Spaces:
Build error
Build error
File size: 30,847 Bytes
d61b9c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 |
from functools import partial
import numpy
import os
import re
import random
import signal
import csv
from PIL import Image
import settings
import numpy as np
from collections import OrderedDict
import cv2
# from scipy.misc import imread
from multiprocessing import Pool, cpu_count
from multiprocessing.pool import ThreadPool
from scipy.ndimage.interpolation import zoom
import sys
import pickle
def load_csv(filename, readfields=None):
def convert(value):
if re.match(r'^-?\d+$', value):
try:
return int(value)
except:
pass
if re.match(r'^-?[\.\d]+(?:e[+=]\d+)$', value):
try:
return float(value)
except:
pass
return value
with open(filename) as f:
reader = csv.DictReader(f)
result = [{k: convert(v) for k, v in row.items()} for row in reader]
if readfields is not None:
readfields.extend(reader.fieldnames)
return result
class AbstractSegmentation:
def all_names(self, category, j):
raise NotImplementedError
def size(self, split=None):
return 0
def filename(self, i):
raise NotImplementedError
def metadata(self, i):
return self.filename(i)
@classmethod
def resolve_segmentation(cls, m):
return {}
def name(self, category, i):
'''
Default implemtnation for segmentation_data,
utilizing all_names.
'''
all_names = self.all_names(category, i)
return all_names[0] if len(all_names) else ''
def segmentation_data(self, category, i, c=0, full=False):
'''
Default implemtnation for segmentation_data,
utilizing metadata and resolve_segmentation.
'''
segs = self.resolve_segmentation(
self.metadata(i), categories=[category])
if category not in segs:
return 0
data = segs[category]
if not full and len(data.shape) >= 3:
return data[0]
return data
class SegmentationData(AbstractSegmentation):
'''
Represents and loads a multi-channel segmentation represented with
a series of csv files: index.csv lists the images together with
any label data avilable in each category; category.csv lists
the categories of segmentations available; and label.csv lists the
numbers used to describe each label class. In addition, the categories
each have a separate c_*.csv file describing a dense coding of labels.
isImageSet - if True, duplicate rgb images in index.csv will be removed
'''
def __init__(self, directory, categories=None, require_all=False, isImageSet=False):
directory = os.path.expanduser(directory)
self.directory = directory
with open(os.path.join(directory, settings.INDEX_FILE)) as f:
self.image = [decode_index_dict(r) for r in csv.DictReader(f)]
# self.actualFeatIdx = None ### use this dict in tally to map duplicates idx to nonduplicates
# if isImageSet is True:
# self.actualFeatIdx = {}
# self.newImgSet = []
# self.duplicateDict = {}
# for imgRGBIdx, imgRGBData in enumerate(self.image):
# if imgRGBData["image"] not in self.duplicateDict:
# self.newImgSet.append(imgRGBData)
# self.duplicateDict[imgRGBData["image"]] = len(self.newImgSet) - 1
# # print("self.duplicateDict[imgRGBData[image]]: ", self.duplicateDict[imgRGBData["image"]])
# self.actualFeatIdx[imgRGBIdx] = self.duplicateDict[imgRGBData["image"]] ### Start at 0
# self.image = self.newImgSet
# print("data_set.actualFeatIdx: ", self.actualFeatIdx)
# sys.exit()
# print("self.image: ", self.image) ### list
# print("type self.image: ", type(self.image)) ### list
# print("len self.image: ", len(self.image)) ### total rows in index.csv
# sys.exit()
with open(os.path.join(directory, 'category.csv')) as f:
self.category = OrderedDict()
for row in csv.DictReader(f):
if categories and row['name'] in categories:
self.category[row['name']] = row
categories = self.category.keys()
with open(os.path.join(directory, 'label.csv')) as f:
label_data = [decode_label_dict(r) for r in csv.DictReader(f)]
self.label = build_dense_label_array(label_data) ### Len is label_data+1 (from csv), 0 index is None
# print("self.label[0]: ", self.label[0]) ### None value (no class specified)
# print("self.label: ", self.label)
# sys.exit()
# Filter out images with insufficient data
filter_fn = partial(
index_has_all_data if require_all else index_has_any_data,
categories=categories)
self.image = [row for row in self.image if filter_fn(row)]
# Build dense remapping arrays for labels, so that you can
# get dense ranges of labels for each category.
self.category_map = {}
self.category_unmap = {}
self.category_label = {}
for cat in self.category:
with open(os.path.join(directory, 'c_%s.csv' % cat)) as f:
c_data = [decode_label_dict(r) for r in csv.DictReader(f)]
self.category_unmap[cat], self.category_map[cat] = (
build_numpy_category_map(c_data))
self.category_label[cat] = build_dense_label_array(
c_data, key='code')
# print("category_unmap: ", self.category_unmap)
self.labelcat = self.onehot(self.primary_categories_per_index()) # (480,1)
### labelcat - all ones
def primary_categories_per_index(ds):
'''
Returns an array of primary category numbers for each label, where the
first category listed in ds.category_names is given category number 0.
'''
catmap = {}
categories = ds.category_names()
for cat in categories:
imap = ds.category_index_map(cat)
if len(imap) < ds.label_size(None):
imap = np.concatenate((imap, np.zeros(
ds.label_size(None) - len(imap), dtype=imap.dtype)))
catmap[cat] = imap
result = []
for i in range(ds.label_size(None)):
maxcov, maxcat = max(
(ds.coverage(cat, catmap[cat][i]) if catmap[cat][i] else 0, ic)
for ic, cat in enumerate(categories))
result.append(maxcat)
return np.array(result)
def onehot(self, arr, minlength=None):
'''
Expands an array of integers in one-hot encoding by adding a new last
dimension, leaving zeros everywhere except for the nth dimension, where
the original array contained the integer n. The minlength parameter is
used to indcate the minimum size of the new dimension.
'''
length = np.amax(arr) + 1
if minlength is not None:
length = max(minlength, length)
result = np.zeros(arr.shape + (length,))
result[list(np.indices(arr.shape)) + [arr]] = 1
return result
def all_names(self, category, j):
'''All English synonyms for the given label'''
if category is not None:
j = self.category_unmap[category][j]
return [self.label[j]['name']] + self.label[j]['syns']
def size(self, split=None):
'''The number of images in this data set.'''
if split is None:
return len(self.image)
return len([im for im in self.image if im['split'] == split])
def filename(self, i):
'''The filename of the ith jpeg (original image).'''
return os.path.join(self.directory, 'images', self.image[i]['image'])
def split(self, i):
'''Which split contains item i.'''
return self.image[i]['split']
def metadata(self, i):
'''Extract metadata for image i, For efficient data loading.'''
return self.directory, self.image[i]
meta_categories = ['image', 'split', 'ih', 'iw', 'sh', 'sw']
@classmethod
def resolve_segmentation(cls, m, categories=None, segm_to_label=None):
'''
Resolves a full segmentation, potentially in a differenct process,
for efficient multiprocess data loading.
'''
directory, row = m
result = {}
for cat, d in row.items():
if cat in cls.meta_categories:
continue
if not wants(cat, categories):
continue
if all(isinstance(data, int) for data in d):
result[cat] = d
continue
out = numpy.empty((len(d), row['sh'], row['sw']), dtype=numpy.int16)
for i, channel in enumerate(d):
if isinstance(channel, int):
out[i] = channel
else:
segmFilenameSplit = channel.split('/')
segmFileToLabelName = segmFilenameSplit[-2] + "/" + segmFilenameSplit[-1]
if 'seg_label' not in result:
result['seg_label'] = []
result['seg_label'].append(segm_to_label[segmFileToLabelName])
# print("os.path.join(directory, 'images', channel)): ", os.path.join(directory, 'images', channel))
rgb = cv2.resize(cv2.imread(os.path.join(directory, 'images', channel)), (settings.SEGM_SIZE, settings.SEGM_SIZE))
rgb[:,:,0] = 0
rgb[:,:,2] = np.where(rgb[:,:,2]>0, 235, 0)
rgb[:,:,1] = np.where(rgb[:,:,2]>0, 1, 0)
out[i] = rgb[:,:,0] + rgb[:,:,1] * 256
result[cat] = out
return result, (row['sh'], row['sw'])
def label_size(self, category=None):
'''
Returns the number of distinct labels (plus zero), i.e., one
more than the maximum label number. If a category is specified,
returns the number of distinct labels within that category.
'''
if category is None:
return len(self.label)
else:
return len(self.category_unmap[category])
def name(self, category, j):
'''
Returns an English name for the jth label. If a category is
specified, returns the name for the category-specific nubmer j.
If category=None, then treats j as a fully unified index number.
'''
if category is not None:
j = self.category_unmap[category][j]
return self.label[j]['name']
def frequency(self, category, j):
'''
Returns the number of images for which the label appears.
'''
if category is not None:
return self.category_label[category][j]['frequency']
return self.label[j]['frequency']
def coverage(self, category, j):
'''
Returns the pixel coverage of the label in units of whole-images.
'''
if category is not None:
return self.category_label[category][j]['coverage']
return self.label[j]['coverage']
def category_names(self):
'''
Returns the set of category names.
'''
return list(self.category.keys())
def category_frequency(self, category):
'''
Returns the number of images touched by a category.
'''
return float(self.category[category]['frequency'])
def primary_categories_per_index(self, categories=None):
'''
Returns an array of primary category numbers for each label, where
catagories are indexed according to the list of categories passed,
or self.category_names() if none.
'''
if categories is None:
categories = self.category_names()
# Make lists which are nonzero for labels in a category
catmap = {}
for cat in categories:
imap = self.category_index_map(cat)
if len(imap) < self.label_size(None):
imap = numpy.concatenate((imap, numpy.zeros(
self.label_size(None) - len(imap), dtype=imap.dtype)))
catmap[cat] = imap
# For each label, find the category with maximum coverage.
result = []
for i in range(self.label_size(None)):
maxcov, maxcat = max(
(self.coverage(cat, catmap[cat][i])
if catmap[cat][i] else 0, ic)
for ic, cat in enumerate(categories))
result.append(maxcat)
# Return the max-coverage cateogry for each label.
return numpy.array(result)
def segmentation_data(self, category, i, c=0, full=False, out=None):
'''
Returns a 2-d numpy matrix with segmentation data for the ith image,
restricted to the given category. By default, maps all label numbers
to the category-specific dense mapping described in the c_*.csv
listing; but can be asked to expose the fully unique indexing by
using full=True.
'''
row = self.image[i]
data_channels = row.get(category, ())
if c >= len(data_channels):
channel = 0 # Deal with unlabeled data in this category
else:
channel = data_channels[c]
if out is None:
out = numpy.empty((row['sh'], row['sw']), dtype=numpy.int16)
if isinstance(channel, int):
if not full:
channel = self.category_map[category][channel]
out[:,:] = channel # Single-label for the whole image
return out
png = cv2.resize(cv2.imread(os.path.join(self.directory, 'images', channel)), (settings.SEGM_SIZE, settings.SEGM_SIZE))
png[:,:,0] = 0
png[:,:,2] = np.where(png[:,:,2]>0, 235, 0)
png[:,:,1] = np.where(png[:,:,2]>0, 1, 0)
if full:
# Full case: just combine png channels.
out[...] = png[:,:,0] + png[:,:,1] * 256
else:
# Dense case: combine png channels and apply the category map.
catmap = self.category_map[category]
out[...] = catmap[png[:,:,0] + png[:,:,1] * 256]
return out
def full_segmentation_data(self, i,
categories=None, max_depth=None, out=None):
'''
Returns a 3-d numpy tensor with segmentation data for the ith image,
with multiple layers represnting multiple lables for each pixel.
The depth is variable depending on available data but can be
limited to max_depth.
'''
row = self.image[i]
if categories:
groups = [d for cat, d in row.items() if cat in categories and d]
else:
groups = [d for cat, d in row.items() if d and (
cat not in self.meta_categories)]
depth = sum(len(c) for c in groups)
if max_depth is not None:
depth = min(depth, max_depth)
# Allocate an array if not already allocated.
if out is None:
out = numpy.empty((depth, row['sh'], row['sw']), dtype=numpy.int16)
i = 0
# Stack up the result segmentation one channel at a time
for group in groups:
for channel in group:
if isinstance(channel, int):
out[i] = channel
else:
png = cv2.resize(cv2.imread(os.path.join(self.directory, 'images', channel)), (settings.SEGM_SIZE, settings.SEGM_SIZE))
png[:,:,0] = 0
png[:,:,2] = np.where(png[:,:,2]>0, 235, 0)
png[:,:,1] = np.where(png[:,:,2]>0, 1, 0)
out[i] = png[:,:,0] + png[:,:,1] * 256
i += 1
if i == depth:
return out
# Return above when we get up to depth
assert False
def category_index_map(self, category):
return numpy.array(self.category_map[category])
def build_dense_label_array(label_data, key='number', allow_none=False):
'''
Input: set of rows with 'number' fields (or another field name key).
Output: array such that a[number] = the row with the given number.
'''
result = [None] * (max([d[key] for d in label_data]) + 1)
for d in label_data:
result[d[key]] = d
# Fill in none
if not allow_none:
example = label_data[0]
def make_empty(k):
return dict((c, k if c is key else type(v)())
for c, v in example.items())
for i, d in enumerate(result):
if d is None:
result[i] = dict(make_empty(i))
return result
def build_numpy_category_map(map_data, key1='code', key2='number'):
'''
Input: set of rows with 'number' fields (or another field name key).
Output: array such that a[number] = the row with the given number.
'''
results = list(numpy.zeros((max([d[key] for d in map_data]) + 1),
dtype=numpy.int16) for key in (key1, key2))
for d in map_data:
results[0][d[key1]] = d[key2]
results[1][d[key2]] = d[key1]
return results
def decode_label_dict(row):
result = {}
for key, val in row.items():
if key == 'category':
result[key] = dict((c, int(n))
for c, n in [re.match('^([^(]*)\(([^)]*)\)$', f).groups()
for f in val.split(';')])
elif key == 'name':
result[key] = val
elif key == 'syns':
result[key] = val.split(';')
elif re.match('^\d+$', val):
result[key] = int(val)
elif re.match('^\d+\.\d*$', val):
result[key] = float(val)
else:
result[key] = val
return result
def decode_index_dict(row):
result = {}
for key, val in row.items():
if key in ['image', 'split']:
result[key] = val
elif key in ['sw', 'sh', 'iw', 'ih']:
result[key] = int(val)
else:
item = [s for s in val.split(';') if s]
for i, v in enumerate(item):
if re.match('^\d+$', v):
item[i] = int(v)
result[key] = item
return result
def index_has_any_data(row, categories):
for c in categories:
for data in row[c]:
if data: return True
return False
def index_has_all_data(row, categories):
for c in categories:
cat_has = False
for data in row[c]:
if data:
cat_has = True
break
if not cat_has:
return False
return True
class SegmentationPrefetcher:
'''
SegmentationPrefetcher will prefetch a bunch of segmentation
images using a multiprocessing pool, so you do not have to wait
around while the files get opened and decoded. Just request
batches of images and segmentations calling fetch_batch().
'''
def __init__(self, segmentation, split=None, randomize=False,
segmentation_shape=None, categories=None, once=False,
start=None, end=None, batch_size=4, ahead=4, thread=False):
'''
Constructor arguments:
segmentation: The AbstractSegmentation to load.
split: None for no filtering, or 'train' or 'val' etc.
randomize: True to randomly shuffle order, or a random seed.
categories: a list of categories to include in each batch.
batch_size: number of data items for each batch.
ahead: the number of data items to prefetch ahead.
'''
self.segmentation = segmentation
self.segm_to_label = None
with open(settings.SEGM_TO_LABEL_PKL, 'rb') as f:
self.segm_to_label = pickle.load(f)
self.split = split
self.randomize = randomize
self.random = random.Random()
if randomize is not True:
self.random.seed(randomize)
self.categories = categories
self.once = once
self.batch_size = batch_size
self.ahead = ahead
# Initialize the multiprocessing pool
n_procs = cpu_count()
if thread:
self.pool = ThreadPool(processes=n_procs)
else:
original_sigint_handler = setup_sigint()
self.pool = Pool(processes=n_procs, initializer=setup_sigint)
restore_sigint(original_sigint_handler)
# Prefilter the image indexes of interest
if start is None:
start = 0
if end is None:
end = segmentation.size()
self.indexes = range(start, end)
if split:
self.indexes = [i for i in self.indexes
if segmentation.split(i) == split]
if self.randomize:
self.random.shuffle(self.indexes)
self.index = 0
self.result_queue = []
self.segmentation_shape = segmentation_shape
# Get dense catmaps
self.catmaps = [
segmentation.category_index_map(cat) if cat != 'image' else None
for cat in categories]
def next_job(self):
if self.index < 0:
return None
j = self.indexes[self.index]
result = (j,
self.segmentation.__class__,
self.segmentation.metadata(j),
self.segmentation.filename(j),
self.categories,
self.segm_to_label,
self.segmentation_shape)
self.index += 1
if self.index >= len(self.indexes):
if self.once:
self.index = -1
else:
self.index = 0
if self.randomize:
# Reshuffle every time through
self.random.shuffle(self.indexes)
return result
def batches(self):
'''Iterator for all batches'''
while True:
batch = self.fetch_batch()
if batch is None:
break
else:
yield batch
# def batches(self):
# '''Iterator for all batches'''
# while True:
# batch = self.fetch_batch()
# if batch is None:
# raise StopIteration
# yield batch
def fetch_batch(self):
'''Returns a single batch as an array of dictionaries.'''
try:
self.refill_tasks()
if len(self.result_queue) == 0:
return None
result = self.result_queue.pop(0)
return result.get(31536000)
except KeyboardInterrupt:
print("Caught KeyboardInterrupt, terminating workers")
self.pool.terminate()
raise
def fetch_tensor_batch(self, bgr_mean=None, global_labels=False):
'''Iterator for batches as arrays of tensors.'''
batch = self.fetch_batch()
return self.form_caffe_tensors(batch, bgr_mean, global_labels)
def tensor_batches(self, bgr_mean=None, global_labels=False):
'''Returns a single batch as an array of tensors, one per category.'''
while True:
batch = self.fetch_tensor_batch(
bgr_mean=bgr_mean, global_labels=global_labels)
if batch is None:
break
else:
yield batch
def form_caffe_tensors(self, batch, bgr_mean=None, global_labels=False):
# Assemble a batch in [{'cat': data,..},..] format into
# an array of batch tensors, the first for the image, and the
# remaining for each category in self.categories, in order.
# This also applies a random flip if needed
if batch is None:
return None
batches = [[] for c in self.categories]
for record in batch:
default_shape = (1, record['sh'], record['sw'])
for c, cat in enumerate(self.categories):
if cat == 'image':
# Normalize image with right RGB order and mean
batches[c].append(normalize_image(
record[cat], bgr_mean))
elif global_labels:
batches[c].append(normalize_label(
record[cat], default_shape, flatten=True))
else:
catmap = self.catmaps[c]
batches[c].append(catmap[normalize_label(
record[cat], default_shape, flatten=True)])
return [numpy.concatenate(tuple(m[numpy.newaxis] for m in b))
for b in batches]
def refill_tasks(self):
# It will call the sequencer to ask for a sequence
# of batch_size jobs (indexes with categories)
# Then it will call pool.map_async
while len(self.result_queue) < self.ahead:
data = []
while len(data) < self.batch_size:
job = self.next_job()
if job is None:
break
data.append(job)
if len(data) == 0:
return
self.result_queue.append(self.pool.map_async(prefetch_worker, data))
def close(self):
while len(self.result_queue):
result = self.result_queue.pop(0)
if result is not None:
result.wait(0.001)
self.pool.close()
self.poool.cancel_join_thread()
def prefetch_worker(d):
if d is None:
return None
j, typ, m, fn, categories, segm_to_label, segmentation_shape = d
segs, shape = typ.resolve_segmentation(m, categories=categories, segm_to_label=segm_to_label)
if segmentation_shape is not None:
for k, v in segs.items():
print("k: ", k)
segs[k] = scale_segmentation(v, segmentation_shape)
shape = segmentation_shape
# Some additional metadata to provide
segs['sh'], segs['sw'] = shape
segs['i'] = j
segs['fn'] = fn
if categories is None or 'image' in categories:
segs['image'] = np.asarray(Image.open(fn).convert('L').resize((settings.IMG_SIZE, settings.IMG_SIZE)))
return segs
# def convertRGBToGray(rgbImg):
# return np.dot(rgbImg[...,:3], [0.114, 0.587, 0.299])
def scale_segmentation(segmentation, dims, crop=False):
'''
Zooms a 2d or 3d segmentation to the given dims, using nearest neighbor.
'''
shape = numpy.shape(segmentation)
if len(shape) < 2 or shape[-2:] == dims:
return segmentation
peel = (len(shape) == 2)
if peel:
segmentation = segmentation[numpy.newaxis]
levels = segmentation.shape[0]
result = numpy.zeros((levels, ) + dims,
dtype=segmentation.dtype)
ratio = (1,) + tuple(res / float(orig)
for res, orig in zip(result.shape[1:], segmentation.shape[1:]))
if not crop:
safezoom(segmentation, ratio, output=result, order=0)
else:
ratio = max(ratio[1:])
height = int(round(dims[0] / ratio))
hmargin = (segmentation.shape[0] - height) // 2
width = int(round(dims[1] / ratio))
wmargin = (segmentation.shape[1] - height) // 2
safezoom(segmentation[:, hmargin:hmargin+height,
wmargin:wmargin+width],
(1, ratio, ratio), output=result, order=0)
if peel:
result = result[0]
return result
def safezoom(array, ratio, output=None, order=0):
'''Like numpy.zoom, but does not crash when the first dimension
of the array is of size 1, as happens often with segmentations'''
dtype = array.dtype
if array.dtype == numpy.float16:
array = array.astype(numpy.float32)
if array.shape[0] == 1:
if output is not None:
output = output[0,...]
result = zoom(array[0,...], ratio[1:],
output=output, order=order)
if output is None:
output = result[numpy.newaxis]
else:
result = zoom(array, ratio, output=output, order=order)
if output is None:
output = result
return output.astype(dtype)
def setup_sigint():
import threading
if not isinstance(threading.current_thread(), threading._MainThread):
return None
return signal.signal(signal.SIGINT, signal.SIG_IGN)
def restore_sigint(original):
import threading
if not isinstance(threading.current_thread(), threading._MainThread):
return
if original is None:
original = signal.SIG_DFL
signal.signal(signal.SIGINT, original)
def wants(what, option):
if option is None:
return True
return what in option
def normalize_image(rgb_image, bgr_mean):
"""
Load input image and preprocess for Caffe:
- cast to float
- switch channels RGB -> BGR
- subtract mean
- transpose to channel x height x width order
"""
# img = numpy.array(rgb_image, dtype=numpy.float32)
# if (img.ndim == 2):
# img = numpy.repeat(img[:,:,None], 3, axis = 2)
# # img = img[:,:,::-1]
# if bgr_mean is not None:
# img -= bgr_mean
rgb_image = np.expand_dims(rgb_image, axis=0)
# rgb_image = rgb_image.transpose((2,0,1))
# print("rgb_image shape: ", rgb_image.shape)
return rgb_image
### Original code
# def normalize_image(rgb_image, bgr_mean):
# """
# Load input image and preprocess for Caffe:
# - cast to float
# - switch channels RGB -> BGR
# - subtract mean
# - transpose to channel x height x width order
# """
# img = numpy.array(rgb_image, dtype=numpy.float32)
# if (img.ndim == 2):
# img = numpy.repeat(img[:,:,None], 3, axis = 2)
# img = img[:,:,::-1]
# if bgr_mean is not None:
# img -= bgr_mean
# img = img.transpose((2,0,1))
# return img
def normalize_label(label_data, shape, flatten=False):
"""
Given a 0, 1, 2, or 3-dimensional label_data and a default
shape of the form (1, y, x), returns a 3d tensor by
"""
dims = len(numpy.shape(label_data))
if dims <= 2:
# Scalar data on this channel: fill shape
if dims == 1:
if flatten:
label_data = label_data[0] if len(label_data) else 0
else:
return (numpy.ones(shape, dtype=numpy.int16) *
numpy.asarray(label_data, dtype=numpy.int16)
[:, numpy.newaxis, numpy.newaxis])
return numpy.full(shape, label_data, dtype=numpy.int16)
else:
if dims == 3:
if flatten:
label_data = label_data[0]
else:
return label_data
return label_data[numpy.newaxis]
if __name__ == '__main__':
data = SegmentationData('broden1_227')
pd = SegmentationPrefetcher(data,categories=data.category_names()+['image'],once=True)
bs = pd.batches().next()
|