File size: 15,885 Bytes
d61b9c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import settings
import captum
import numpy as np
import torch
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from utils import get_args
from utils import CTCLabelConverter, AttnLabelConverter, Averager, TokenLabelConverter
import string
import time
import sys
from dataset import hierarchical_dataset, AlignCollate
import validators
from model import Model, STRScore
from PIL import Image
from lime.wrappers.scikit_image import SegmentationAlgorithm
from captum._utils.models.linear_model import SkLearnLinearModel, SkLearnRidge
import random
import os
from skimage.color import gray2rgb
import pickle
from train_shap_corr import getPredAndConf
import re
import copy
import statistics

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

from captum.attr import (
    GradientShap,
    DeepLift,
    DeepLiftShap,
    IntegratedGradients,
    LayerConductance,
    NeuronConductance,
    NoiseTunnel,
    Saliency,
    InputXGradient,
    GuidedBackprop,
    Deconvolution,
    GuidedGradCam,
    FeatureAblation,
    ShapleyValueSampling,
    Lime,
    KernelShap
)

from captum.metrics import (
    infidelity,
    sensitivity_max
)

### Returns the mean for each segmentation having shape as the same as the input
### This function can only one attribution image at a time
def averageSegmentsOut(attr, segments):
    averagedInput = torch.clone(attr)
    sortedDict = {}
    for x in np.unique(segments):
        segmentMean = torch.mean(attr[segments == x][:])
        sortedDict[x] = float(segmentMean.detach().cpu().numpy())
        averagedInput[segments == x] = segmentMean
    return averagedInput, sortedDict

### Output and save segmentations only for one dataset only
def outputSegmOnly(opt):
    ### targetDataset - one dataset only, SVTP-645, CUTE80-288images
    targetDataset = "CUTE80" # ['IIIT5k_3000', 'SVT', 'IC03_867', 'IC13_1015', 'IC15_2077', 'SVTP', 'CUTE80']
    segmRootDir = "/home/uclpc1/Documents/STR/datasets/segmentations/224X224/{}/".format(targetDataset)

    if not os.path.exists(segmRootDir):
        os.makedirs(segmRootDir)

    opt.eval = True
    ### Only IIIT5k_3000
    if opt.fast_acc:
    # # To easily compute the total accuracy of our paper.
        eval_data_list = [targetDataset]
    else:
        # The evaluation datasets, dataset order is same with Table 1 in our paper.
        eval_data_list = [targetDataset]

    ### Taken from LIME
    segmentation_fn = SegmentationAlgorithm('quickshift', kernel_size=4,
                                            max_dist=200, ratio=0.2,
                                            random_seed=random.randint(0, 1000))

    for eval_data in eval_data_list:
        eval_data_path = os.path.join(opt.eval_data, eval_data)
        AlignCollate_evaluation = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD, opt=opt)
        eval_data, eval_data_log = hierarchical_dataset(root=eval_data_path, opt=opt)
        evaluation_loader = torch.utils.data.DataLoader(
            eval_data, batch_size=1,
            shuffle=False,
            num_workers=int(opt.workers),
            collate_fn=AlignCollate_evaluation, pin_memory=True)
        for i, (image_tensors, labels) in enumerate(evaluation_loader):
            imgDataDict = {}
            img_numpy = image_tensors.cpu().detach().numpy()[0] ### Need to set batch size to 1 only
            if img_numpy.shape[0] == 1:
                img_numpy = gray2rgb(img_numpy[0])
            # print("img_numpy shape: ", img_numpy.shape) # (224,224,3)
            segmOutput = segmentation_fn(img_numpy)
            imgDataDict['segdata'] = segmOutput
            imgDataDict['label'] = labels[0]
            outputPickleFile = segmRootDir + "{}.pkl".format(i)
            with open(outputPickleFile, 'wb') as f:
                pickle.dump(imgDataDict, f)

def acquireSelectivityHit(origImg, attributions, segmentations, model, converter, labels, scoring):
    # print("segmentations unique len: ", np.unique(segmentations))
    aveSegmentations, sortedDict = averageSegmentsOut(attributions[0,0], segmentations)
    sortedKeys = [k for k, v in sorted(sortedDict.items(), key=lambda item: item[1])]
    sortedKeys = sortedKeys[::-1] ### A list that should contain largest to smallest score
    # print("sortedDict: ", sortedDict) # {0: -5.51e-06, 1: -1.469e-05, 2: -3.06e-05,...}
    # print("aveSegmentations unique len: ", np.unique(aveSegmentations))
    # print("aveSegmentations device: ", aveSegmentations.device) # cuda:0
    # print("aveSegmentations shape: ", aveSegmentations.shape) # (224,224)
    # print("aveSegmentations: ", aveSegmentations)

    n_correct = []
    confidenceList = [] # First index is one feature removed, second index two features removed, and so on...
    clonedImg = torch.clone(origImg)
    gt = str(labels)
    for totalSegToHide in range(0, len(sortedKeys)):
        ### Acquire LIME prediction result
        currentSegmentToHide = sortedKeys[totalSegToHide]
        clonedImg[0,0][segmentations == currentSegmentToHide] = 0.0
        pred, confScore = getPredAndConf(opt, model, scoring, clonedImg, converter, np.array([gt]))
        # To evaluate 'case sensitive model' with alphanumeric and case insensitve setting.
        if opt.sensitive and opt.data_filtering_off:
            pred = pred.lower()
            gt = gt.lower()
            alphanumeric_case_insensitve = '0123456789abcdefghijklmnopqrstuvwxyz'
            out_of_alphanumeric_case_insensitve = f'[^{alphanumeric_case_insensitve}]'
            pred = re.sub(out_of_alphanumeric_case_insensitve, '', pred)
            gt = re.sub(out_of_alphanumeric_case_insensitve, '', gt)
        if pred == gt:
            n_correct.append(1)
        else:
            n_correct.append(0)
        confScore = confScore[0][0]*100
        confidenceList.append(confScore)
    return n_correct, confidenceList

### Once you have the selectivity_eval_results.pkl file,
def acquire_selectivity_auc(opt, pkl_filename=None):
    if pkl_filename is None:
        pkl_filename = "/home/goo/str/str_vit_dataexplain_lambda/metrics_sensitivity_eval_results_CUTE80.pkl" # VITSTR
    accKeys = []

    with open(pkl_filename, 'rb') as f:
        selectivity_data = pickle.load(f)

    for resDictIdx, resDict in enumerate(selectivity_data):
        keylistAcc = []
        keylistConf = []
        metricsKeys = resDict.keys()
        for keyStr in resDict.keys():
            if "_acc" in keyStr: keylistAcc.append(keyStr)
            if "_conf" in keyStr: keylistConf.append(keyStr)
        # Need to check if network correctly predicted the image
        for metrics_accStr in keylistAcc:
            if 1 not in resDict[metrics_accStr]: print("resDictIdx")

## gtClassNum - set to gtClassNum=0 for standard implemention, or specific class idx for local explanation
def acquireAttribution(opt, super_model, input, segmTensor, gtClassNum, lowestAccKey, device):
    channels = 1
    if opt.rgb:
        channels = 3

    ### Perform attribution
    if "intgrad_" in lowestAccKey:
        ig = IntegratedGradients(super_model)
        attributions = ig.attribute(input, target=gtClassNum)
    elif "gradshap_" in lowestAccKey:
        gs = GradientShap(super_model)
        baseline_dist = torch.zeros((1, channels, opt.imgH, opt.imgW))
        baseline_dist = baseline_dist.to(device)
        attributions = gs.attribute(input, baselines=baseline_dist, target=gtClassNum)
    elif "deeplift_" in lowestAccKey:
        dl = DeepLift(super_model)
        attributions = dl.attribute(input, target=gtClassNum)
    elif "saliency_" in lowestAccKey:
        saliency = Saliency(super_model)
        attributions = saliency.attribute(input, target=gtClassNum)
    elif "inpxgrad_" in lowestAccKey:
        input_x_gradient = InputXGradient(super_model)
        attributions = input_x_gradient.attribute(input, target=gtClassNum)
    elif "guidedbp_" in lowestAccKey:
        gbp = GuidedBackprop(super_model)
        attributions = gbp.attribute(input, target=gtClassNum)
    elif "deconv_" in lowestAccKey:
        deconv = Deconvolution(super_model)
        attributions = deconv.attribute(input, target=gtClassNum)
    elif "featablt_" in lowestAccKey:
        ablator = FeatureAblation(super_model)
        attributions = ablator.attribute(input, target=gtClassNum, feature_mask=segmTensor)
    elif "shapley_" in lowestAccKey:
        svs = ShapleyValueSampling(super_model)
        attributions = svs.attribute(input, target=gtClassNum, feature_mask=segmTensor)
    elif "lime_" in lowestAccKey:
        interpretable_model = SkLearnRidge(alpha=1, fit_intercept=True) ### This is the default used by LIME
        lime = Lime(super_model, interpretable_model=interpretable_model)
        attributions = lime.attribute(input, target=gtClassNum, feature_mask=segmTensor)
    elif "kernelshap_" in lowestAccKey:
        ks = KernelShap(super_model)
        attributions = ks.attribute(input, target=gtClassNum, feature_mask=segmTensor)
    else:
        assert False
    return attributions

### In addition to acquire_average_auc(), this function also returns the best selectivity_acc attr-based method
### pklFile - you need to pass pkl file here
def acquire_bestacc_attr(opt, pickleFile):
    # pickleFile = "metrics_sensitivity_eval_results_IIIT5k_3000.pkl"
    # pickleFile = "/home/goo/str/str_vit_dataexplain_lambda/shapley_singlechar_ave_matrn_SVT.pkl"
    acquireSelectivity = True # If True, set to
    acquireInfidelity = False
    acquireSensitivity = False

    with open(pickleFile, 'rb') as f:
        data = pickle.load(f)
    metricDict = {} # Keys: "saliency_acc", "saliency_conf", "saliency_infid", "saliency_sens"
    selectivity_acc_auc_normalized = [] # Normalized because it is divided by the full rectangle
    for imgData in data:
        if acquireSelectivity:
            for keyStr in imgData.keys():
                if ("_acc" in keyStr or "_conf" in keyStr) and not ("_local_" in keyStr or "_global_local_" in keyStr): # Accept only selectivity
                    if keyStr not in metricDict:
                        metricDict[keyStr] = []
                    dataList = copy.deepcopy(imgData[keyStr]) # list of 0,1 [1,1,1,0,0,0,0]
                    dataList.insert(0, 1) # Insert 1 at beginning to avoid np.trapz([1]) = 0.0
                    denom = [1] * len(dataList) # Denominator to normalize AUC
                    auc_norm = np.trapz(dataList) / np.trapz(denom)
                    metricDict[keyStr].append(auc_norm)
        elif acquireInfidelity:
            pass # TODO
        elif acquireSensitivity:
            pass # TODO

    lowestAccKey = ""
    lowestAcc = 10000000
    for metricKey in metricDict:
        if "_acc" in metricKey: # Used for selectivity accuracy only
            statisticVal = statistics.mean(metricDict[metricKey])
            if statisticVal < lowestAcc:
                lowestAcc = statisticVal
                lowestAccKey = metricKey
        # print("{}: {}".format(metricKey, statisticVal))

    assert lowestAccKey!=""
    return lowestAccKey

def saveAttrData(filename, attribution, segmData, origImg):
    pklData = {}
    pklData['attribution'] = torch.clone(attribution).detach().cpu().numpy()
    pklData['segmData'] = segmData
    pklData['origImg'] = origImg
    with open(filename, 'wb') as f:
        pickle.dump(pklData, f)

### New code (8/3/2022) to acquire average selectivity, infidelity, etc. after running captum test
def acquire_average_auc(opt):
    # pickleFile = "metrics_sensitivity_eval_results_IIIT5k_3000.pkl"
    pickleFile = "/home/goo/str/str_vit_dataexplain_lambda/shapley_singlechar_ave_vitstr_IC03_860.pkl"
    acquireSelectivity = True # If True, set to
    acquireInfidelity = False
    acquireSensitivity = False

    with open(pickleFile, 'rb') as f:
        data = pickle.load(f)
    metricDict = {} # Keys: "saliency_acc", "saliency_conf", "saliency_infid", "saliency_sens"
    selectivity_acc_auc_normalized = [] # Normalized because it is divided by the full rectangle
    for imgData in data:
        if acquireSelectivity:
            for keyStr in imgData.keys():
                if "_acc" in keyStr or "_conf" in keyStr: # Accept only selectivity
                    if keyStr not in metricDict:
                        metricDict[keyStr] = []
                    dataList = copy.deepcopy(imgData[keyStr]) # list of 0,1 [1,1,1,0,0,0,0]
                    dataList.insert(0, 1) # Insert 1 at beginning to avoid np.trapz([1]) = 0.0
                    denom = [1] * len(dataList) # Denominator to normalize AUC
                    auc_norm = np.trapz(dataList) / np.trapz(denom)
                    metricDict[keyStr].append(auc_norm)
        elif acquireInfidelity:
            pass # TODO
        elif acquireSensitivity:
            pass # TODO

    for metricKey in metricDict:
        print("{}: {}".format(metricKey, statistics.mean(metricDict[metricKey])))

### Use this acquire list
def acquireListOfAveAUC(opt):
    acquireSelectivity = True
    acquireInfidelity = False
    acquireSensitivity = False
    totalChars = 10
    collectedMetricDict = {}
    for charNum in range(0, totalChars):
        pickleFile = f"/home/goo/str/str_vit_dataexplain_lambda/singlechar{charNum}_results_{totalChars}chardataset.pkl"
        with open(pickleFile, 'rb') as f:
            data = pickle.load(f)
        metricDict = {} # Keys: "saliency_acc", "saliency_conf", "saliency_infid", "saliency_sens"
        selectivity_acc_auc_normalized = [] # Normalized because it is divided by the full rectangle
        for imgData in data:
            if acquireSelectivity:
                for keyStr in imgData.keys():
                    if "_acc" in keyStr or "_conf" in keyStr: # Accept only selectivity
                        if keyStr not in metricDict:
                            metricDict[keyStr] = []
                        dataList = copy.deepcopy(imgData[keyStr]) # list of 0,1 [1,1,1,0,0,0,0]
                        dataList.insert(0, 1) # Insert 1 at beginning to avoid np.trapz([1]) = 0.0
                        denom = [1] * len(dataList) # Denominator to normalize AUC
                        auc_norm = np.trapz(dataList) / np.trapz(denom)
                        metricDict[keyStr].append(auc_norm)
        for metricKey in metricDict:
            selec_auc_normalize = statistics.mean(metricDict[metricKey])
            if metricKey not in collectedMetricDict:
                collectedMetricDict[metricKey] = []
            collectedMetricDict[metricKey].append(selec_auc_normalize)
    for collectedMetricDictKey in collectedMetricDict:
        print("{}: {}".format(collectedMetricDictKey, collectedMetricDict[collectedMetricDictKey]))
    for charNum in range(0, totalChars):
        selectivityAcrossCharsLs = []
        for collectedMetricDictKey in collectedMetricDict:
            if "_acc" in collectedMetricDictKey:
                selectivityAcrossCharsLs.append(collectedMetricDict[collectedMetricDictKey][charNum])
        print("accuracy -- {}: {}".format(charNum, statistics.mean(selectivityAcrossCharsLs)))
    for charNum in range(0, totalChars):
        selectivityAcrossCharsLs = []
        for collectedMetricDictKey in collectedMetricDict:
            if "_conf" in collectedMetricDictKey:
                selectivityAcrossCharsLs.append(collectedMetricDict[collectedMetricDictKey][charNum])
        print("confidence -- {}: {}".format(charNum, statistics.mean(selectivityAcrossCharsLs)))

if __name__ == '__main__':
    # deleteInf()
    opt = get_args(is_train=False)

    """ vocab / character number configuration """
    if opt.sensitive:
        opt.character = string.printable[:-6]  # same with ASTER setting (use 94 char).

    cudnn.benchmark = True
    cudnn.deterministic = True
    opt.num_gpu = torch.cuda.device_count()

    main(opt)