Spaces:
Build error
Build error
File size: 7,518 Bytes
d61b9c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import re
import unittest
import sklearn # noqa
from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics import f1_score
from sklearn.naive_bayes import MultinomialNB
from sklearn.pipeline import make_pipeline
import numpy as np
from lime.lime_text import LimeTextExplainer
from lime.lime_text import IndexedCharacters, IndexedString
class TestLimeText(unittest.TestCase):
def test_lime_text_explainer_good_regressor(self):
categories = ['alt.atheism', 'soc.religion.christian']
newsgroups_train = fetch_20newsgroups(subset='train',
categories=categories)
newsgroups_test = fetch_20newsgroups(subset='test',
categories=categories)
class_names = ['atheism', 'christian']
vectorizer = TfidfVectorizer(lowercase=False)
train_vectors = vectorizer.fit_transform(newsgroups_train.data)
test_vectors = vectorizer.transform(newsgroups_test.data)
nb = MultinomialNB(alpha=.01)
nb.fit(train_vectors, newsgroups_train.target)
pred = nb.predict(test_vectors)
f1_score(newsgroups_test.target, pred, average='weighted')
c = make_pipeline(vectorizer, nb)
explainer = LimeTextExplainer(class_names=class_names)
idx = 83
exp = explainer.explain_instance(newsgroups_test.data[idx],
c.predict_proba, num_features=6)
self.assertIsNotNone(exp)
self.assertEqual(6, len(exp.as_list()))
def test_lime_text_tabular_equal_random_state(self):
categories = ['alt.atheism', 'soc.religion.christian']
newsgroups_train = fetch_20newsgroups(subset='train',
categories=categories)
newsgroups_test = fetch_20newsgroups(subset='test',
categories=categories)
class_names = ['atheism', 'christian']
vectorizer = TfidfVectorizer(lowercase=False)
train_vectors = vectorizer.fit_transform(newsgroups_train.data)
test_vectors = vectorizer.transform(newsgroups_test.data)
nb = MultinomialNB(alpha=.01)
nb.fit(train_vectors, newsgroups_train.target)
pred = nb.predict(test_vectors)
f1_score(newsgroups_test.target, pred, average='weighted')
c = make_pipeline(vectorizer, nb)
explainer = LimeTextExplainer(class_names=class_names, random_state=10)
exp_1 = explainer.explain_instance(newsgroups_test.data[83],
c.predict_proba, num_features=6)
explainer = LimeTextExplainer(class_names=class_names, random_state=10)
exp_2 = explainer.explain_instance(newsgroups_test.data[83],
c.predict_proba, num_features=6)
self.assertTrue(exp_1.as_map() == exp_2.as_map())
def test_lime_text_tabular_not_equal_random_state(self):
categories = ['alt.atheism', 'soc.religion.christian']
newsgroups_train = fetch_20newsgroups(subset='train',
categories=categories)
newsgroups_test = fetch_20newsgroups(subset='test',
categories=categories)
class_names = ['atheism', 'christian']
vectorizer = TfidfVectorizer(lowercase=False)
train_vectors = vectorizer.fit_transform(newsgroups_train.data)
test_vectors = vectorizer.transform(newsgroups_test.data)
nb = MultinomialNB(alpha=.01)
nb.fit(train_vectors, newsgroups_train.target)
pred = nb.predict(test_vectors)
f1_score(newsgroups_test.target, pred, average='weighted')
c = make_pipeline(vectorizer, nb)
explainer = LimeTextExplainer(
class_names=class_names, random_state=10)
exp_1 = explainer.explain_instance(newsgroups_test.data[83],
c.predict_proba, num_features=6)
explainer = LimeTextExplainer(
class_names=class_names, random_state=20)
exp_2 = explainer.explain_instance(newsgroups_test.data[83],
c.predict_proba, num_features=6)
self.assertFalse(exp_1.as_map() == exp_2.as_map())
def test_indexed_characters_bow(self):
s = 'Please, take your time'
inverse_vocab = ['P', 'l', 'e', 'a', 's', ',', ' ', 't', 'k', 'y', 'o', 'u', 'r', 'i', 'm']
positions = [[0], [1], [2, 5, 11, 21], [3, 9],
[4], [6], [7, 12, 17], [8, 18], [10],
[13], [14], [15], [16], [19], [20]]
ic = IndexedCharacters(s)
self.assertTrue(np.array_equal(ic.as_np, np.array(list(s))))
self.assertTrue(np.array_equal(ic.string_start, np.arange(len(s))))
self.assertTrue(ic.inverse_vocab == inverse_vocab)
self.assertTrue(ic.positions == positions)
def test_indexed_characters_not_bow(self):
s = 'Please, take your time'
ic = IndexedCharacters(s, bow=False)
self.assertTrue(np.array_equal(ic.as_np, np.array(list(s))))
self.assertTrue(np.array_equal(ic.string_start, np.arange(len(s))))
self.assertTrue(ic.inverse_vocab == list(s))
self.assertTrue(np.array_equal(ic.positions, np.arange(len(s))))
def test_indexed_string_regex(self):
s = 'Please, take your time. Please'
tokenized_string = np.array(
['Please', ', ', 'take', ' ', 'your', ' ', 'time', '. ', 'Please'])
inverse_vocab = ['Please', 'take', 'your', 'time']
start_positions = [0, 6, 8, 12, 13, 17, 18, 22, 24]
positions = [[0, 8], [2], [4], [6]]
indexed_string = IndexedString(s)
self.assertTrue(np.array_equal(indexed_string.as_np, tokenized_string))
self.assertTrue(np.array_equal(indexed_string.string_start, start_positions))
self.assertTrue(indexed_string.inverse_vocab == inverse_vocab)
self.assertTrue(np.array_equal(indexed_string.positions, positions))
def test_indexed_string_callable(self):
s = 'aabbccddaa'
def tokenizer(string):
return [string[i] + string[i + 1] for i in range(0, len(string) - 1, 2)]
tokenized_string = np.array(['aa', 'bb', 'cc', 'dd', 'aa'])
inverse_vocab = ['aa', 'bb', 'cc', 'dd']
start_positions = [0, 2, 4, 6, 8]
positions = [[0, 4], [1], [2], [3]]
indexed_string = IndexedString(s, tokenizer)
self.assertTrue(np.array_equal(indexed_string.as_np, tokenized_string))
self.assertTrue(np.array_equal(indexed_string.string_start, start_positions))
self.assertTrue(indexed_string.inverse_vocab == inverse_vocab)
self.assertTrue(np.array_equal(indexed_string.positions, positions))
def test_indexed_string_inverse_removing_tokenizer(self):
s = 'This is a good movie. This, it is a great movie.'
def tokenizer(string):
return re.split(r'(?:\W+)|$', string)
indexed_string = IndexedString(s, tokenizer)
self.assertEqual(s, indexed_string.inverse_removing([]))
def test_indexed_string_inverse_removing_regex(self):
s = 'This is a good movie. This is a great movie'
indexed_string = IndexedString(s)
self.assertEqual(s, indexed_string.inverse_removing([]))
if __name__ == '__main__':
unittest.main()
|