File size: 10,188 Bytes
d61b9c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
# Copyright 2018 Dong-Hyun Lee, Kakao Brain.
# (Strongly inspired by original Google BERT code and Hugging Face's code)

""" Transformer Model Classes & Config Class """

import math
import json
from typing import NamedTuple

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F


def split_last(x, shape):
    "split the last dimension to given shape"
    shape = list(shape)
    assert shape.count(-1) <= 1
    if -1 in shape:
        shape[shape.index(-1)] = int(x.size(-1) / -np.prod(shape))
    return x.view(*x.size()[:-1], *shape)


def merge_last(x, n_dims):
    "merge the last n_dims to a dimension"
    s = x.size()
    assert n_dims > 1 and n_dims < len(s)
    return x.view(*s[:-n_dims], -1)


def gelu(x):
    "Implementation of the gelu activation function by Hugging Face"
    return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))


class LayerNorm(nn.Module):
    "A layernorm module in the TF style (epsilon inside the square root)."
    def __init__(self, cfg, variance_epsilon=1e-12):
        super().__init__()
        self.gamma = nn.Parameter(torch.ones(cfg.dim))
        self.beta  = nn.Parameter(torch.zeros(cfg.dim))
        self.variance_epsilon = variance_epsilon

    def forward(self, x):
        u = x.mean(-1, keepdim=True)
        s = (x - u).pow(2).mean(-1, keepdim=True)
        x = (x - u) / torch.sqrt(s + self.variance_epsilon)
        return self.gamma * x + self.beta


class Embeddings(nn.Module):
    "The embedding module from word, position and token_type embeddings."
    def __init__(self, cfg):
        super().__init__()
        self.pos_embed = nn.Embedding(cfg.p_dim, cfg.dim) # position embedding
        self.norm = LayerNorm(cfg)
        self.drop = nn.Dropout(cfg.p_drop_hidden)

    def forward(self, x):
        seq_len = x.size(1)
        pos = torch.arange(seq_len, dtype=torch.long, device=x.device)
        pos = pos.unsqueeze(0).expand(x.size(0), -1)    # (S,) -> (B, S)

        e = x + self.pos_embed(pos) 
        return self.drop(self.norm(e))


class MultiHeadedSelfAttention(nn.Module):
    """ Multi-Headed Dot Product Attention """
    def __init__(self, cfg):
        super().__init__()
        self.proj_q = nn.Linear(cfg.dim, cfg.dim)
        self.proj_k = nn.Linear(cfg.dim, cfg.dim)
        self.proj_v = nn.Linear(cfg.dim, cfg.dim)
        self.drop = nn.Dropout(cfg.p_drop_attn)
        self.scores = None # for visualization
        self.n_heads = cfg.n_heads

    def forward(self, x, mask):
        """
        x, q(query), k(key), v(value) : (B(batch_size), S(seq_len), D(dim))
        mask : (B(batch_size) x S(seq_len))
        * split D(dim) into (H(n_heads), W(width of head)) ; D = H * W
        """
        # (B, S, D) -proj-> (B, S, D) -split-> (B, S, H, W) -trans-> (B, H, S, W)
        q, k, v = self.proj_q(x), self.proj_k(x), self.proj_v(x)
        q, k, v = (split_last(x, (self.n_heads, -1)).transpose(1, 2)
                   for x in [q, k, v])
        # (B, H, S, W) @ (B, H, W, S) -> (B, H, S, S) -softmax-> (B, H, S, S)
        scores = q @ k.transpose(-2, -1) / np.sqrt(k.size(-1))
        if mask is not None:
            mask = mask[:, None, None, :].float()
            scores -= 10000.0 * (1.0 - mask)
        scores = self.drop(F.softmax(scores, dim=-1))
        # (B, H, S, S) @ (B, H, S, W) -> (B, H, S, W) -trans-> (B, S, H, W)
        h = (scores @ v).transpose(1, 2).contiguous()
        # -merge-> (B, S, D)
        h = merge_last(h, 2)
        self.scores = scores
        return h


class PositionWiseFeedForward(nn.Module):
    """ FeedForward Neural Networks for each position """
    def __init__(self, cfg):
        super().__init__()
        self.fc1 = nn.Linear(cfg.dim, cfg.dim_ff)
        self.fc2 = nn.Linear(cfg.dim_ff, cfg.dim)
        #self.activ = lambda x: activ_fn(cfg.activ_fn, x)

    def forward(self, x):
        # (B, S, D) -> (B, S, D_ff) -> (B, S, D)
        return self.fc2(gelu(self.fc1(x)))


class Block(nn.Module):
    """ Transformer Block """
    def __init__(self, cfg):
        super().__init__()
        self.attn = MultiHeadedSelfAttention(cfg)
        self.proj = nn.Linear(cfg.dim, cfg.dim)
        self.norm1 = LayerNorm(cfg)
        self.pwff = PositionWiseFeedForward(cfg)
        self.norm2 = LayerNorm(cfg)
        self.drop = nn.Dropout(cfg.p_drop_hidden)

    def forward(self, x, mask):
        h = self.attn(x, mask)
        h = self.norm1(x + self.drop(self.proj(h)))
        h = self.norm2(h + self.drop(self.pwff(h)))
        return h


class Transformer(nn.Module):
    """ Transformer with Self-Attentive Blocks"""
    def __init__(self, cfg, n_layers):
        super().__init__()
        self.embed = Embeddings(cfg)
        self.blocks = nn.ModuleList([Block(cfg) for _ in range(n_layers)])

    def forward(self, x, mask):
        h = self.embed(x)
        for block in self.blocks:
            h = block(h, mask)
        return h


class Parallel_Attention(nn.Module):
    ''' the Parallel Attention Module for 2D attention
        reference the origin paper: https://arxiv.org/abs/1906.05708
    '''
    def __init__(self, cfg):
        super().__init__()
        self.atten_w1 = nn.Linear(cfg.dim_c, cfg.dim_c)
        self.atten_w2 = nn.Linear(cfg.dim_c, cfg.max_vocab_size)
        self.activ_fn = nn.Tanh()
        self.soft = nn.Softmax(dim=1)
        self.drop = nn.Dropout(0.1)

    def forward(self, origin_I, bert_out, mask=None):
        bert_out = self.activ_fn(self.drop(self.atten_w1(bert_out)))
        atten_w = self.soft(self.atten_w2(bert_out))                  # b*200*94
        x = torch.bmm(origin_I.transpose(1,2), atten_w)               # b*512*94
        return x


class MultiHeadAttention(nn.Module):
    ''' Multi-Head Attention module '''

    def __init__(self, n_head=8, d_k=64, d_model=128, max_vocab_size=94, dropout=0.1):
        ''' d_k: the attention dim
            d_model: the encoder output feature
            max_vocab_size: the output maxium length of sequence
        '''
        super(MultiHeadAttention, self).__init__()

        self.n_head, self.d_k = n_head, d_k
        self.temperature = np.power(d_k, 0.5)
        self.max_vocab_size = max_vocab_size

        self.w_encoder = nn.Linear(d_model, n_head * d_k)
        self.w_atten = nn.Linear(d_model, n_head * max_vocab_size)
        self.w_out = nn.Linear(n_head * d_k, d_model)
        self.activ_fn = nn.Tanh()

        self.softmax = nn.Softmax(dim=1)                                # at the d_in dimension
        self.dropout = nn.Dropout(dropout)

        nn.init.normal_(self.w_encoder.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_k)))
        nn.init.normal_(self.w_atten.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_k)))
        nn.init.xavier_normal_(self.w_out.weight)


    def forward(self, encoder_feature, bert_out, mask=None):

        d_k, n_head, max_vocab_size = self.d_k, self.n_head, self.max_vocab_size

        sz_b, d_in, _ = encoder_feature.size()
        
        # 原始特征
        encoder_feature = encoder_feature.view(sz_b, d_in, n_head, d_k)
        encoder_feature = encoder_feature.permute(2, 0, 1, 3).contiguous().view(-1, d_in, d_k)        # 32*200*64
        
        # 求解权值
        alpha = self.activ_fn(self.dropout(self.w_encoder(bert_out)))
        alpha = self.w_atten(alpha).view(sz_b, d_in, n_head, max_vocab_size)            # 4*200*8*94
        alpha = alpha.permute(2, 0, 1, 3).contiguous().view(-1, d_in, max_vocab_size)   # 32*200*94
        alpha = alpha / self.temperature
        alpha = self.dropout(self.softmax(alpha))                         # 32*200*94
        
        # 输出部分
        output = torch.bmm(encoder_feature.transpose(1,2), alpha)         # 32*64*94
        output = output.view(n_head, sz_b, d_k, max_vocab_size)
        output = output.permute(1, 3, 0, 2).contiguous().view(sz_b, max_vocab_size, -1)  # 4*94*512
        output = self.dropout(self.w_out(output))
        output = output.transpose(1,2)

        return output


class Two_Stage_Decoder(nn.Module):
    def __init__(self, cfg):
        super().__init__()
        self.out_w = nn.Linear(cfg.dim_c, cfg.len_alphabet)
        self.relation_attention = Transformer(cfg, cfg.decoder_atten_layers)
        self.out_w1 = nn.Linear(cfg.dim_c, cfg.len_alphabet)

    def forward(self, x):
        x1 = self.out_w(x)
        x2 = self.relation_attention(x, mask=None)
        x2 = self.out_w1(x2)                    # 两个分支的输出部分采用不同的网络

        return x1, x2


class Bert_Ocr(nn.Module):
    def __init__(self, cfg):
        super().__init__()
        self.cfg = cfg
        self.transformer = Transformer(cfg, cfg.attention_layers)
        self.attention = Parallel_Attention(cfg)
#         self.attention = MultiHeadAttention(d_model=cfg.dim, max_vocab_size=cfg.max_vocab_size)
        self.decoder = Two_Stage_Decoder(cfg)

    def forward(self, encoder_feature, mask=None):
        bert_out = self.transformer(encoder_feature, mask)                 # 做一个self_attention//4*200*512
        glimpses = self.attention(encoder_feature, bert_out, mask)         # 原始序列和目标序列的转化//4*512*94
        res = self.decoder(glimpses.transpose(1,2))
        return res


class Config(object):
    '''参数设置'''
    """ Relation Attention Module """
    p_drop_attn = 0.1
    p_drop_hidden = 0.1
    dim = 512                       # the encode output feature
    attention_layers = 2                    # the layers of transformer
    n_heads = 8
    dim_ff = 1024 * 2                       # 位置前向传播的隐含层维度

    ''' Parallel Attention Module '''
    dim_c = dim
    max_vocab_size = 26             # 一张图片含有字符的最大长度

    """ Two-stage Decoder """
    len_alphabet = 39               # 字符类别数量
    decoder_atten_layers = 2


def numel(model):
    return sum(p.numel() for p in model.parameters())


if __name__ == '__main__':

    cfg = Config()
    mask = None
    x = torch.randn(4, 200, cfg.dim)
    net = Bert_Ocr(cfg)
    res1, res2 = net(x, mask)
    print(res1.shape, res2.shape)
    print('参数总量为:', numel(net))