Spaces:
Build error
Build error
File size: 10,188 Bytes
d61b9c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
# Copyright 2018 Dong-Hyun Lee, Kakao Brain.
# (Strongly inspired by original Google BERT code and Hugging Face's code)
""" Transformer Model Classes & Config Class """
import math
import json
from typing import NamedTuple
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
def split_last(x, shape):
"split the last dimension to given shape"
shape = list(shape)
assert shape.count(-1) <= 1
if -1 in shape:
shape[shape.index(-1)] = int(x.size(-1) / -np.prod(shape))
return x.view(*x.size()[:-1], *shape)
def merge_last(x, n_dims):
"merge the last n_dims to a dimension"
s = x.size()
assert n_dims > 1 and n_dims < len(s)
return x.view(*s[:-n_dims], -1)
def gelu(x):
"Implementation of the gelu activation function by Hugging Face"
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
class LayerNorm(nn.Module):
"A layernorm module in the TF style (epsilon inside the square root)."
def __init__(self, cfg, variance_epsilon=1e-12):
super().__init__()
self.gamma = nn.Parameter(torch.ones(cfg.dim))
self.beta = nn.Parameter(torch.zeros(cfg.dim))
self.variance_epsilon = variance_epsilon
def forward(self, x):
u = x.mean(-1, keepdim=True)
s = (x - u).pow(2).mean(-1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.variance_epsilon)
return self.gamma * x + self.beta
class Embeddings(nn.Module):
"The embedding module from word, position and token_type embeddings."
def __init__(self, cfg):
super().__init__()
self.pos_embed = nn.Embedding(cfg.p_dim, cfg.dim) # position embedding
self.norm = LayerNorm(cfg)
self.drop = nn.Dropout(cfg.p_drop_hidden)
def forward(self, x):
seq_len = x.size(1)
pos = torch.arange(seq_len, dtype=torch.long, device=x.device)
pos = pos.unsqueeze(0).expand(x.size(0), -1) # (S,) -> (B, S)
e = x + self.pos_embed(pos)
return self.drop(self.norm(e))
class MultiHeadedSelfAttention(nn.Module):
""" Multi-Headed Dot Product Attention """
def __init__(self, cfg):
super().__init__()
self.proj_q = nn.Linear(cfg.dim, cfg.dim)
self.proj_k = nn.Linear(cfg.dim, cfg.dim)
self.proj_v = nn.Linear(cfg.dim, cfg.dim)
self.drop = nn.Dropout(cfg.p_drop_attn)
self.scores = None # for visualization
self.n_heads = cfg.n_heads
def forward(self, x, mask):
"""
x, q(query), k(key), v(value) : (B(batch_size), S(seq_len), D(dim))
mask : (B(batch_size) x S(seq_len))
* split D(dim) into (H(n_heads), W(width of head)) ; D = H * W
"""
# (B, S, D) -proj-> (B, S, D) -split-> (B, S, H, W) -trans-> (B, H, S, W)
q, k, v = self.proj_q(x), self.proj_k(x), self.proj_v(x)
q, k, v = (split_last(x, (self.n_heads, -1)).transpose(1, 2)
for x in [q, k, v])
# (B, H, S, W) @ (B, H, W, S) -> (B, H, S, S) -softmax-> (B, H, S, S)
scores = q @ k.transpose(-2, -1) / np.sqrt(k.size(-1))
if mask is not None:
mask = mask[:, None, None, :].float()
scores -= 10000.0 * (1.0 - mask)
scores = self.drop(F.softmax(scores, dim=-1))
# (B, H, S, S) @ (B, H, S, W) -> (B, H, S, W) -trans-> (B, S, H, W)
h = (scores @ v).transpose(1, 2).contiguous()
# -merge-> (B, S, D)
h = merge_last(h, 2)
self.scores = scores
return h
class PositionWiseFeedForward(nn.Module):
""" FeedForward Neural Networks for each position """
def __init__(self, cfg):
super().__init__()
self.fc1 = nn.Linear(cfg.dim, cfg.dim_ff)
self.fc2 = nn.Linear(cfg.dim_ff, cfg.dim)
#self.activ = lambda x: activ_fn(cfg.activ_fn, x)
def forward(self, x):
# (B, S, D) -> (B, S, D_ff) -> (B, S, D)
return self.fc2(gelu(self.fc1(x)))
class Block(nn.Module):
""" Transformer Block """
def __init__(self, cfg):
super().__init__()
self.attn = MultiHeadedSelfAttention(cfg)
self.proj = nn.Linear(cfg.dim, cfg.dim)
self.norm1 = LayerNorm(cfg)
self.pwff = PositionWiseFeedForward(cfg)
self.norm2 = LayerNorm(cfg)
self.drop = nn.Dropout(cfg.p_drop_hidden)
def forward(self, x, mask):
h = self.attn(x, mask)
h = self.norm1(x + self.drop(self.proj(h)))
h = self.norm2(h + self.drop(self.pwff(h)))
return h
class Transformer(nn.Module):
""" Transformer with Self-Attentive Blocks"""
def __init__(self, cfg, n_layers):
super().__init__()
self.embed = Embeddings(cfg)
self.blocks = nn.ModuleList([Block(cfg) for _ in range(n_layers)])
def forward(self, x, mask):
h = self.embed(x)
for block in self.blocks:
h = block(h, mask)
return h
class Parallel_Attention(nn.Module):
''' the Parallel Attention Module for 2D attention
reference the origin paper: https://arxiv.org/abs/1906.05708
'''
def __init__(self, cfg):
super().__init__()
self.atten_w1 = nn.Linear(cfg.dim_c, cfg.dim_c)
self.atten_w2 = nn.Linear(cfg.dim_c, cfg.max_vocab_size)
self.activ_fn = nn.Tanh()
self.soft = nn.Softmax(dim=1)
self.drop = nn.Dropout(0.1)
def forward(self, origin_I, bert_out, mask=None):
bert_out = self.activ_fn(self.drop(self.atten_w1(bert_out)))
atten_w = self.soft(self.atten_w2(bert_out)) # b*200*94
x = torch.bmm(origin_I.transpose(1,2), atten_w) # b*512*94
return x
class MultiHeadAttention(nn.Module):
''' Multi-Head Attention module '''
def __init__(self, n_head=8, d_k=64, d_model=128, max_vocab_size=94, dropout=0.1):
''' d_k: the attention dim
d_model: the encoder output feature
max_vocab_size: the output maxium length of sequence
'''
super(MultiHeadAttention, self).__init__()
self.n_head, self.d_k = n_head, d_k
self.temperature = np.power(d_k, 0.5)
self.max_vocab_size = max_vocab_size
self.w_encoder = nn.Linear(d_model, n_head * d_k)
self.w_atten = nn.Linear(d_model, n_head * max_vocab_size)
self.w_out = nn.Linear(n_head * d_k, d_model)
self.activ_fn = nn.Tanh()
self.softmax = nn.Softmax(dim=1) # at the d_in dimension
self.dropout = nn.Dropout(dropout)
nn.init.normal_(self.w_encoder.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_k)))
nn.init.normal_(self.w_atten.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_k)))
nn.init.xavier_normal_(self.w_out.weight)
def forward(self, encoder_feature, bert_out, mask=None):
d_k, n_head, max_vocab_size = self.d_k, self.n_head, self.max_vocab_size
sz_b, d_in, _ = encoder_feature.size()
# 原始特征
encoder_feature = encoder_feature.view(sz_b, d_in, n_head, d_k)
encoder_feature = encoder_feature.permute(2, 0, 1, 3).contiguous().view(-1, d_in, d_k) # 32*200*64
# 求解权值
alpha = self.activ_fn(self.dropout(self.w_encoder(bert_out)))
alpha = self.w_atten(alpha).view(sz_b, d_in, n_head, max_vocab_size) # 4*200*8*94
alpha = alpha.permute(2, 0, 1, 3).contiguous().view(-1, d_in, max_vocab_size) # 32*200*94
alpha = alpha / self.temperature
alpha = self.dropout(self.softmax(alpha)) # 32*200*94
# 输出部分
output = torch.bmm(encoder_feature.transpose(1,2), alpha) # 32*64*94
output = output.view(n_head, sz_b, d_k, max_vocab_size)
output = output.permute(1, 3, 0, 2).contiguous().view(sz_b, max_vocab_size, -1) # 4*94*512
output = self.dropout(self.w_out(output))
output = output.transpose(1,2)
return output
class Two_Stage_Decoder(nn.Module):
def __init__(self, cfg):
super().__init__()
self.out_w = nn.Linear(cfg.dim_c, cfg.len_alphabet)
self.relation_attention = Transformer(cfg, cfg.decoder_atten_layers)
self.out_w1 = nn.Linear(cfg.dim_c, cfg.len_alphabet)
def forward(self, x):
x1 = self.out_w(x)
x2 = self.relation_attention(x, mask=None)
x2 = self.out_w1(x2) # 两个分支的输出部分采用不同的网络
return x1, x2
class Bert_Ocr(nn.Module):
def __init__(self, cfg):
super().__init__()
self.cfg = cfg
self.transformer = Transformer(cfg, cfg.attention_layers)
self.attention = Parallel_Attention(cfg)
# self.attention = MultiHeadAttention(d_model=cfg.dim, max_vocab_size=cfg.max_vocab_size)
self.decoder = Two_Stage_Decoder(cfg)
def forward(self, encoder_feature, mask=None):
bert_out = self.transformer(encoder_feature, mask) # 做一个self_attention//4*200*512
glimpses = self.attention(encoder_feature, bert_out, mask) # 原始序列和目标序列的转化//4*512*94
res = self.decoder(glimpses.transpose(1,2))
return res
class Config(object):
'''参数设置'''
""" Relation Attention Module """
p_drop_attn = 0.1
p_drop_hidden = 0.1
dim = 512 # the encode output feature
attention_layers = 2 # the layers of transformer
n_heads = 8
dim_ff = 1024 * 2 # 位置前向传播的隐含层维度
''' Parallel Attention Module '''
dim_c = dim
max_vocab_size = 26 # 一张图片含有字符的最大长度
""" Two-stage Decoder """
len_alphabet = 39 # 字符类别数量
decoder_atten_layers = 2
def numel(model):
return sum(p.numel() for p in model.parameters())
if __name__ == '__main__':
cfg = Config()
mask = None
x = torch.randn(4, 200, cfg.dim)
net = Bert_Ocr(cfg)
res1, res2 = net(x, mask)
print(res1.shape, res2.shape)
print('参数总量为:', numel(net))
|