Spaces:
Build error
Build error
File size: 36,337 Bytes
d61b9c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 |
import settings
import captum
import numpy as np
import argparse
import torch
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from torchvision import transforms
from utils import get_args
from utils import CTCLabelConverter, AttnLabelConverter, Averager, TokenLabelConverter, SRNConverter
import string
import time
import sys
from dataset import hierarchical_dataset, AlignCollate
import validators
from model_srn import Model, STRScore
from PIL import Image
from lime.wrappers.scikit_image import SegmentationAlgorithm
from captum._utils.models.linear_model import SkLearnLinearModel, SkLearnRidge
import random
import os
from skimage.color import gray2rgb
import pickle
from train_shap_corr import getPredAndConf
import re
from captum_test import acquire_average_auc, acquireListOfAveAUC, saveAttrData
import copy
from model_srn import Model
from captum_improve_vitstr import rankedAttributionsBySegm
from matplotlib import pyplot as plt
from captum.attr._utils.visualization import visualize_image_attr
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
from captum.attr import (
GradientShap,
DeepLift,
DeepLiftShap,
IntegratedGradients,
LayerConductance,
NeuronConductance,
NoiseTunnel,
Saliency,
InputXGradient,
GuidedBackprop,
Deconvolution,
GuidedGradCam,
FeatureAblation,
ShapleyValueSampling,
Lime,
KernelShap
)
from captum.metrics import (
infidelity,
sensitivity_max
)
### Returns the mean for each segmentation having shape as the same as the input
### This function can only one attribution image at a time
def averageSegmentsOut(attr, segments):
averagedInput = torch.clone(attr)
sortedDict = {}
for x in np.unique(segments):
segmentMean = torch.mean(attr[segments == x][:])
sortedDict[x] = float(segmentMean.detach().cpu().numpy())
averagedInput[segments == x] = segmentMean
return averagedInput, sortedDict
### Output and save segmentations only for one dataset only
def outputSegmOnly(opt):
### targetDataset - one dataset only, SVTP-645, CUTE80-288images
targetDataset = "CUTE80" # ['IIIT5k_3000', 'SVT', 'IC03_867', 'IC13_1015', 'IC15_2077', 'SVTP', 'CUTE80']
segmRootDir = "/home/uclpc1/Documents/STR/datasets/segmentations/224X224/{}/".format(targetDataset)
if not os.path.exists(segmRootDir):
os.makedirs(segmRootDir)
opt.eval = True
### Only IIIT5k_3000
if opt.fast_acc:
# # To easily compute the total accuracy of our paper.
eval_data_list = [targetDataset]
else:
# The evaluation datasets, dataset order is same with Table 1 in our paper.
eval_data_list = [targetDataset]
### Taken from LIME
segmentation_fn = SegmentationAlgorithm('quickshift', kernel_size=4,
max_dist=200, ratio=0.2,
random_seed=random.randint(0, 1000))
for eval_data in eval_data_list:
eval_data_path = os.path.join(opt.eval_data, eval_data)
AlignCollate_evaluation = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD, opt=opt)
eval_data, eval_data_log = hierarchical_dataset(root=eval_data_path, opt=opt)
evaluation_loader = torch.utils.data.DataLoader(
eval_data, batch_size=1,
shuffle=False,
num_workers=int(opt.workers),
collate_fn=AlignCollate_evaluation, pin_memory=True)
for i, (image_tensors, labels) in enumerate(evaluation_loader):
imgDataDict = {}
img_numpy = image_tensors.cpu().detach().numpy()[0] ### Need to set batch size to 1 only
if img_numpy.shape[0] == 1:
img_numpy = gray2rgb(img_numpy[0])
# print("img_numpy shape: ", img_numpy.shape) # (224,224,3)
segmOutput = segmentation_fn(img_numpy)
imgDataDict['segdata'] = segmOutput
imgDataDict['label'] = labels[0]
outputPickleFile = segmRootDir + "{}.pkl".format(i)
with open(outputPickleFile, 'wb') as f:
pickle.dump(imgDataDict, f)
def acquireSelectivityHit(origImg, attributions, segmentations, model, converter, labels, scoring):
# print("segmentations unique len: ", np.unique(segmentations))
aveSegmentations, sortedDict = averageSegmentsOut(attributions[0,0], segmentations)
sortedKeys = [k for k, v in sorted(sortedDict.items(), key=lambda item: item[1])]
sortedKeys = sortedKeys[::-1] ### A list that should contain largest to smallest score
# print("sortedDict: ", sortedDict) # {0: -5.51e-06, 1: -1.469e-05, 2: -3.06e-05,...}
# print("aveSegmentations unique len: ", np.unique(aveSegmentations))
# print("aveSegmentations device: ", aveSegmentations.device) # cuda:0
# print("aveSegmentations shape: ", aveSegmentations.shape) # (224,224)
# print("aveSegmentations: ", aveSegmentations)
n_correct = []
confidenceList = [] # First index is one feature removed, second index two features removed, and so on...
clonedImg = torch.clone(origImg)
gt = str(labels)
for totalSegToHide in range(0, len(sortedKeys)):
### Acquire LIME prediction result
currentSegmentToHide = sortedKeys[totalSegToHide]
clonedImg[0,0][segmentations == currentSegmentToHide] = 0.0
pred, confScore = getPredAndConf(opt, model, scoring, clonedImg, converter, np.array([gt]))
# To evaluate 'case sensitive model' with alphanumeric and case insensitve setting.
if opt.sensitive and opt.data_filtering_off:
pred = pred.lower()
gt = gt.lower()
alphanumeric_case_insensitve = '0123456789abcdefghijklmnopqrstuvwxyz'
out_of_alphanumeric_case_insensitve = f'[^{alphanumeric_case_insensitve}]'
pred = re.sub(out_of_alphanumeric_case_insensitve, '', pred)
gt = re.sub(out_of_alphanumeric_case_insensitve, '', gt)
if pred == gt:
n_correct.append(1)
else:
n_correct.append(0)
confScore = confScore[0][0]*100
confidenceList.append(confScore)
return n_correct, confidenceList
### Once you have the selectivity_eval_results.pkl file,
def acquire_selectivity_auc(opt, pkl_filename=None):
if pkl_filename is None:
pkl_filename = "/home/goo/str/str_vit_dataexplain_lambda/metrics_sensitivity_eval_results_CUTE80.pkl" # VITSTR
accKeys = []
with open(pkl_filename, 'rb') as f:
selectivity_data = pickle.load(f)
for resDictIdx, resDict in enumerate(selectivity_data):
keylistAcc = []
keylistConf = []
metricsKeys = resDict.keys()
for keyStr in resDict.keys():
if "_acc" in keyStr: keylistAcc.append(keyStr)
if "_conf" in keyStr: keylistConf.append(keyStr)
# Need to check if network correctly predicted the image
for metrics_accStr in keylistAcc:
if 1 not in resDict[metrics_accStr]: print("resDictIdx")
### This acquires the attributes of the STR network on individual character levels,
### then averages them.
def acquireSingleCharAttrAve(opt):
### targetDataset - one dataset only, CUTE80 has 288 samples
# 'IIIT5k_3000', 'SVT', 'IC03_860', 'IC03_867', 'IC13_857', 'IC13_1015', 'IC15_1811', 'IC15_2077', 'SVTP', 'CUTE80'
targetDataset = settings.TARGET_DATASET
segmRootDir = "{}/{}X{}/{}/".format(settings.SEGM_DIR, opt.imgH, opt.imgW, targetDataset)
outputSelectivityPkl = "strexp_ave_{}_{}.pkl".format(settings.MODEL, targetDataset)
outputDir = "./attributionImgs/{}/{}/".format(settings.MODEL, targetDataset)
attrOutputDir = "./attributionData/{}/{}/".format(settings.MODEL, targetDataset)
### Set only one below to True to have enough GPU
acquireSelectivity = True
acquireInfidelity = False
acquireSensitivity = False ### GPU error
if not os.path.exists(outputDir):
os.makedirs(outputDir)
if not os.path.exists(attrOutputDir):
os.makedirs(attrOutputDir)
converter = SRNConverter(opt.character, opt.SRN_PAD)
opt.num_class = len(converter.character)
length_for_pred = torch.cuda.IntTensor([opt.batch_max_length] * opt.batch_size)
model = Model(opt)
print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial, opt.input_channel, opt.output_channel,
opt.hidden_size, opt.num_class, opt.batch_max_length, opt.Transformation, opt.FeatureExtraction,
opt.SequenceModeling, opt.Prediction)
model = torch.nn.DataParallel(model).cuda()
# load model
print('loading pretrained model from %s' % opt.saved_model)
model.load_state_dict(torch.load(opt.saved_model))
model = model.to(device)
model_obj = model
modelCopy = copy.deepcopy(model)
""" evaluation """
scoring_singlechar = STRScore(opt=opt, converter=converter, device=device, enableSingleCharAttrAve=True, model=modelCopy)
super_pixel_model_singlechar = torch.nn.Sequential(
# super_pixler,
# numpy2torch_converter,
modelCopy,
scoring_singlechar
).to(device)
modelCopy.eval()
scoring_singlechar.eval()
super_pixel_model_singlechar.eval()
# Single Char Attribution Averaging
# enableSingleCharAttrAve - set to True
scoring = STRScore(opt=opt, converter=converter, device=device, model=model)
super_pixel_model = torch.nn.Sequential(
# super_pixler,
# numpy2torch_converter,
model,
scoring
).to(device)
model.eval()
scoring.eval()
super_pixel_model.eval()
# scoring_charContrib = STRScore(opt=opt, converter=converter, device=device, hasCharContrib=True)
# super_pixel_model_charContrib = torch.nn.Sequential(
# # super_pixler,
# # numpy2torch_converter,
# model,
# scoring_charContrib
# ).to(device)
# model.eval()
# scoring_charContrib.eval()
# super_pixel_model_charContrib.eval()
shapImgLs = np.zeros(shape=(1, 1, 224, 224)).astype(np.float32)
trainList = np.array(shapImgLs)
background = torch.from_numpy(trainList).to(device)
opt.eval = True
# if opt.fast_acc:
# # # To easily compute the total accuracy of our paper.
# eval_data_list = ['IIIT5k_3000', 'SVT', 'IC03_867', 'IC13_1015', 'IC15_2077', 'SVTP', 'CUTE80']
# else:
# # The evaluation datasets, dataset order is same with Table 1 in our paper.
# eval_data_list = ['IIIT5k_3000', 'SVT', 'IC03_860', 'IC03_867', 'IC13_857',
# 'IC13_1015', 'IC15_1811', 'IC15_2077', 'SVTP', 'CUTE80']
# # To easily compute the total accuracy of our paper.
eval_data_list = [targetDataset] ### One dataset only
evaluation_batch_size = opt.batch_size
selectivity_eval_results = []
testImgCount = 0
list_accuracy = []
total_forward_time = 0
total_evaluation_data_number = 0
total_correct_number = 0
# log = open(f'./result/{opt.exp_name}/log_all_evaluation.txt', 'a')
# dashed_line = '-' * 80
# print(dashed_line)
# log.write(dashed_line + '\n')
segmentation_fn = SegmentationAlgorithm('quickshift', kernel_size=4,
max_dist=200, ratio=0.2,
random_seed=random.randint(0, 1000))
for eval_data in eval_data_list:
eval_data_path = os.path.join(opt.eval_data, eval_data)
AlignCollate_evaluation = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD, opt=opt)
eval_data, eval_data_log = hierarchical_dataset(root=eval_data_path, opt=opt, segmRootDir=segmRootDir)
evaluation_loader = torch.utils.data.DataLoader(
eval_data, batch_size=1,
shuffle=False,
num_workers=int(opt.workers),
collate_fn=AlignCollate_evaluation, pin_memory=True)
testImgCount = 0
for i, (orig_img_tensors, segAndLabels) in enumerate(evaluation_loader):
# img_rgb *= 255.0
# img_rgb = img_rgb.astype('int')
# print("img_rgb max: ", img_rgb.max()) ### 255
# img_rgb = np.asarray(orig_img_tensors)
# segmentations = segmentation_fn(img_rgb)
# print("segmentations shape: ", segmentations.shape) # (224, 224)
# print("segmentations min: ", segmentations.min()) 0
# print("Unique: ", len(np.unique(segmentations))) # (70)
results_dict = {}
aveAttr = []
aveAttr_charContrib = []
segmData, labels = segAndLabels[0]
target = converter.encode([labels])
# labels: RONALDO
segmDataNP = segmData["segdata"]
segmTensor = torch.from_numpy(segmDataNP).unsqueeze(0).unsqueeze(0)
# print("segmTensor min: ", segmTensor.min()) # 0 starting segmentation
segmTensor = segmTensor.to(device)
# print("segmTensor shape: ", segmTensor.shape)
# img1 = np.asarray(imgPIL.convert('L'))
# sys.exit()
# img1 = img1 / 255.0
# img1 = torch.from_numpy(img1).unsqueeze(0).unsqueeze(0).type(torch.FloatTensor).to(device)
img1 = orig_img_tensors.to(device)
img1.requires_grad = True
bgImg = torch.zeros(img1.shape).to(device)
### Single char averaging
if settings.MODEL == 'vitstr':
charOffset = 1
# img1 = transforms.Normalize(0.5, 0.5)(img1) # Between -1 to 1
elif settings.MODEL == 'srn':
charOffset = 0 # SRN has no 'GO' token
elif settings.MODEL == 'parseq':
target = target[:, 1:] # First position [GO] not used in parseq too.
# 0 index is [GO] char, not used in parseq, only the [EOS] which is in 1 index
target[target > 0] -= 1
charOffset = 0
img1 = transforms.Normalize(0.5, 0.5)(img1) # Between -1 to 1
# preds = model(img1, seqlen=converter.batch_max_length)
input = img1
origImgNP = torch.clone(orig_img_tensors).detach().cpu().numpy()[0][0] # (1, 1, 224, 224)
origImgNP = gray2rgb(origImgNP)
### Captum test
collectedAttributions = []
for charIdx in range(0, len(labels)):
scoring_singlechar.setSingleCharOutput(charIdx + charOffset)
# print("charIdx + charOffset: ", charIdx + charOffset)
# print("target[0]: ", target[0])
gtClassNum = target[0][0][charIdx + charOffset]
### Shapley Value Sampling
svs = ShapleyValueSampling(super_pixel_model_singlechar)
# attr = svs.attribute(input, target=0, n_samples=200) ### Individual pixels, too long to calculate
attributions = svs.attribute(input, target=gtClassNum, feature_mask=segmTensor)
collectedAttributions.append(attributions)
aveAttributions = torch.mean(torch.cat(collectedAttributions,dim=0), dim=0).unsqueeze(0)
rankedAttr = rankedAttributionsBySegm(aveAttributions, segmDataNP)
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
rankedAttr = gray2rgb(rankedAttr)
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
mplotfig.savefig(outputDir + '{}_shapley_l.png'.format(i))
mplotfig.clear()
plt.close(mplotfig)
saveAttrData(attrOutputDir + f'{i}_shapley_l.pkl', aveAttributions, segmDataNP, origImgNP)
if acquireSelectivity:
n_correct, confidenceList = acquireSelectivityHit(img1, aveAttributions, segmDataNP, modelCopy, converter, labels, scoring_singlechar)
results_dict["shapley_local_acc"] = n_correct
results_dict["shapley_local_conf"] = confidenceList
if acquireInfidelity:
infid = float(infidelity(super_pixel_model_singlechar, perturb_fn, img1, aveAttributions).detach().cpu().numpy())
results_dict["shapley_local_infid"] = infid
if acquireSensitivity:
sens = float(sensitivity_max(svs.attribute, img1, target=0).detach().cpu().numpy())
results_dict["shapley_local_sens"] = sens
### Shapley Value Sampling
svs = ShapleyValueSampling(super_pixel_model)
# attr = svs.attribute(input, target=0, n_samples=200) ### Individual pixels, too long to calculate
attributions = svs.attribute(input, target=0, feature_mask=segmTensor)
collectedAttributions.append(attributions)
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
rankedAttr = gray2rgb(rankedAttr)
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
mplotfig.savefig(outputDir + '{}_shapley.png'.format(i))
mplotfig.clear()
plt.close(mplotfig)
saveAttrData(attrOutputDir + f'{i}_shapley.pkl', attributions, segmDataNP, origImgNP)
if acquireSelectivity:
n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring)
results_dict["shapley_acc"] = n_correct
results_dict["shapley_conf"] = confidenceList
if acquireInfidelity:
infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions).detach().cpu().numpy())
results_dict["shapley_infid"] = infid
if acquireSensitivity:
sens = float(sensitivity_max(svs.attribute, img1, target=0).detach().cpu().numpy())
results_dict["shapley_sens"] = sens
### Global + Local context
aveAttributions = torch.mean(torch.cat(collectedAttributions,dim=0), dim=0).unsqueeze(0)
rankedAttr = rankedAttributionsBySegm(aveAttributions, segmDataNP)
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
rankedAttr = gray2rgb(rankedAttr)
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
mplotfig.savefig(outputDir + '{}_shapley_gl.png'.format(i))
mplotfig.clear()
plt.close(mplotfig)
saveAttrData(attrOutputDir + f'{i}_shapley_gl.pkl', aveAttributions, segmDataNP, origImgNP)
if acquireSelectivity:
n_correct, confidenceList = acquireSelectivityHit(img1, aveAttributions, segmDataNP, modelCopy, converter, labels, scoring_singlechar)
results_dict["shapley_global_local_acc"] = n_correct
results_dict["shapley_global_local_conf"] = confidenceList
if acquireInfidelity:
infid = float(infidelity(super_pixel_model_singlechar, perturb_fn, img1, aveAttributions).detach().cpu().numpy())
results_dict["shapley_global_local_infid"] = infid
if acquireSensitivity:
sens = float(sensitivity_max(svs.attribute, img1, target=0).detach().cpu().numpy())
results_dict["shapley_global_local_sens"] = sens
### BASELINE Evaluations
### Integrated Gradients
ig = IntegratedGradients(super_pixel_model)
attributions = ig.attribute(input, target=0)
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
rankedAttr = gray2rgb(rankedAttr)
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
mplotfig.savefig(outputDir + '{}_intgrad.png'.format(i))
mplotfig.clear()
plt.close(mplotfig)
saveAttrData(attrOutputDir + f'{i}_intgrad.pkl', attributions, segmDataNP, origImgNP)
if acquireSelectivity:
n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring)
results_dict["intgrad_acc"] = n_correct
results_dict["intgrad_conf"] = confidenceList
if acquireInfidelity:
infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions).detach().cpu().numpy())
results_dict["intgrad_infid"] = infid
if acquireSensitivity:
sens = float(sensitivity_max(ig.attribute, img1, target=0).detach().cpu().numpy())
results_dict["intgrad_sens"] = sens
### Gradient SHAP using zero-background
gs = GradientShap(super_pixel_model)
# We define a distribution of baselines and draw `n_samples` from that
# distribution in order to estimate the expectations of gradients across all baselines
channelDim = 3 if opt.rgb else 1
baseline_dist = torch.zeros((1, channelDim, opt.imgH, opt.imgW))
baseline_dist = baseline_dist.to(device)
attributions = gs.attribute(input, baselines=baseline_dist, target=0)
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
rankedAttr = gray2rgb(rankedAttr)
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
mplotfig.savefig(outputDir + '{}_gradshap.png'.format(i))
mplotfig.clear()
plt.close(mplotfig)
saveAttrData(attrOutputDir + f'{i}_gradshap.pkl', attributions, segmDataNP, origImgNP)
if acquireSelectivity:
n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring)
results_dict["gradshap_acc"] = n_correct
results_dict["gradshap_conf"] = confidenceList
if acquireInfidelity:
infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions).detach().cpu().numpy())
results_dict["gradshap_infid"] = infid
if acquireSensitivity:
sens = float(sensitivity_max(gs.attribute, img1, target=0).detach().cpu().numpy())
results_dict["gradshap_sens"] = sens
### DeepLift using zero-background
dl = DeepLift(super_pixel_model)
attributions = dl.attribute(input, target=0)
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
rankedAttr = gray2rgb(rankedAttr)
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
mplotfig.savefig(outputDir + '{}_deeplift.png'.format(i))
mplotfig.clear()
plt.close(mplotfig)
saveAttrData(attrOutputDir + f'{i}_deeplift.pkl', attributions, segmDataNP, origImgNP)
if acquireSelectivity:
n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring)
results_dict["deeplift_acc"] = n_correct
results_dict["deeplift_conf"] = confidenceList
if acquireInfidelity:
infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions).detach().cpu().numpy())
results_dict["deeplift_infid"] = infid
if acquireSensitivity:
sens = float(sensitivity_max(dl.attribute, img1, target=0).detach().cpu().numpy())
results_dict["deeplift_sens"] = sens
### Saliency
saliency = Saliency(super_pixel_model)
attributions = saliency.attribute(input, target=0) ### target=class0
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
rankedAttr = gray2rgb(rankedAttr)
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
mplotfig.savefig(outputDir + '{}_saliency.png'.format(i))
mplotfig.clear()
plt.close(mplotfig)
saveAttrData(attrOutputDir + f'{i}_saliency.pkl', attributions, segmDataNP, origImgNP)
if acquireSelectivity:
n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring)
results_dict["saliency_acc"] = n_correct
results_dict["saliency_conf"] = confidenceList
if acquireInfidelity:
infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions).detach().cpu().numpy())
results_dict["saliency_infid"] = infid
if acquireSensitivity:
sens = float(sensitivity_max(saliency.attribute, img1, target=0).detach().cpu().numpy())
results_dict["saliency_sens"] = sens
### InputXGradient
input_x_gradient = InputXGradient(super_pixel_model)
attributions = input_x_gradient.attribute(input, target=0)
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
rankedAttr = gray2rgb(rankedAttr)
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
mplotfig.savefig(outputDir + '{}_inpxgrad.png'.format(i))
mplotfig.clear()
plt.close(mplotfig)
saveAttrData(attrOutputDir + f'{i}_inpxgrad.pkl', attributions, segmDataNP, origImgNP)
if acquireSelectivity:
n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring)
results_dict["inpxgrad_acc"] = n_correct
results_dict["inpxgrad_conf"] = confidenceList
if acquireInfidelity:
infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions).detach().cpu().numpy())
results_dict["inpxgrad_infid"] = infid
if acquireSensitivity:
sens = float(sensitivity_max(input_x_gradient.attribute, img1, target=0).detach().cpu().numpy())
results_dict["inpxgrad_sens"] = sens
### GuidedBackprop
gbp = GuidedBackprop(super_pixel_model)
attributions = gbp.attribute(input, target=0)
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
rankedAttr = gray2rgb(rankedAttr)
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
mplotfig.savefig(outputDir + '{}_guidedbp.png'.format(i))
mplotfig.clear()
plt.close(mplotfig)
saveAttrData(attrOutputDir + f'{i}_guidedbp.pkl', attributions, segmDataNP, origImgNP)
if acquireSelectivity:
n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring)
results_dict["guidedbp_acc"] = n_correct
results_dict["guidedbp_conf"] = confidenceList
if acquireInfidelity:
infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions).detach().cpu().numpy())
results_dict["guidedbp_infid"] = infid
if acquireSensitivity:
sens = float(sensitivity_max(gbp.attribute, img1, target=0).detach().cpu().numpy())
results_dict["guidedbp_sens"] = sens
### Deconvolution
deconv = Deconvolution(super_pixel_model)
attributions = deconv.attribute(input, target=0)
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
rankedAttr = gray2rgb(rankedAttr)
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
mplotfig.savefig(outputDir + '{}_deconv.png'.format(i))
mplotfig.clear()
plt.close(mplotfig)
saveAttrData(attrOutputDir + f'{i}_deconv.pkl', attributions, segmDataNP, origImgNP)
if acquireSelectivity:
n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring)
results_dict["deconv_acc"] = n_correct
results_dict["deconv_conf"] = confidenceList
if acquireInfidelity:
infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions).detach().cpu().numpy())
results_dict["deconv_infid"] = infid
if acquireSensitivity:
sens = float(sensitivity_max(deconv.attribute, img1, target=0).detach().cpu().numpy())
results_dict["deconv_sens"] = sens
### Feature ablator
ablator = FeatureAblation(super_pixel_model)
attributions = ablator.attribute(input, target=0, feature_mask=segmTensor)
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
rankedAttr = gray2rgb(rankedAttr)
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
mplotfig.savefig(outputDir + '{}_featablt.png'.format(i))
mplotfig.clear()
plt.close(mplotfig)
saveAttrData(attrOutputDir + f'{i}_featablt.pkl', attributions, segmDataNP, origImgNP)
if acquireSelectivity:
n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring)
results_dict["featablt_acc"] = n_correct
results_dict["featablt_conf"] = confidenceList
if acquireInfidelity:
infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions).detach().cpu().numpy())
results_dict["featablt_infid"] = infid
if acquireSensitivity:
sens = float(sensitivity_max(ablator.attribute, img1, target=0).detach().cpu().numpy())
results_dict["featablt_sens"] = sens
## LIME
interpretable_model = SkLearnRidge(alpha=1, fit_intercept=True) ### This is the default used by LIME
lime = Lime(super_pixel_model, interpretable_model=interpretable_model)
attributions = lime.attribute(input, target=0, feature_mask=segmTensor)
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
rankedAttr = gray2rgb(rankedAttr)
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
mplotfig.savefig(outputDir + '{}_lime.png'.format(i))
mplotfig.clear()
plt.close(mplotfig)
saveAttrData(attrOutputDir + f'{i}_lime.pkl', attributions, segmDataNP, origImgNP)
if acquireSelectivity:
n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring)
results_dict["lime_acc"] = n_correct
results_dict["lime_conf"] = confidenceList
if acquireInfidelity:
infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions).detach().cpu().numpy())
results_dict["lime_infid"] = infid
if acquireSensitivity:
sens = float(sensitivity_max(lime.attribute, img1, target=0).detach().cpu().numpy())
results_dict["lime_sens"] = sens
### KernelSHAP
ks = KernelShap(super_pixel_model)
attributions = ks.attribute(input, target=0, feature_mask=segmTensor)
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
rankedAttr = gray2rgb(rankedAttr)
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
mplotfig.savefig(outputDir + '{}_kernelshap.png'.format(i))
mplotfig.clear()
plt.close(mplotfig)
saveAttrData(attrOutputDir + f'{i}_kernelshap.pkl', attributions, segmDataNP, origImgNP)
if acquireSelectivity:
n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring)
results_dict["kernelshap_acc"] = n_correct
results_dict["kernelshap_conf"] = confidenceList
if acquireInfidelity:
infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions).detach().cpu().numpy())
results_dict["kernelshap_infid"] = infid
if acquireSensitivity:
sens = float(sensitivity_max(ks.attribute, img1, target=0).detach().cpu().numpy())
results_dict["kernelshap_sens"] = sens
selectivity_eval_results.append(results_dict)
with open(outputSelectivityPkl, 'wb') as f:
pickle.dump(selectivity_eval_results, f)
testImgCount += 1
print("testImgCount: ", testImgCount)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--eval_data', default='/home/deepblue/deepbluetwo/chenjun/1_OCR/data/data_lmdb_release/evaluation', help='path to evaluation dataset')
parser.add_argument('--benchmark_all_eval', default=True, help='evaluate 10 benchmark evaluation datasets')
parser.add_argument('--workers', type=int, help='number of data loading workers', default=4)
parser.add_argument('--batch_size', type=int, default=64, help='input batch size')
parser.add_argument('--saved_model', default='./saved_models/None-ResNet-SRN-SRN-Seed666/iter_65000.pth', help="path to saved_model to evaluation")
""" Data processing """
parser.add_argument('--scorer', type=str, default='mean', help='See STRScore: cumprod | mean')
parser.add_argument('--Transformer', action='store_true', help='Use end-to-end transformer')
parser.add_argument('--selective_sample_str', type=str, default='', help='If =='', only sample images with string matching this (see --sensitive for case sensitivity)')
parser.add_argument('--max_selective_list', type=int, default=-1, help='if selective sample list has elements greater than this, autoclear list for batch selection')
parser.add_argument('--batch_max_length', type=int, default=25, help='maximum-label-length')
parser.add_argument('--imgH', type=int, default=32, help='the height of the input image')
parser.add_argument('--imgW', type=int, default=100, help='the width of the input image')
parser.add_argument('--rgb', action='store_true', help='use rgb input')
parser.add_argument('--character', type=str, default='0123456789abcdefghijklmnopqrstuvwxyz$#', help='character label')
parser.add_argument('--sensitive', action='store_true', help='for sensitive character mode')
parser.add_argument('--PAD', action='store_true', help='whether to keep ratio then pad for image resize')
parser.add_argument('--data_filtering_off', action='store_true', help='for data_filtering_off mode')
""" Model Architecture """
parser.add_argument('--confidence_mode', type=int, default=0, help='0-sum of argmax; 1-edit distance')
parser.add_argument('--Transformation', type=str, default='None', help='Transformation stage. None|TPS')
parser.add_argument('--FeatureExtraction', type=str, default='ResNet', help='FeatureExtraction stage. VGG|RCNN|ResNet|AsterRes')
parser.add_argument('--SequenceModeling', type=str, default='SRN', help='SequenceModeling stage. None|BiLSTM|Bert')
parser.add_argument('--Prediction', type=str, default='SRN', help='Prediction stage. CTC|Attn|Bert_pred')
parser.add_argument('--num_fiducial', type=int, default=20, help='number of fiducial points of TPS-STN')
parser.add_argument('--input_channel', type=int, default=1, help='the number of input channel of Feature extractor')
parser.add_argument('--output_channel', type=int, default=512,
help='the number of output channel of Feature extractor')
parser.add_argument('--hidden_size', type=int, default=256, help='the size of the LSTM hidden state')
parser.add_argument('--position_dim', type=int, default=26, help='the length sequence out from cnn encoder,resnet:65;resnetfpn:256')
parser.add_argument('--SRN_PAD', type=int, default=36, help='the pad character for srn')
parser.add_argument('--batch_max_character', type=int, default=25, help='the max sequence length')
opt = parser.parse_args()
""" vocab / character number configuration """
if opt.sensitive:
opt.character = string.printable[:-6] # same with ASTER setting (use 94 char).
opt.alphabet_size = len(opt.character) #
opt.SRN_PAD = len(opt.character)-1
cudnn.benchmark = True
cudnn.deterministic = True
opt.num_gpu = torch.cuda.device_count()
# combineBestDataXAI(opt)
# acquire_average_auc(opt)
# acquireListOfAveAUC(opt)
acquireSingleCharAttrAve(opt)
|