Spaces:
Build error
Build error
File size: 15,885 Bytes
d61b9c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
import settings
import captum
import numpy as np
import torch
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from utils import get_args
from utils import CTCLabelConverter, AttnLabelConverter, Averager, TokenLabelConverter
import string
import time
import sys
from dataset import hierarchical_dataset, AlignCollate
import validators
from model import Model, STRScore
from PIL import Image
from lime.wrappers.scikit_image import SegmentationAlgorithm
from captum._utils.models.linear_model import SkLearnLinearModel, SkLearnRidge
import random
import os
from skimage.color import gray2rgb
import pickle
from train_shap_corr import getPredAndConf
import re
import copy
import statistics
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
from captum.attr import (
GradientShap,
DeepLift,
DeepLiftShap,
IntegratedGradients,
LayerConductance,
NeuronConductance,
NoiseTunnel,
Saliency,
InputXGradient,
GuidedBackprop,
Deconvolution,
GuidedGradCam,
FeatureAblation,
ShapleyValueSampling,
Lime,
KernelShap
)
from captum.metrics import (
infidelity,
sensitivity_max
)
### Returns the mean for each segmentation having shape as the same as the input
### This function can only one attribution image at a time
def averageSegmentsOut(attr, segments):
averagedInput = torch.clone(attr)
sortedDict = {}
for x in np.unique(segments):
segmentMean = torch.mean(attr[segments == x][:])
sortedDict[x] = float(segmentMean.detach().cpu().numpy())
averagedInput[segments == x] = segmentMean
return averagedInput, sortedDict
### Output and save segmentations only for one dataset only
def outputSegmOnly(opt):
### targetDataset - one dataset only, SVTP-645, CUTE80-288images
targetDataset = "CUTE80" # ['IIIT5k_3000', 'SVT', 'IC03_867', 'IC13_1015', 'IC15_2077', 'SVTP', 'CUTE80']
segmRootDir = "/home/uclpc1/Documents/STR/datasets/segmentations/224X224/{}/".format(targetDataset)
if not os.path.exists(segmRootDir):
os.makedirs(segmRootDir)
opt.eval = True
### Only IIIT5k_3000
if opt.fast_acc:
# # To easily compute the total accuracy of our paper.
eval_data_list = [targetDataset]
else:
# The evaluation datasets, dataset order is same with Table 1 in our paper.
eval_data_list = [targetDataset]
### Taken from LIME
segmentation_fn = SegmentationAlgorithm('quickshift', kernel_size=4,
max_dist=200, ratio=0.2,
random_seed=random.randint(0, 1000))
for eval_data in eval_data_list:
eval_data_path = os.path.join(opt.eval_data, eval_data)
AlignCollate_evaluation = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD, opt=opt)
eval_data, eval_data_log = hierarchical_dataset(root=eval_data_path, opt=opt)
evaluation_loader = torch.utils.data.DataLoader(
eval_data, batch_size=1,
shuffle=False,
num_workers=int(opt.workers),
collate_fn=AlignCollate_evaluation, pin_memory=True)
for i, (image_tensors, labels) in enumerate(evaluation_loader):
imgDataDict = {}
img_numpy = image_tensors.cpu().detach().numpy()[0] ### Need to set batch size to 1 only
if img_numpy.shape[0] == 1:
img_numpy = gray2rgb(img_numpy[0])
# print("img_numpy shape: ", img_numpy.shape) # (224,224,3)
segmOutput = segmentation_fn(img_numpy)
imgDataDict['segdata'] = segmOutput
imgDataDict['label'] = labels[0]
outputPickleFile = segmRootDir + "{}.pkl".format(i)
with open(outputPickleFile, 'wb') as f:
pickle.dump(imgDataDict, f)
def acquireSelectivityHit(origImg, attributions, segmentations, model, converter, labels, scoring):
# print("segmentations unique len: ", np.unique(segmentations))
aveSegmentations, sortedDict = averageSegmentsOut(attributions[0,0], segmentations)
sortedKeys = [k for k, v in sorted(sortedDict.items(), key=lambda item: item[1])]
sortedKeys = sortedKeys[::-1] ### A list that should contain largest to smallest score
# print("sortedDict: ", sortedDict) # {0: -5.51e-06, 1: -1.469e-05, 2: -3.06e-05,...}
# print("aveSegmentations unique len: ", np.unique(aveSegmentations))
# print("aveSegmentations device: ", aveSegmentations.device) # cuda:0
# print("aveSegmentations shape: ", aveSegmentations.shape) # (224,224)
# print("aveSegmentations: ", aveSegmentations)
n_correct = []
confidenceList = [] # First index is one feature removed, second index two features removed, and so on...
clonedImg = torch.clone(origImg)
gt = str(labels)
for totalSegToHide in range(0, len(sortedKeys)):
### Acquire LIME prediction result
currentSegmentToHide = sortedKeys[totalSegToHide]
clonedImg[0,0][segmentations == currentSegmentToHide] = 0.0
pred, confScore = getPredAndConf(opt, model, scoring, clonedImg, converter, np.array([gt]))
# To evaluate 'case sensitive model' with alphanumeric and case insensitve setting.
if opt.sensitive and opt.data_filtering_off:
pred = pred.lower()
gt = gt.lower()
alphanumeric_case_insensitve = '0123456789abcdefghijklmnopqrstuvwxyz'
out_of_alphanumeric_case_insensitve = f'[^{alphanumeric_case_insensitve}]'
pred = re.sub(out_of_alphanumeric_case_insensitve, '', pred)
gt = re.sub(out_of_alphanumeric_case_insensitve, '', gt)
if pred == gt:
n_correct.append(1)
else:
n_correct.append(0)
confScore = confScore[0][0]*100
confidenceList.append(confScore)
return n_correct, confidenceList
### Once you have the selectivity_eval_results.pkl file,
def acquire_selectivity_auc(opt, pkl_filename=None):
if pkl_filename is None:
pkl_filename = "/home/goo/str/str_vit_dataexplain_lambda/metrics_sensitivity_eval_results_CUTE80.pkl" # VITSTR
accKeys = []
with open(pkl_filename, 'rb') as f:
selectivity_data = pickle.load(f)
for resDictIdx, resDict in enumerate(selectivity_data):
keylistAcc = []
keylistConf = []
metricsKeys = resDict.keys()
for keyStr in resDict.keys():
if "_acc" in keyStr: keylistAcc.append(keyStr)
if "_conf" in keyStr: keylistConf.append(keyStr)
# Need to check if network correctly predicted the image
for metrics_accStr in keylistAcc:
if 1 not in resDict[metrics_accStr]: print("resDictIdx")
## gtClassNum - set to gtClassNum=0 for standard implemention, or specific class idx for local explanation
def acquireAttribution(opt, super_model, input, segmTensor, gtClassNum, lowestAccKey, device):
channels = 1
if opt.rgb:
channels = 3
### Perform attribution
if "intgrad_" in lowestAccKey:
ig = IntegratedGradients(super_model)
attributions = ig.attribute(input, target=gtClassNum)
elif "gradshap_" in lowestAccKey:
gs = GradientShap(super_model)
baseline_dist = torch.zeros((1, channels, opt.imgH, opt.imgW))
baseline_dist = baseline_dist.to(device)
attributions = gs.attribute(input, baselines=baseline_dist, target=gtClassNum)
elif "deeplift_" in lowestAccKey:
dl = DeepLift(super_model)
attributions = dl.attribute(input, target=gtClassNum)
elif "saliency_" in lowestAccKey:
saliency = Saliency(super_model)
attributions = saliency.attribute(input, target=gtClassNum)
elif "inpxgrad_" in lowestAccKey:
input_x_gradient = InputXGradient(super_model)
attributions = input_x_gradient.attribute(input, target=gtClassNum)
elif "guidedbp_" in lowestAccKey:
gbp = GuidedBackprop(super_model)
attributions = gbp.attribute(input, target=gtClassNum)
elif "deconv_" in lowestAccKey:
deconv = Deconvolution(super_model)
attributions = deconv.attribute(input, target=gtClassNum)
elif "featablt_" in lowestAccKey:
ablator = FeatureAblation(super_model)
attributions = ablator.attribute(input, target=gtClassNum, feature_mask=segmTensor)
elif "shapley_" in lowestAccKey:
svs = ShapleyValueSampling(super_model)
attributions = svs.attribute(input, target=gtClassNum, feature_mask=segmTensor)
elif "lime_" in lowestAccKey:
interpretable_model = SkLearnRidge(alpha=1, fit_intercept=True) ### This is the default used by LIME
lime = Lime(super_model, interpretable_model=interpretable_model)
attributions = lime.attribute(input, target=gtClassNum, feature_mask=segmTensor)
elif "kernelshap_" in lowestAccKey:
ks = KernelShap(super_model)
attributions = ks.attribute(input, target=gtClassNum, feature_mask=segmTensor)
else:
assert False
return attributions
### In addition to acquire_average_auc(), this function also returns the best selectivity_acc attr-based method
### pklFile - you need to pass pkl file here
def acquire_bestacc_attr(opt, pickleFile):
# pickleFile = "metrics_sensitivity_eval_results_IIIT5k_3000.pkl"
# pickleFile = "/home/goo/str/str_vit_dataexplain_lambda/shapley_singlechar_ave_matrn_SVT.pkl"
acquireSelectivity = True # If True, set to
acquireInfidelity = False
acquireSensitivity = False
with open(pickleFile, 'rb') as f:
data = pickle.load(f)
metricDict = {} # Keys: "saliency_acc", "saliency_conf", "saliency_infid", "saliency_sens"
selectivity_acc_auc_normalized = [] # Normalized because it is divided by the full rectangle
for imgData in data:
if acquireSelectivity:
for keyStr in imgData.keys():
if ("_acc" in keyStr or "_conf" in keyStr) and not ("_local_" in keyStr or "_global_local_" in keyStr): # Accept only selectivity
if keyStr not in metricDict:
metricDict[keyStr] = []
dataList = copy.deepcopy(imgData[keyStr]) # list of 0,1 [1,1,1,0,0,0,0]
dataList.insert(0, 1) # Insert 1 at beginning to avoid np.trapz([1]) = 0.0
denom = [1] * len(dataList) # Denominator to normalize AUC
auc_norm = np.trapz(dataList) / np.trapz(denom)
metricDict[keyStr].append(auc_norm)
elif acquireInfidelity:
pass # TODO
elif acquireSensitivity:
pass # TODO
lowestAccKey = ""
lowestAcc = 10000000
for metricKey in metricDict:
if "_acc" in metricKey: # Used for selectivity accuracy only
statisticVal = statistics.mean(metricDict[metricKey])
if statisticVal < lowestAcc:
lowestAcc = statisticVal
lowestAccKey = metricKey
# print("{}: {}".format(metricKey, statisticVal))
assert lowestAccKey!=""
return lowestAccKey
def saveAttrData(filename, attribution, segmData, origImg):
pklData = {}
pklData['attribution'] = torch.clone(attribution).detach().cpu().numpy()
pklData['segmData'] = segmData
pklData['origImg'] = origImg
with open(filename, 'wb') as f:
pickle.dump(pklData, f)
### New code (8/3/2022) to acquire average selectivity, infidelity, etc. after running captum test
def acquire_average_auc(opt):
# pickleFile = "metrics_sensitivity_eval_results_IIIT5k_3000.pkl"
pickleFile = "/home/goo/str/str_vit_dataexplain_lambda/shapley_singlechar_ave_vitstr_IC03_860.pkl"
acquireSelectivity = True # If True, set to
acquireInfidelity = False
acquireSensitivity = False
with open(pickleFile, 'rb') as f:
data = pickle.load(f)
metricDict = {} # Keys: "saliency_acc", "saliency_conf", "saliency_infid", "saliency_sens"
selectivity_acc_auc_normalized = [] # Normalized because it is divided by the full rectangle
for imgData in data:
if acquireSelectivity:
for keyStr in imgData.keys():
if "_acc" in keyStr or "_conf" in keyStr: # Accept only selectivity
if keyStr not in metricDict:
metricDict[keyStr] = []
dataList = copy.deepcopy(imgData[keyStr]) # list of 0,1 [1,1,1,0,0,0,0]
dataList.insert(0, 1) # Insert 1 at beginning to avoid np.trapz([1]) = 0.0
denom = [1] * len(dataList) # Denominator to normalize AUC
auc_norm = np.trapz(dataList) / np.trapz(denom)
metricDict[keyStr].append(auc_norm)
elif acquireInfidelity:
pass # TODO
elif acquireSensitivity:
pass # TODO
for metricKey in metricDict:
print("{}: {}".format(metricKey, statistics.mean(metricDict[metricKey])))
### Use this acquire list
def acquireListOfAveAUC(opt):
acquireSelectivity = True
acquireInfidelity = False
acquireSensitivity = False
totalChars = 10
collectedMetricDict = {}
for charNum in range(0, totalChars):
pickleFile = f"/home/goo/str/str_vit_dataexplain_lambda/singlechar{charNum}_results_{totalChars}chardataset.pkl"
with open(pickleFile, 'rb') as f:
data = pickle.load(f)
metricDict = {} # Keys: "saliency_acc", "saliency_conf", "saliency_infid", "saliency_sens"
selectivity_acc_auc_normalized = [] # Normalized because it is divided by the full rectangle
for imgData in data:
if acquireSelectivity:
for keyStr in imgData.keys():
if "_acc" in keyStr or "_conf" in keyStr: # Accept only selectivity
if keyStr not in metricDict:
metricDict[keyStr] = []
dataList = copy.deepcopy(imgData[keyStr]) # list of 0,1 [1,1,1,0,0,0,0]
dataList.insert(0, 1) # Insert 1 at beginning to avoid np.trapz([1]) = 0.0
denom = [1] * len(dataList) # Denominator to normalize AUC
auc_norm = np.trapz(dataList) / np.trapz(denom)
metricDict[keyStr].append(auc_norm)
for metricKey in metricDict:
selec_auc_normalize = statistics.mean(metricDict[metricKey])
if metricKey not in collectedMetricDict:
collectedMetricDict[metricKey] = []
collectedMetricDict[metricKey].append(selec_auc_normalize)
for collectedMetricDictKey in collectedMetricDict:
print("{}: {}".format(collectedMetricDictKey, collectedMetricDict[collectedMetricDictKey]))
for charNum in range(0, totalChars):
selectivityAcrossCharsLs = []
for collectedMetricDictKey in collectedMetricDict:
if "_acc" in collectedMetricDictKey:
selectivityAcrossCharsLs.append(collectedMetricDict[collectedMetricDictKey][charNum])
print("accuracy -- {}: {}".format(charNum, statistics.mean(selectivityAcrossCharsLs)))
for charNum in range(0, totalChars):
selectivityAcrossCharsLs = []
for collectedMetricDictKey in collectedMetricDict:
if "_conf" in collectedMetricDictKey:
selectivityAcrossCharsLs.append(collectedMetricDict[collectedMetricDictKey][charNum])
print("confidence -- {}: {}".format(charNum, statistics.mean(selectivityAcrossCharsLs)))
if __name__ == '__main__':
# deleteInf()
opt = get_args(is_train=False)
""" vocab / character number configuration """
if opt.sensitive:
opt.character = string.printable[:-6] # same with ASTER setting (use 94 char).
cudnn.benchmark = True
cudnn.deterministic = True
opt.num_gpu = torch.cuda.device_count()
main(opt)
|