetMapper=charset, postprocessFunc=postprocess, device=device)
    ### SuperModel
    super_pixel_model = torch.nn.Sequential(
    model,
    scoring
    ).to(device)
    model.eval()
    scoring.eval()
    super_pixel_model.eval()

    selectivity_eval_results = []

    if config.blackbg:
        shapImgLs = np.zeros(shape=(1, 3, 32, 128)).astype(np.float32)
        trainList = np.array(shapImgLs)
        background = torch.from_numpy(trainList).to(device)

    # define a perturbation function for the input (used for calculating infidelity)
    def perturb_fn(modelInputs):
        noise = torch.tensor(np.random.normal(0, 0.003, modelInputs.shape)).float()
        noise = noise.to(device)
        return noise, modelInputs - noise

    strict = ifnone(config.model_strict, True)
    ### Dataset not shuffled because it is not a dataloader, just a dataset
    valid_ds = _get_dataset(CustomImageDataset, config.dataset_test_roots, False, config)
    # print("valid_ds: ", len(valid_ds[0]))
    testImgCount = 0
    if resumePkl != "":
        with open(resumePkl, 'rb') as filePkl:
            selectivity_eval_results = pickle.load(filePkl)
        testImgCount = selectivity_eval_results[-1]["testImgCount"] # ResumeCount
    try:
        for i, (orig_img_tensors, labels, labels_tensor) in enumerate(valid_ds):
            if i <= testImgCount:
                continue
            orig_img_tensors = orig_img_tensors.unsqueeze(0)
            # print("orig_img_tensors: ", orig_img_tensors.shape) # (3, 32, 128)
            # img_rgb *= 255.0
            # img_rgb = img_rgb.astype('int')
            # print("img_rgb max: ", img_rgb.max()) ### 255
            # img_rgb = np.asarray(orig_img_tensors)
            # segmentations = segmentation_fn(img_rgb)
            # print("segmentations shape: ", segmentations.shape) # (224, 224)
            # print("segmentations min: ", segmentations.min()) 0
            # print("Unique: ", len(np.unique(segmentations))) # (70)
            results_dict = {}
            with open(segmRootDir + "{}.pkl".format(i), 'rb') as f:
                pklData = pickle.load(f)
            # segmData, labels = segAndLabels[0]
            segmDataNP = pklData["segdata"]
            labels = labels.lower() # For fair evaluation for all
            assert pklData['label'] == labels
            segmTensor = torch.from_numpy(segmDataNP).unsqueeze(0).unsqueeze(0)
            # print("segmTensor min: ", segmTensor.min()) # 0 starting segmentation
            segmTensor = segmTensor.to(device)
            # print("segmTensor shape: ", segmTensor.shape)
            # img1 = np.asarray(imgPIL.convert('L'))
            # sys.exit()
            # img1 = img1 / 255.0
            # img1 = torch.from_numpy(img1).unsqueeze(0).unsqueeze(0).type(torch.FloatTensor).to(device)
            img1 = orig_img_tensors.to(device)
            img1.requires_grad = True
            bgImg = torch.zeros(img1.shape).to(device)
            # preds = model(img1, seqlen=converter.batch_max_length)
            input = img1
            origImgNP = torch.clone(orig_img_tensors).detach().cpu().numpy()[0][0] # (1, 1, 224, 224)
            origImgNP = gray2rgb(origImgNP)

            ### Integrated Gradients
            ig = IntegratedGradients(super_pixel_model)
            attributions = ig.attribute(input, target=0)
            rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
            rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
            rankedAttr = gray2rgb(rankedAttr)
            mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
            mplotfig.savefig(outputDir + '{}_intgrad.png'.format(i))
            mplotfig.clear()
            plt.close(mplotfig)
            saveAttrData(attrOutputDir + f'{i}_intgrad.pkl', attributions, segmDataNP, origImgNP)
            if acquireSelectivity:
                n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, charset, labels, scoring)
                results_dict["intgrad_acc"] = n_correct
                results_dict["intgrad_conf"] = confidenceList
            if acquireInfidelity:
                infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy())
                results_dict["intgrad_infid"] = infid
            if acquireSensitivity:
                sens = float(sensitivity_max(ig.attribute, img1, target=0).detach().cpu().numpy())
                results_dict["intgrad_sens"] = sens

            ### Gradient SHAP using zero-background
            gs = GradientShap(super_pixel_model)
            # We define a distribution of baselines and draw `n_samples` from that
            # distribution in order to estimate the expectations of gradients across all baselines
            baseline_dist = torch.zeros((1, 3, height, width))
            baseline_dist = baseline_dist.to(device)
            attributions = gs.attribute(input, baselines=baseline_dist, target=0)
            rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
            rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
            rankedAttr = gray2rgb(rankedAttr)
            mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
            mplotfig.savefig(outputDir + '{}_gradshap.png'.format(i))
            mplotfig.clear()
            plt.close(mplotfig)
            saveAttrData(attrOutputDir + f'{i}_gradshap.pkl', attributions, segmDataNP, origImgNP)
            if acquireSelectivity:
                n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, charset, labels, scoring)
                results_dict["gradshap_acc"] = n_correct
                results_dict["gradshap_conf"] = confidenceList
            if acquireInfidelity:
                infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy())
                results_dict["gradshap_infid"] = infid
            if acquireSensitivity:
                sens = float(sensitivity_max(gs.attribute, img1, target=0).detach().cpu().numpy())
                results_dict["gradshap_sens"] = sens

            ### DeepLift using zero-background
            dl = DeepLift(super_pixel_model)
            attributions = dl.attribute(input, target=0)
            rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
            rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
            rankedAttr = gray2rgb(rankedAttr)
            mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
            mplotfig.savefig(outputDir + '{}_deeplift.png'.format(i))
            mplotfig.clear()
            plt.close(mplotfig)
            saveAttrData(attrOutputDir + f'{i}_deeplift.pkl', attributions, segmDataNP, origImgNP)
            if acquireSelectivity:
                n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, charset, labels, scoring)
                results_dict["deeplift_acc"] = n_correct
                results_dict["deeplift_conf"] = confidenceList
            if acquireInfidelity:
                infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy())
                results_dict["deeplift_infid"] = infid
            if acquireSensitivity:
                sens = float(sensitivity_max(dl.attribute, img1, target=0).detach().cpu().numpy())
                results_dict["deeplift_sens"] = sens

            ### Saliency
            saliency = Saliency(super_pixel_model)
            attributions = saliency.attribute(input, target=0) ### target=class0
            rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
            rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
            rankedAttr = gray2rgb(rankedAttr)
            mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
            mplotfig.savefig(outputDir + '{}_saliency.png'.format(i))
            mplotfig.clear()
            plt.close(mplotfig)
            saveAttrData(attrOutputDir + f'{i}_saliency.pkl', attributions, segmDataNP, origImgNP)
            if acquireSelectivity:
                n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, charset, labels, scoring)
                results_dict["saliency_acc"] = n_correct
                results_dict["saliency_conf"] = confidenceList
            if acquireInfidelity:
                infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy())
                results_dict["saliency_infid"] = infid
            if acquireSensitivity:
                sens = float(sensitivity_max(saliency.attribute, img1, target=0).detach().cpu().numpy())
                results_dict["saliency_sens"] = sens

            ### InputXGradient
            input_x_gradient = InputXGradient(super_pixel_model)
            attributions = input_x_gradient.attribute(input, target=0)
            rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
            rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
            rankedAttr = gray2rgb(rankedAttr)
            mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
            mplotfig.savefig(outputDir + '{}_inpxgrad.png'.format(i))
            mplotfig.clear()
            plt.close(mplotfig)
            saveAttrData(attrOutputDir + f'{i}_inpxgrad.pkl', attributions, segmDataNP, origImgNP)
            if acquireSelectivity:
                n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, charset, labels, scoring)
                results_dict["inpxgrad_acc"] = n_correct
                results_dict["inpxgrad_conf"] = confidenceList
            if acquireInfidelity:
                infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy())
                results_dict["inpxgrad_infid"] = infid
            if acquireSensitivity:
                sens = float(sensitivity_max(input_x_gradient.attribute, img1, target=0).detach().cpu().numpy())
                results_dict["inpxgrad_sens"] = sens

            ### GuidedBackprop
            gbp = GuidedBackprop(super_pixel_model)
            attributions = gbp.attribute(input, target=0)
            rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
            rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
            rankedAttr = gray2rgb(rankedAttr)
            mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
            mplotfig.savefig(outputDir + '{}_guidedbp.png'.format(i))
            mplotfig.clear()
            plt.close(mplotfig)
            saveAttrData(attrOutputDir + f'{i}_guidedbp.pkl', attributions, segmDataNP, origImgNP)
            if acquireSelectivity:
                n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, charset, labels, scoring)
                results_dict["guidedbp_acc"] = n_correct
                results_dict["guidedbp_conf"] = confidenceList
            if acquireInfidelity:
                infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy())
                results_dict["guidedbp_infid"] = infid
            if acquireSensitivity:
                sens = float(sensitivity_max(gbp.attribute, img1, target=0).detach().cpu().numpy())
                results_dict["guidedbp_sens"] = sens

            ### Deconvolution
            deconv = Deconvolution(super_pixel_model)
            attributions = deconv.attribute(input, target=0)
            rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
            rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
            rankedAttr = gray2rgb(rankedAttr)
            mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
            mplotfig.savefig(outputDir + '{}_deconv.png'.format(i))
            mplotfig.clear()
            plt.close(mplotfig)
            saveAttrData(attrOutputDir + f'{i}_deconv.pkl', attributions, segmDataNP, origImgNP)
            if acquireSelectivity:
                n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, charset, labels, scoring)
                results_dict["deconv_acc"] = n_correct
                results_dict["deconv_conf"] = confidenceList
            if acquireInfidelity:
                infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy())
                results_dict["deconv_infid"] = infid
            if acquireSensitivity:
                sens = float(sensitivity_max(deconv.attribute, img1, target=0).detach().cpu().numpy())
                results_dict["deconv_sens"] = sens

            ### Feature ablator
            ablator = FeatureAblation(super_pixel_model)
            attributions = ablator.attribute(input, target=0, feature_mask=segmTensor)
            rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
            rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
            rankedAttr = gray2rgb(rankedAttr)
            mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
            mplotfig.savefig(outputDir + '{}_featablt.png'.format(i))
            mplotfig.clear()
            plt.close(mplotfig)
            saveAttrData(attrOutputDir + f'{i}_featablt.pkl', attributions, segmDataNP, origImgNP)
            if acquireSelectivity:
                n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, charset, labels, scoring)
                results_dict["featablt_acc"] = n_correct
                results_dict["featablt_conf"] = confidenceList
            if acquireInfidelity:
                infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy())
                results_dict["featablt_infid"] = infid
            if acquireSensitivity:
                sens = float(sensitivity_max(ablator.attribute, img1, target=0).detach().cpu().numpy())
                results_dict["featablt_sens"] = sens

            ### Shapley Value Sampling
            svs = ShapleyValueSampling(super_pixel_model)
            # attr = svs.attribute(input, target=0, n_samples=200) ### Individual pixels, too long to calculate
            attributions = svs.attribute(input, target=0, feature_mask=segmTensor)
            rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
            rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
            rankedAttr = gray2rgb(rankedAttr)
            mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
            mplotfig.savefig(outputDir + '{}_shapley.png'.format(i))
            mplotfig.clear()
            plt.close(mplotfig)
            saveAttrData(attrOutputDir + f'{i}_shapley.pkl', attributions, segmDataNP, origImgNP)
            if acquireSelectivity:
                n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, charset, labels, scoring)
                results_dict["shapley_acc"] = n_correct
                results_dict["shapley_conf"] = confidenceList
            if acquireInfidelity:
                infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy())
                results_dict["shapley_infid"] = infid
            if acquireSensitivity:
                sens = float(sensitivity_max(svs.attribute, img1, target=0).detach().cpu().numpy())
                results_dict["shapley_sens"] = sens

            ## LIME
            interpretable_model = SkLearnRidge(alpha=1, fit_intercept=True) ### This is the default used by LIME
            lime = Lime(super_pixel_model, interpretable_model=interpretable_model)
            attributions = lime.attribute(input, target=0, feature_mask=segmTensor)
            rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
            rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
            rankedAttr = gray2rgb(rankedAttr)
            mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
            mplotfig.savefig(outputDir + '{}_lime.png'.format(i))
            mplotfig.clear()
            plt.close(mplotfig)
            saveAttrData(attrOutputDir + f'{i}_lime.pkl', attributions, segmDataNP, origImgNP)
            if acquireSelectivity:
                n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, charset, labels, scoring)
                results_dict["lime_acc"] = n_correct
                results_dict["lime_conf"] = confidenceList
            if acquireInfidelity:
                infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy())
                results_dict["lime_infid"] = infid
            if acquireSensitivity:
                sens = float(sensitivity_max(lime.attribute, img1, target=0).detach().cpu().numpy())
                results_dict["lime_sens"] = sens

            ### KernelSHAP
            ks = KernelShap(super_pixel_model)
            attributions = ks.attribute(input, target=0, feature_mask=segmTensor)
            rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
            rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
            rankedAttr = gray2rgb(rankedAttr)
            mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
            mplotfig.savefig(outputDir + '{}_kernelshap.png'.format(i))
            mplotfig.clear()
            plt.close(mplotfig)
            saveAttrData(attrOutputDir + f'{i}_kernelshap.pkl', attributions, segmDataNP, origImgNP)
            if acquireSelectivity:
                n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, charset, labels, scoring)
                results_dict["kernelshap_acc"] = n_correct
                results_dict["kernelshap_conf"] = confidenceList
            if acquireInfidelity:
                infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy())
                results_dict["kernelshap_infid"] = infid
            if acquireSensitivity:
                sens = float(sensitivity_max(ks.attribute, img1, target=0).detach().cpu().numpy())
                results_dict["kernelshap_sens"] = sens

            # Other data
            results_dict["testImgCount"] = testImgCount # 0 to N-1
            selectivity_eval_results.append(results_dict)

            with open(outputSelectivityPkl, 'wb') as f:
                pickle.dump(selectivity_eval_results, f)

            testImgCount += 1
            print("testImgCount: ", testImgCount)
    except:
        print("An exception occurred1")

    del valid_ds
    valid_ds = _get_dataset(CustomImageDataset, config.dataset_test_roots, False, config)
    bestAttributionKeyStr = acquire_bestacc_attr(config, outputSelectivityPkl)
    bestAttrName = bestAttributionKeyStr.split('_')[0]

    testImgCount = 0
    try:
        for i, (orig_img_tensors, labels, labels_tensor) in enumerate(valid_ds):
            orig_img_tensors = orig_img_tensors.unsqueeze(0)
            # print("orig_img_tensors: ", orig_img_tensors.shape) # (3, 32, 128)
            # img_rgb *= 255.0
            # img_rgb = img_rgb.astype('int')
            # print("img_rgb max: ", img_rgb.max()) ### 255
            # img_rgb = np.asarray(orig_img_tensors)
            # segmentations = segmentation_fn(img_rgb)
            # print("segmentations shape: ", segmentations.shape) # (224, 224)
            # print("segmentations min: ", segmentations.min()) 0
            # print("Unique: ", len(np.unique(segmentations))) # (70)
            results_dict = {}
            with open(segmRootDir + "{}.pkl".format(i), 'rb') as f:
                pklData = pickle.load(f)
            # segmData, labels = segAndLabels[0]
            segmDataNP = pklData["segdata"]
            labels = labels.lower() # For fair evaluation for all
            assert pklData['label'] == labels
            # labels = "lama0"
            target = converter.encode([labels], len(config.character))
            target = target[0] + 1 # Idx predicted by ABINET is 1 to N chars, not 0 to N-1
            target[target > 36] = 0 # Remove EOS predictions, set endpoint chars to 0
            segmTensor = torch.from_numpy(segmDataNP).unsqueeze(0).unsqueeze(0)
            # print("segmTensor min: ", segmTensor.min()) # 0 starting segmentation
            segmTensor = segmTensor.to(device)
            # print("segmTensor shape: ", segmTensor.shape)
            # img1 = np.asarray(imgPIL.convert('L'))
            # sys.exit()
            # img1 = img1 / 255.0
            # img1 = torch.from_numpy(img1).unsqueeze(0).unsqueeze(0).type(torch.FloatTensor).to(device)
            img1 = orig_img_tensors.to(device)
            img1.requires_grad = True
            bgImg = torch.zeros(img1.shape).to(device)
            # preds = model(img1, seqlen=converter.batch_max_length)
            input = img1
            origImgNP = torch.clone(orig_img_tensors).detach().cpu().numpy()[0][0] # (1, 1, 224, 224)
            origImgNP = gray2rgb(origImgNP)

            charOffset = 0
            ### Local explanations only
            collectedAttributions = []
            for charIdx in range(0, len(labels)):
                scoring_singlechar.setSingleCharOutput(charIdx + charOffset)
                # print("charIdx + charOffset: ", charIdx + charOffset)
                # print("target[0]: ", target[0])
                gtClassNum = target[0][charIdx + charOffset]

                ### Best local
                attributions = acquireAttribution(config, super_pixel_model_singlechar, \
                input, segmTensor, gtClassNum, bestAttributionKeyStr, device)
                collectedAttributions.append(attributions)
            aveAttributions = torch.mean(torch.cat(collectedAttributions,dim=0), dim=0).unsqueeze(0)
            rankedAttr = rankedAttributionsBySegm(aveAttributions, segmDataNP)
            rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
            rankedAttr = gray2rgb(rankedAttr)
            mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
            mplotfig.savefig(outputDir + '{}_{}_l.png'.format(i, bestAttrName))
            mplotfig.clear()
            plt.close(mplotfig)
            saveAttrData(attrOutputDir + f'{i}_{bestAttrName}_l.pkl', aveAttributions, segmDataNP, origImgNP)
            if acquireSelectivity:
                n_correct, confidenceList = acquireSelectivityHit(img1, aveAttributions, segmDataNP, modelCopy, charset, labels, scoring_singlechar)
                results_dict[f"{bestAttrName}_local_acc"] = n_correct
                results_dict[f"{bestAttrName}_local_conf"] = confidenceList
            if acquireInfidelity:
                infid = float(infidelity(super_pixel_model_singlechar, perturb_fn, img1, aveAttributions, normalize=True).detach().cpu().numpy())
                results_dict[f"{bestAttrName}_local_infid"] = infid
            if acquireSensitivity:
                sens = float(sensitivity_max(svs.attribute, img1, target=0).detach().cpu().numpy())
                results_dict[f"{bestAttrName}_local_sens"] = sens

            ### Best global
            attributions = acquireAttribution(config, super_pixel_model, \
            input, segmTensor, 0, bestAttributionKeyStr, device)
            collectedAttributions.append(attributions)

            ### Global + Local context
            aveAttributions = torch.mean(torch.cat(collectedAttributions,dim=0), dim=0).unsqueeze(0)
            rankedAttr = rankedAttributionsBySegm(aveAttributions, segmDataNP)
            rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
            rankedAttr = gray2rgb(rankedAttr)
            mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
            mplotfig.savefig(outputDir + '{}_{}_gl.png'.format(i, bestAttrName))
            mplotfig.clear()
            plt.close(mplotfig)
            saveAttrData(attrOutputDir + f'{i}_{bestAttrName}_gl.pkl', aveAttributions, segmDataNP, origImgNP)
            if acquireSelectivity:
                n_correct, confidenceList = acquireSelectivityHit(img1, aveAttributions, segmDataNP, modelCopy, charset, labels, scoring_singlechar)
                results_dict[f"{bestAttrName}_global_local_acc"] = n_correct
                results_dict[f"{bestAttrName}_global_local_conf"] = confidenceList
            if acquireInfidelity:
                infid = float(infidelity(super_pixel_model_singlechar, perturb_fn, img1, aveAttributions).detach().cpu().numpy())
                results_dict[f"{bestAttrName}_global_local_infid"] = infid
            if acquireSensitivity:
                sens = float(sensitivity_max(svs.attribute, img1, target=0).detach().cpu().numpy())
                results_dict[f"{bestAttrName}_global_local_sens"] = sens

            selectivity_eval_results.append(results_dict)

            with open(outputSelectivityPkl, 'wb') as f:
                pickle.dump(selectivity_eval_results, f)

            testImgCount += 1
            print("testImgCount GlobLoc: ", testImgCount)
    except:
        print("An exception occurred2")

### Use to check if the model predicted the image or not. Output a pickle file with the image index.
def modelDatasetPredOnly(opt):
    # 'IIIT5k_3000', 'SVT', 'IC03_860', 'IC03_867', 'IC13_857',
    #                       'IC13_1015', 'IC15_1811', 'IC15_2077', 'SVTP', 'CUTE80'
    datasetName = "IIIT5k_3000"
    outputSelectivityPkl = "metrics_predictonly_eval_results_{}.pkl".format(datasetName)
    charset = CharsetMapper(filename=config.dataset_charset_path,
                            max_length=config.dataset_max_length + 1)
    model = get_model(config).to(device)
    model = load(model, config.model_checkpoint, device=device)
    model.eval()
    strict = ifnone(config.model_strict, True)
    ### Dataset not shuffled because it is not a dataloader, just a dataset
    valid_ds = _get_dataset(CustomImageDataset, config.dataset_test_roots, False, config)
    # print("valid_ds: ", len(valid_ds[0]))
    testImgCount = 0
    predOutput = []
    for i, (orig_img_tensors, labels, labels_tensor) in enumerate(valid_ds):
        orig_img_tensors = orig_img_tensors.unsqueeze(0).to(device)
        modelOut = model(orig_img_tensors) ### Returns a tuple of dictionaries
        pred, _, __ = postprocess(modelOut[0], charset, config.model_eval)
        pred = pred[0] # outputs a list, so query [0]
        if pred.lower() == labels.lower(): predOutput.append(1)
        else: predOutput.append(0)
        with open(outputSelectivityPkl, 'wb') as f:
            pickle.dump(predOutput, f)

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--config', type=str, required=True,
                        help='path to config file')
    parser.add_argument('--phase', type=str, default=None, choices=['train', 'test'])
    parser.add_argument('--name', type=str, default=None)
    parser.add_argument('--checkpoint', type=str, default=None)
    parser.add_argument('--test_root', type=str, default=None)
    parser.add_argument('--imgH', type=int, default=32, help='the height of the input image')
    parser.add_argument('--imgW', type=int, default=128, help='the width of the input image')
    parser.add_argument('--scorer', type=str, default='mean', help='See STRScore: cumprod | mean')
    parser.add_argument('--rgb', action='store_true', help='use rgb input')
    parser.add_argument("--local_rank", type=int, default=None)
    parser.add_argument('--debug', action='store_true', default=None)
    parser.add_argument('--image_only', action='store_true', default=None)
    parser.add_argument('--blackbg', action='store_true', default=None)
    parser.add_argument('--model_strict', action='store_false', default=None)
    parser.add_argument('--model_eval', type=str, default=None,
                        choices=['alignment', 'vision', 'language'])
    args = parser.parse_args()
    config = Config(args.config)
    if args.name is not None: config.global_name = args.name
    if args.phase is not None: config.global_phase = args.phase
    if args.test_root is not None: config.dataset_test_roots = [args.test_root]
    if args.scorer is not None: config.scorer = args.scorer
    if args.blackbg is not None: config.blackbg = args.blackbg
    if args.rgb is not None: config.rgb = args.rgb
    if args.imgH is not None: config.imgH = args.imgH
    if args.imgW is not None: config.imgW = args.imgW
    if args.checkpoint is not None: config.model_checkpoint = args.checkpoint
    if args.debug is not None: config.global_debug = args.debug
    if args.image_only is not None: config.global_image_only = args.image_only
    if args.model_eval is not None: config.model_eval = args.model_eval
    if args.model_strict is not None: config.model_strict = args.model_strict

    Logger.init(config.global_workdir, config.global_name, config.global_phase)
    Logger.enable_file()
    _set_random_seed(config.global_seed)
    logging.info(config)

    # acquire_average_auc(config)
    main(config)
    # modelDatasetPredOnly(config)