File size: 32,466 Bytes
d61b9c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
import settings
import captum
import numpy as np
import torch
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from torchvision import transforms
from utils import get_args
from utils import CTCLabelConverter, AttnLabelConverter, Averager, TokenLabelConverter
import string
import time
import sys
from dataset import hierarchical_dataset, AlignCollate
import validators
from model import Model, STRScore
from PIL import Image
from lime.wrappers.scikit_image import SegmentationAlgorithm
from captum._utils.models.linear_model import SkLearnLinearModel, SkLearnRidge
import random
import os
from skimage.color import gray2rgb
import pickle
from train_shap_corr import getPredAndConf
import re
from captum_test import acquire_average_auc, acquireListOfAveAUC, acquire_bestacc_attr, acquireAttribution, saveAttrData
import copy
from captum_improve_vitstr import rankedAttributionsBySegm
from matplotlib import pyplot as plt
from captum.attr._utils.visualization import visualize_image_attr

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

from captum.attr import (
    GradientShap,
    DeepLift,
    DeepLiftShap,
    IntegratedGradients,
    LayerConductance,
    NeuronConductance,
    NoiseTunnel,
    Saliency,
    InputXGradient,
    GuidedBackprop,
    Deconvolution,
    GuidedGradCam,
    FeatureAblation,
    ShapleyValueSampling,
    Lime,
    KernelShap
)

from captum.metrics import (
    infidelity,
    sensitivity_max
)

### Returns the mean for each segmentation having shape as the same as the input
### This function can only one attribution image at a time
def averageSegmentsOut(attr, segments):
    averagedInput = torch.clone(attr)
    sortedDict = {}
    for x in np.unique(segments):
        segmentMean = torch.mean(attr[segments == x][:])
        sortedDict[x] = float(segmentMean.detach().cpu().numpy())
        averagedInput[segments == x] = segmentMean
    return averagedInput, sortedDict

### Output and save segmentations only for one dataset only
def outputSegmOnly(opt):
    ### targetDataset - one dataset only, SVTP-645, CUTE80-288images
    targetDataset = "CUTE80" # ['IIIT5k_3000', 'SVT', 'IC03_867', 'IC13_1015', 'IC15_2077', 'SVTP', 'CUTE80']
    segmRootDir = "/home/uclpc1/Documents/STR/datasets/segmentations/224X224/{}/".format(targetDataset)

    if not os.path.exists(segmRootDir):
        os.makedirs(segmRootDir)

    opt.eval = True
    ### Only IIIT5k_3000
    if opt.fast_acc:
    # # To easily compute the total accuracy of our paper.
        eval_data_list = [targetDataset]
    else:
        # The evaluation datasets, dataset order is same with Table 1 in our paper.
        eval_data_list = [targetDataset]

    ### Taken from LIME
    segmentation_fn = SegmentationAlgorithm('quickshift', kernel_size=4,
                                            max_dist=200, ratio=0.2,
                                            random_seed=random.randint(0, 1000))

    for eval_data in eval_data_list:
        eval_data_path = os.path.join(opt.eval_data, eval_data)
        AlignCollate_evaluation = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD, opt=opt)
        eval_data, eval_data_log = hierarchical_dataset(root=eval_data_path, opt=opt)
        evaluation_loader = torch.utils.data.DataLoader(
            eval_data, batch_size=1,
            shuffle=False,
            num_workers=int(opt.workers),
            collate_fn=AlignCollate_evaluation, pin_memory=True)
        for i, (image_tensors, labels) in enumerate(evaluation_loader):
            imgDataDict = {}
            img_numpy = image_tensors.cpu().detach().numpy()[0] ### Need to set batch size to 1 only
            if img_numpy.shape[0] == 1:
                img_numpy = gray2rgb(img_numpy[0])
            # print("img_numpy shape: ", img_numpy.shape) # (224,224,3)
            segmOutput = segmentation_fn(img_numpy)
            imgDataDict['segdata'] = segmOutput
            imgDataDict['label'] = labels[0]
            outputPickleFile = segmRootDir + "{}.pkl".format(i)
            with open(outputPickleFile, 'wb') as f:
                pickle.dump(imgDataDict, f)

def acquireSelectivityHit(origImg, attributions, segmentations, model, converter, labels, scoring):
    # print("segmentations unique len: ", np.unique(segmentations))
    aveSegmentations, sortedDict = averageSegmentsOut(attributions[0,0], segmentations)
    sortedKeys = [k for k, v in sorted(sortedDict.items(), key=lambda item: item[1])]
    sortedKeys = sortedKeys[::-1] ### A list that should contain largest to smallest score
    # print("sortedDict: ", sortedDict) # {0: -5.51e-06, 1: -1.469e-05, 2: -3.06e-05,...}
    # print("aveSegmentations unique len: ", np.unique(aveSegmentations))
    # print("aveSegmentations device: ", aveSegmentations.device) # cuda:0
    # print("aveSegmentations shape: ", aveSegmentations.shape) # (224,224)
    # print("aveSegmentations: ", aveSegmentations)

    n_correct = []
    confidenceList = [] # First index is one feature removed, second index two features removed, and so on...
    clonedImg = torch.clone(origImg)
    gt = str(labels)
    for totalSegToHide in range(0, len(sortedKeys)):
        ### Acquire LIME prediction result
        currentSegmentToHide = sortedKeys[totalSegToHide]
        clonedImg[0,0][segmentations == currentSegmentToHide] = 0.0
        pred, confScore = getPredAndConf(opt, model, scoring, clonedImg, converter, np.array([gt]))
        # To evaluate 'case sensitive model' with alphanumeric and case insensitve setting.
        if opt.sensitive and opt.data_filtering_off:
            pred = pred.lower()
            gt = gt.lower()
            alphanumeric_case_insensitve = '0123456789abcdefghijklmnopqrstuvwxyz'
            out_of_alphanumeric_case_insensitve = f'[^{alphanumeric_case_insensitve}]'
            pred = re.sub(out_of_alphanumeric_case_insensitve, '', pred)
            gt = re.sub(out_of_alphanumeric_case_insensitve, '', gt)
        if pred == gt:
            n_correct.append(1)
        else:
            n_correct.append(0)
        confScore = confScore[0][0]*100
        confidenceList.append(confScore)
    return n_correct, confidenceList

### Once you have the selectivity_eval_results.pkl file,
def acquire_selectivity_auc(opt, pkl_filename=None):
    if pkl_filename is None:
        pkl_filename = "/home/goo/str/str_vit_dataexplain_lambda/metrics_sensitivity_eval_results_CUTE80.pkl" # VITSTR
    accKeys = []

    with open(pkl_filename, 'rb') as f:
        selectivity_data = pickle.load(f)

    for resDictIdx, resDict in enumerate(selectivity_data):
        keylistAcc = []
        keylistConf = []
        metricsKeys = resDict.keys()
        for keyStr in resDict.keys():
            if "_acc" in keyStr: keylistAcc.append(keyStr)
            if "_conf" in keyStr: keylistConf.append(keyStr)
        # Need to check if network correctly predicted the image
        for metrics_accStr in keylistAcc:
            if 1 not in resDict[metrics_accStr]: print("resDictIdx")

### This acquires the attributes of the STR network on individual character levels,
### then averages them.
def acquireSingleCharAttrAve(opt):
    ### targetDataset - one dataset only, CUTE80 has 288 samples
    # 'IIIT5k_3000', 'SVT', 'IC03_860', 'IC03_867', 'IC13_857', 'IC13_1015', 'IC15_1811', 'IC15_2077', 'SVTP', 'CUTE80'
    targetDataset = settings.TARGET_DATASET
    segmRootDir = "{}/32X128/{}/".format(settings.SEGM_DIR, targetDataset)
    outputSelectivityPkl = "strexp_ave_{}_{}.pkl".format(settings.MODEL, targetDataset)
    outputDir = "./attributionImgs/{}/{}/".format(settings.MODEL, targetDataset)
    attrOutputDir = "./attributionData/{}/{}/".format(settings.MODEL, targetDataset)
    ### Set only one below to True to have enough GPU
    acquireSelectivity = True
    acquireInfidelity = False
    acquireSensitivity = False ### GPU error
    if not os.path.exists(outputDir):
        os.makedirs(outputDir)
    if not os.path.exists(attrOutputDir):
        os.makedirs(attrOutputDir)

    model = torch.hub.load('baudm/parseq', 'parseq', pretrained=True)
    model = model.to(device)
    model_obj = model
    converter = TokenLabelConverter(opt)

    modelCopy = copy.deepcopy(model)

    """ evaluation """
    scoring_singlechar = STRScore(opt=opt, converter=converter, device=device, enableSingleCharAttrAve=True, model=modelCopy)
    super_pixel_model_singlechar = torch.nn.Sequential(
        # super_pixler,
        # numpy2torch_converter,
        modelCopy,
        scoring_singlechar
    ).to(device)
    modelCopy.eval()
    scoring_singlechar.eval()
    super_pixel_model_singlechar.eval()

    # Single Char Attribution Averaging
    # enableSingleCharAttrAve - set to True
    scoring = STRScore(opt=opt, converter=converter, device=device, model=model)
    super_pixel_model = torch.nn.Sequential(
        # super_pixler,
        # numpy2torch_converter,
        model,
        scoring
    ).to(device)
    model.eval()
    scoring.eval()
    super_pixel_model.eval()

    if opt.blackbg:
        shapImgLs = np.zeros(shape=(1, 1, 224, 224)).astype(np.float32)
        trainList = np.array(shapImgLs)
        background = torch.from_numpy(trainList).to(device)

    opt.eval = True

    ### Only IIIT5k_3000
    if opt.fast_acc:
    # # To easily compute the total accuracy of our paper.
        eval_data_list = [targetDataset] ### One dataset only
    else:
        # The evaluation datasets, dataset order is same with Table 1 in our paper.
        eval_data_list = [targetDataset]

    if opt.calculate_infer_time:
        evaluation_batch_size = 1  # batch_size should be 1 to calculate the GPU inference time per image.
    else:
        evaluation_batch_size = opt.batch_size

    selectivity_eval_results = []

    testImgCount = 0
    list_accuracy = []
    total_forward_time = 0
    total_evaluation_data_number = 0
    total_correct_number = 0

    segmentation_fn = SegmentationAlgorithm('quickshift', kernel_size=4,
                                            max_dist=200, ratio=0.2,
                                            random_seed=random.randint(0, 1000))

    for eval_data in eval_data_list:
        eval_data_path = os.path.join(opt.eval_data, eval_data)
        AlignCollate_evaluation = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD, opt=opt)
        eval_data, eval_data_log = hierarchical_dataset(root=eval_data_path, opt=opt, segmRootDir=segmRootDir)
        evaluation_loader = torch.utils.data.DataLoader(
            eval_data, batch_size=1,
            shuffle=False,
            num_workers=int(opt.workers),
            collate_fn=AlignCollate_evaluation, pin_memory=True)
        testImgCount = 0

    for i, (orig_img_tensors, segAndLabels) in enumerate(evaluation_loader):
        results_dict = {}
        aveAttr = []
        aveAttr_charContrib = []
        segmData, labels = segAndLabels[0]
        target = converter.encode([labels])

        # labels: RONALDO
        segmDataNP = segmData["segdata"]
        segmTensor = torch.from_numpy(segmDataNP).unsqueeze(0).unsqueeze(0)
        # print("segmTensor min: ", segmTensor.min()) # 0 starting segmentation
        segmTensor = segmTensor.to(device)
        img1 = orig_img_tensors.to(device)
        img1.requires_grad = True
        bgImg = torch.zeros(img1.shape).to(device)

        ### Single char averaging
        if settings.MODEL == 'vitstr':
            charOffset = 1
        elif settings.MODEL == 'parseq':
            charOffset = 0
            img1 = transforms.Normalize(0.5, 0.5)(img1) # Between -1 to 1

        # preds = model(img1, seqlen=converter.batch_max_length)
        input = img1
        origImgNP = torch.clone(orig_img_tensors).detach().cpu().numpy()[0][0] # (1, 1, 224, 224)
        origImgNP = gray2rgb(origImgNP)

        ### BASELINE Evaluations

        ### Integrated Gradients
        ig = IntegratedGradients(super_pixel_model)
        attributions = ig.attribute(input, target=0)
        rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
        rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
        rankedAttr = gray2rgb(rankedAttr)
        mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
        mplotfig.savefig(outputDir + '{}_intgrad.png'.format(i))
        mplotfig.clear()
        plt.close(mplotfig)
        saveAttrData(attrOutputDir + f'{i}_intgrad.pkl', attributions, segmDataNP, origImgNP)
        if acquireSelectivity:
            n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring)
            results_dict["intgrad_acc"] = n_correct
            results_dict["intgrad_conf"] = confidenceList
        if acquireInfidelity:
            infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions).detach().cpu().numpy())
            results_dict["intgrad_infid"] = infid
        if acquireSensitivity:
            sens = float(sensitivity_max(ig.attribute, img1, target=0).detach().cpu().numpy())
            results_dict["intgrad_sens"] = sens

        ### Gradient SHAP using zero-background
        gs = GradientShap(super_pixel_model)
        # We define a distribution of baselines and draw `n_samples` from that
        # distribution in order to estimate the expectations of gradients across all baselines
        baseline_dist = torch.zeros((1, 3, opt.imgH, opt.imgW))
        baseline_dist = baseline_dist.to(device)
        attributions = gs.attribute(input, baselines=baseline_dist, target=0)
        rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
        rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
        rankedAttr = gray2rgb(rankedAttr)
        mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
        mplotfig.savefig(outputDir + '{}_gradshap.png'.format(i))
        mplotfig.clear()
        plt.close(mplotfig)
        saveAttrData(attrOutputDir + f'{i}_gradshap.pkl', attributions, segmDataNP, origImgNP)
        if acquireSelectivity:
            n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring)
            results_dict["gradshap_acc"] = n_correct
            results_dict["gradshap_conf"] = confidenceList
        if acquireInfidelity:
            infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions).detach().cpu().numpy())
            results_dict["gradshap_infid"] = infid
        if acquireSensitivity:
            sens = float(sensitivity_max(gs.attribute, img1, target=0).detach().cpu().numpy())
            results_dict["gradshap_sens"] = sens

        ### DeepLift using zero-background
        dl = DeepLift(super_pixel_model)
        attributions = dl.attribute(input, target=0)
        rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
        rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
        rankedAttr = gray2rgb(rankedAttr)
        mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
        mplotfig.savefig(outputDir + '{}_deeplift.png'.format(i))
        mplotfig.clear()
        plt.close(mplotfig)
        saveAttrData(attrOutputDir + f'{i}_deeplift.pkl', attributions, segmDataNP, origImgNP)
        if acquireSelectivity:
            n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring)
            results_dict["deeplift_acc"] = n_correct
            results_dict["deeplift_conf"] = confidenceList
        if acquireInfidelity:
            infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions).detach().cpu().numpy())
            results_dict["deeplift_infid"] = infid
        if acquireSensitivity:
            sens = float(sensitivity_max(dl.attribute, img1, target=0).detach().cpu().numpy())
            results_dict["deeplift_sens"] = sens

        ### Saliency
        saliency = Saliency(super_pixel_model)
        attributions = saliency.attribute(input, target=0) ### target=class0
        rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
        rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
        rankedAttr = gray2rgb(rankedAttr)
        mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
        mplotfig.savefig(outputDir + '{}_saliency.png'.format(i))
        mplotfig.clear()
        plt.close(mplotfig)
        saveAttrData(attrOutputDir + f'{i}_saliency.pkl', attributions, segmDataNP, origImgNP)
        if acquireSelectivity:
            n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring)
            results_dict["saliency_acc"] = n_correct
            results_dict["saliency_conf"] = confidenceList
        if acquireInfidelity:
            infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions).detach().cpu().numpy())
            results_dict["saliency_infid"] = infid
        if acquireSensitivity:
            sens = float(sensitivity_max(saliency.attribute, img1, target=0).detach().cpu().numpy())
            results_dict["saliency_sens"] = sens

        ### InputXGradient
        input_x_gradient = InputXGradient(super_pixel_model)
        attributions = input_x_gradient.attribute(input, target=0)
        rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
        rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
        rankedAttr = gray2rgb(rankedAttr)
        mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
        mplotfig.savefig(outputDir + '{}_inpxgrad.png'.format(i))
        mplotfig.clear()
        plt.close(mplotfig)
        saveAttrData(attrOutputDir + f'{i}_inpxgrad.pkl', attributions, segmDataNP, origImgNP)
        if acquireSelectivity:
            n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring)
            results_dict["inpxgrad_acc"] = n_correct
            results_dict["inpxgrad_conf"] = confidenceList
        if acquireInfidelity:
            infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions).detach().cpu().numpy())
            results_dict["inpxgrad_infid"] = infid
        if acquireSensitivity:
            sens = float(sensitivity_max(input_x_gradient.attribute, img1, target=0).detach().cpu().numpy())
            results_dict["inpxgrad_sens"] = sens

        ### GuidedBackprop
        gbp = GuidedBackprop(super_pixel_model)
        attributions = gbp.attribute(input, target=0)
        rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
        rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
        rankedAttr = gray2rgb(rankedAttr)
        mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
        mplotfig.savefig(outputDir + '{}_guidedbp.png'.format(i))
        mplotfig.clear()
        plt.close(mplotfig)
        saveAttrData(attrOutputDir + f'{i}_guidedbp.pkl', attributions, segmDataNP, origImgNP)
        if acquireSelectivity:
            n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring)
            results_dict["guidedbp_acc"] = n_correct
            results_dict["guidedbp_conf"] = confidenceList
        if acquireInfidelity:
            infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions).detach().cpu().numpy())
            results_dict["guidedbp_infid"] = infid
        if acquireSensitivity:
            sens = float(sensitivity_max(gbp.attribute, img1, target=0).detach().cpu().numpy())
            results_dict["guidedbp_sens"] = sens

        ### Deconvolution
        deconv = Deconvolution(super_pixel_model)
        attributions = deconv.attribute(input, target=0)
        rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
        rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
        rankedAttr = gray2rgb(rankedAttr)
        mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
        mplotfig.savefig(outputDir + '{}_deconv.png'.format(i))
        mplotfig.clear()
        plt.close(mplotfig)
        saveAttrData(attrOutputDir + f'{i}_deconv.pkl', attributions, segmDataNP, origImgNP)
        if acquireSelectivity:
            n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring)
            results_dict["deconv_acc"] = n_correct
            results_dict["deconv_conf"] = confidenceList
        if acquireInfidelity:
            infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions).detach().cpu().numpy())
            results_dict["deconv_infid"] = infid
        if acquireSensitivity:
            sens = float(sensitivity_max(deconv.attribute, img1, target=0).detach().cpu().numpy())
            results_dict["deconv_sens"] = sens

        ### Feature ablator
        ablator = FeatureAblation(super_pixel_model)
        attributions = ablator.attribute(input, target=0, feature_mask=segmTensor)
        rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
        rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
        rankedAttr = gray2rgb(rankedAttr)
        mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
        mplotfig.savefig(outputDir + '{}_featablt.png'.format(i))
        mplotfig.clear()
        plt.close(mplotfig)
        saveAttrData(attrOutputDir + f'{i}_featablt.pkl', attributions, segmDataNP, origImgNP)
        if acquireSelectivity:
            n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring)
            results_dict["featablt_acc"] = n_correct
            results_dict["featablt_conf"] = confidenceList
        if acquireInfidelity:
            infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions).detach().cpu().numpy())
            results_dict["featablt_infid"] = infid
        if acquireSensitivity:
            sens = float(sensitivity_max(ablator.attribute, img1, target=0).detach().cpu().numpy())
            results_dict["featablt_sens"] = sens

        ### Shapley Value Sampling
        svs = ShapleyValueSampling(super_pixel_model)
        # attr = svs.attribute(input, target=0, n_samples=200) ### Individual pixels, too long to calculate
        attributions = svs.attribute(input, target=0, feature_mask=segmTensor)
        rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
        rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
        rankedAttr = gray2rgb(rankedAttr)
        mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
        mplotfig.savefig(outputDir + '{}_shapley.png'.format(i))
        mplotfig.clear()
        plt.close(mplotfig)
        saveAttrData(attrOutputDir + f'{i}_shapley.pkl', attributions, segmDataNP, origImgNP)
        if acquireSelectivity:
            n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring)
            results_dict["shapley_acc"] = n_correct
            results_dict["shapley_conf"] = confidenceList
        if acquireInfidelity:
            infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions).detach().cpu().numpy())
            results_dict["shapley_infid"] = infid
        if acquireSensitivity:
            sens = float(sensitivity_max(svs.attribute, img1, target=0).detach().cpu().numpy())
            results_dict["shapley_sens"] = sens

        ## LIME
        interpretable_model = SkLearnRidge(alpha=1, fit_intercept=True) ### This is the default used by LIME
        lime = Lime(super_pixel_model, interpretable_model=interpretable_model)
        attributions = lime.attribute(input, target=0, feature_mask=segmTensor)
        rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
        rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
        rankedAttr = gray2rgb(rankedAttr)
        mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
        mplotfig.savefig(outputDir + '{}_lime.png'.format(i))
        mplotfig.clear()
        plt.close(mplotfig)
        saveAttrData(attrOutputDir + f'{i}_lime.pkl', attributions, segmDataNP, origImgNP)
        if acquireSelectivity:
            n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring)
            results_dict["lime_acc"] = n_correct
            results_dict["lime_conf"] = confidenceList
        if acquireInfidelity:
            infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions).detach().cpu().numpy())
            results_dict["lime_infid"] = infid
        if acquireSensitivity:
            sens = float(sensitivity_max(lime.attribute, img1, target=0).detach().cpu().numpy())
            results_dict["lime_sens"] = sens

        ### KernelSHAP
        ks = KernelShap(super_pixel_model)
        attributions = ks.attribute(input, target=0, feature_mask=segmTensor)
        rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
        rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
        rankedAttr = gray2rgb(rankedAttr)
        mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
        mplotfig.savefig(outputDir + '{}_kernelshap.png'.format(i))
        mplotfig.clear()
        plt.close(mplotfig)
        saveAttrData(attrOutputDir + f'{i}_kernelshap.pkl', attributions, segmDataNP, origImgNP)
        if acquireSelectivity:
            n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring)
            results_dict["kernelshap_acc"] = n_correct
            results_dict["kernelshap_conf"] = confidenceList
        if acquireInfidelity:
            infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions).detach().cpu().numpy())
            results_dict["kernelshap_infid"] = infid
        if acquireSensitivity:
            sens = float(sensitivity_max(ks.attribute, img1, target=0).detach().cpu().numpy())
            results_dict["kernelshap_sens"] = sens

        selectivity_eval_results.append(results_dict)

        with open(outputSelectivityPkl, 'wb') as f:
            pickle.dump(selectivity_eval_results, f)

        testImgCount += 1
        print("testImgCount: ", testImgCount)

    bestAttributionKeyStr = acquire_bestacc_attr(opt, outputSelectivityPkl)
    bestAttrName = bestAttributionKeyStr.split('_')[0]

    testImgCount = 0
    for i, (orig_img_tensors, segAndLabels) in enumerate(evaluation_loader):
        results_dict = {}
        aveAttr = []
        aveAttr_charContrib = []
        segmData, labels = segAndLabels[0]
        target = converter.encode([labels])

        # labels: RONALDO
        segmDataNP = segmData["segdata"]
        segmTensor = torch.from_numpy(segmDataNP).unsqueeze(0).unsqueeze(0)
        # print("segmTensor min: ", segmTensor.min()) # 0 starting segmentation
        segmTensor = segmTensor.to(device)
        # print("segmTensor shape: ", segmTensor.shape)
        # img1 = np.asarray(imgPIL.convert('L'))
        # sys.exit()
        # img1 = img1 / 255.0
        # img1 = torch.from_numpy(img1).unsqueeze(0).unsqueeze(0).type(torch.FloatTensor).to(device)
        img1 = orig_img_tensors.to(device)
        img1.requires_grad = True
        bgImg = torch.zeros(img1.shape).to(device)

        ### Single char averaging
        if settings.MODEL == 'vitstr':
            charOffset = 1
        elif settings.MODEL == 'parseq':
            target = target[:, 1:] # First position [GO] not used in parseq too.
             # 0 index is [GO] char, not used in parseq, only the [EOS] which is in 1 index
            target[target > 0] -= 1
            charOffset = 0
            img1 = transforms.Normalize(0.5, 0.5)(img1) # Between -1 to 1

        # preds = model(img1, seqlen=converter.batch_max_length)
        input = img1
        origImgNP = torch.clone(orig_img_tensors).detach().cpu().numpy()[0][0] # (1, 1, 224, 224)
        origImgNP = gray2rgb(origImgNP)

        ### Captum test
        collectedAttributions = []
        for charIdx in range(0, len(labels)):
            scoring_singlechar.setSingleCharOutput(charIdx + charOffset)
            gtClassNum = target[0][charIdx + charOffset]

            # Best
            attributions = acquireAttribution(opt, super_pixel_model_singlechar, \
            input, segmTensor, gtClassNum, bestAttributionKeyStr, device)
            collectedAttributions.append(attributions)
        aveAttributions = torch.mean(torch.cat(collectedAttributions,dim=0), dim=0).unsqueeze(0)
        rankedAttr = rankedAttributionsBySegm(aveAttributions, segmDataNP)
        rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
        rankedAttr = gray2rgb(rankedAttr)
        mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
        mplotfig.savefig(outputDir + '{}_{}_l.png'.format(i, bestAttrName))
        mplotfig.clear()
        plt.close(mplotfig)
        saveAttrData(attrOutputDir + f'{i}_{bestAttrName}_l.pkl', aveAttributions, segmDataNP, origImgNP)
        if acquireSelectivity:
            n_correct, confidenceList = acquireSelectivityHit(img1, aveAttributions, segmDataNP, modelCopy, converter, labels, scoring_singlechar)
            results_dict[f"{bestAttrName}_local_acc"] = n_correct
            results_dict[f"{bestAttrName}_local_conf"] = confidenceList
        if acquireInfidelity:
            infid = float(infidelity(super_pixel_model_singlechar, perturb_fn, img1, aveAttributions).detach().cpu().numpy())
            results_dict[f"{bestAttrName}_local_infid"] = infid
        if acquireSensitivity:
            sens = float(sensitivity_max(svs.attribute, img1, target=0).detach().cpu().numpy())
            results_dict[f"{bestAttrName}_local_sens"] = sens

        ### Best single
        attributions = acquireAttribution(opt, super_pixel_model, \
        input, segmTensor, 0, bestAttributionKeyStr, device)
        collectedAttributions.append(attributions)

        ### Global + Local context
        aveAttributions = torch.mean(torch.cat(collectedAttributions,dim=0), dim=0).unsqueeze(0)
        rankedAttr = rankedAttributionsBySegm(aveAttributions, segmDataNP)
        rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
        rankedAttr = gray2rgb(rankedAttr)
        mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
        mplotfig.savefig(outputDir + '{}_{}_gl.png'.format(i, bestAttrName))
        mplotfig.clear()
        plt.close(mplotfig)
        saveAttrData(attrOutputDir + f'{i}_{bestAttrName}_gl.pkl', aveAttributions, segmDataNP, origImgNP)
        if acquireSelectivity:
            n_correct, confidenceList = acquireSelectivityHit(img1, aveAttributions, segmDataNP, modelCopy, converter, labels, scoring_singlechar)
            results_dict[f"{bestAttrName}_global_local_acc"] = n_correct
            results_dict[f"{bestAttrName}_global_local_conf"] = confidenceList
        if acquireInfidelity:
            infid = float(infidelity(super_pixel_model_singlechar, perturb_fn, img1, aveAttributions).detach().cpu().numpy())
            results_dict[f"{bestAttrName}_global_local_infid"] = infid
        if acquireSensitivity:
            sens = float(sensitivity_max(svs.attribute, img1, target=0).detach().cpu().numpy())
            results_dict[f"{bestAttrName}_global_local_sens"] = sens

        selectivity_eval_results.append(results_dict)

        with open(outputSelectivityPkl, 'wb') as f:
            pickle.dump(selectivity_eval_results, f)

        testImgCount += 1
        print("testImgCount GlobLoc: ", testImgCount)

if __name__ == '__main__':
    # deleteInf()
    opt = get_args(is_train=False)

    """ vocab / character number configuration """
    if opt.sensitive:
        opt.character = string.printable[:-6]  # same with ASTER setting (use 94 char).

    cudnn.benchmark = True
    cudnn.deterministic = True
    opt.num_gpu = torch.cuda.device_count()

    # combineBestDataXAI(opt)
    # acquire_average_auc(opt)
    # acquireListOfAveAUC(opt)
    acquireSingleCharAttrAve(opt)