File size: 7,518 Bytes
d61b9c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import re
import unittest

import sklearn # noqa
from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics import f1_score
from sklearn.naive_bayes import MultinomialNB
from sklearn.pipeline import make_pipeline

import numpy as np

from lime.lime_text import LimeTextExplainer
from lime.lime_text import IndexedCharacters, IndexedString


class TestLimeText(unittest.TestCase):

    def test_lime_text_explainer_good_regressor(self):
        categories = ['alt.atheism', 'soc.religion.christian']
        newsgroups_train = fetch_20newsgroups(subset='train',
                                              categories=categories)
        newsgroups_test = fetch_20newsgroups(subset='test',
                                             categories=categories)
        class_names = ['atheism', 'christian']
        vectorizer = TfidfVectorizer(lowercase=False)
        train_vectors = vectorizer.fit_transform(newsgroups_train.data)
        test_vectors = vectorizer.transform(newsgroups_test.data)
        nb = MultinomialNB(alpha=.01)
        nb.fit(train_vectors, newsgroups_train.target)
        pred = nb.predict(test_vectors)
        f1_score(newsgroups_test.target, pred, average='weighted')
        c = make_pipeline(vectorizer, nb)
        explainer = LimeTextExplainer(class_names=class_names)
        idx = 83
        exp = explainer.explain_instance(newsgroups_test.data[idx],
                                         c.predict_proba, num_features=6)
        self.assertIsNotNone(exp)
        self.assertEqual(6, len(exp.as_list()))

    def test_lime_text_tabular_equal_random_state(self):
        categories = ['alt.atheism', 'soc.religion.christian']
        newsgroups_train = fetch_20newsgroups(subset='train',
                                              categories=categories)
        newsgroups_test = fetch_20newsgroups(subset='test',
                                             categories=categories)
        class_names = ['atheism', 'christian']
        vectorizer = TfidfVectorizer(lowercase=False)
        train_vectors = vectorizer.fit_transform(newsgroups_train.data)
        test_vectors = vectorizer.transform(newsgroups_test.data)
        nb = MultinomialNB(alpha=.01)
        nb.fit(train_vectors, newsgroups_train.target)
        pred = nb.predict(test_vectors)
        f1_score(newsgroups_test.target, pred, average='weighted')
        c = make_pipeline(vectorizer, nb)

        explainer = LimeTextExplainer(class_names=class_names, random_state=10)
        exp_1 = explainer.explain_instance(newsgroups_test.data[83],
                                           c.predict_proba, num_features=6)

        explainer = LimeTextExplainer(class_names=class_names, random_state=10)
        exp_2 = explainer.explain_instance(newsgroups_test.data[83],
                                           c.predict_proba, num_features=6)

        self.assertTrue(exp_1.as_map() == exp_2.as_map())

    def test_lime_text_tabular_not_equal_random_state(self):
        categories = ['alt.atheism', 'soc.religion.christian']
        newsgroups_train = fetch_20newsgroups(subset='train',
                                              categories=categories)
        newsgroups_test = fetch_20newsgroups(subset='test',
                                             categories=categories)
        class_names = ['atheism', 'christian']
        vectorizer = TfidfVectorizer(lowercase=False)
        train_vectors = vectorizer.fit_transform(newsgroups_train.data)
        test_vectors = vectorizer.transform(newsgroups_test.data)
        nb = MultinomialNB(alpha=.01)
        nb.fit(train_vectors, newsgroups_train.target)
        pred = nb.predict(test_vectors)
        f1_score(newsgroups_test.target, pred, average='weighted')
        c = make_pipeline(vectorizer, nb)

        explainer = LimeTextExplainer(
            class_names=class_names, random_state=10)
        exp_1 = explainer.explain_instance(newsgroups_test.data[83],
                                           c.predict_proba, num_features=6)

        explainer = LimeTextExplainer(
            class_names=class_names, random_state=20)
        exp_2 = explainer.explain_instance(newsgroups_test.data[83],
                                           c.predict_proba, num_features=6)

        self.assertFalse(exp_1.as_map() == exp_2.as_map())

    def test_indexed_characters_bow(self):
        s = 'Please, take your time'
        inverse_vocab = ['P', 'l', 'e', 'a', 's', ',', ' ', 't', 'k', 'y', 'o', 'u', 'r', 'i', 'm']
        positions = [[0], [1], [2, 5, 11, 21], [3, 9],
                     [4], [6], [7, 12, 17], [8, 18], [10],
                     [13], [14], [15], [16], [19], [20]]
        ic = IndexedCharacters(s)

        self.assertTrue(np.array_equal(ic.as_np, np.array(list(s))))
        self.assertTrue(np.array_equal(ic.string_start, np.arange(len(s))))
        self.assertTrue(ic.inverse_vocab == inverse_vocab)
        self.assertTrue(ic.positions == positions)

    def test_indexed_characters_not_bow(self):
        s = 'Please, take your time'

        ic = IndexedCharacters(s, bow=False)

        self.assertTrue(np.array_equal(ic.as_np, np.array(list(s))))
        self.assertTrue(np.array_equal(ic.string_start, np.arange(len(s))))
        self.assertTrue(ic.inverse_vocab == list(s))
        self.assertTrue(np.array_equal(ic.positions, np.arange(len(s))))

    def test_indexed_string_regex(self):
        s = 'Please, take your time. Please'
        tokenized_string = np.array(
            ['Please', ', ', 'take', ' ', 'your', ' ', 'time', '. ', 'Please'])
        inverse_vocab = ['Please', 'take', 'your', 'time']
        start_positions = [0, 6, 8, 12, 13, 17, 18, 22, 24]
        positions = [[0, 8], [2], [4], [6]]
        indexed_string = IndexedString(s)

        self.assertTrue(np.array_equal(indexed_string.as_np, tokenized_string))
        self.assertTrue(np.array_equal(indexed_string.string_start, start_positions))
        self.assertTrue(indexed_string.inverse_vocab == inverse_vocab)
        self.assertTrue(np.array_equal(indexed_string.positions, positions))

    def test_indexed_string_callable(self):
        s = 'aabbccddaa'

        def tokenizer(string):
            return [string[i] + string[i + 1] for i in range(0, len(string) - 1, 2)]

        tokenized_string = np.array(['aa', 'bb', 'cc', 'dd', 'aa'])
        inverse_vocab = ['aa', 'bb', 'cc', 'dd']
        start_positions = [0, 2, 4, 6, 8]
        positions = [[0, 4], [1], [2], [3]]
        indexed_string = IndexedString(s, tokenizer)

        self.assertTrue(np.array_equal(indexed_string.as_np, tokenized_string))
        self.assertTrue(np.array_equal(indexed_string.string_start, start_positions))
        self.assertTrue(indexed_string.inverse_vocab == inverse_vocab)
        self.assertTrue(np.array_equal(indexed_string.positions, positions))

    def test_indexed_string_inverse_removing_tokenizer(self):
        s = 'This is a good movie. This, it is a great movie.'

        def tokenizer(string):
            return re.split(r'(?:\W+)|$', string)

        indexed_string = IndexedString(s, tokenizer)

        self.assertEqual(s, indexed_string.inverse_removing([]))

    def test_indexed_string_inverse_removing_regex(self):
        s = 'This is a good movie. This is a great movie'
        indexed_string = IndexedString(s)

        self.assertEqual(s, indexed_string.inverse_removing([]))


if __name__ == '__main__':
    unittest.main()