Spaces:
Build error
Build error
File size: 19,475 Bytes
d61b9c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 |
#!/usr/bin/env python3
from collections import namedtuple
from itertools import cycle
from typing import (
Any,
Callable,
Dict,
Iterable,
List,
NamedTuple,
Optional,
Tuple,
Union,
)
import torch
from captum.attr import IntegratedGradients
from captum.attr._utils.batching import _batched_generator
from captum.insights.attr_vis.attribution_calculation import (
AttributionCalculation,
OutputScore,
)
from captum.insights.attr_vis.config import (
ATTRIBUTION_METHOD_CONFIG,
ATTRIBUTION_NAMES_TO_METHODS,
)
from captum.insights.attr_vis.features import BaseFeature
from captum.insights.attr_vis.server import namedtuple_to_dict
from captum.log import log_usage
from torch import Tensor
from torch.nn import Module
_CONTEXT_COLAB = "_CONTEXT_COLAB"
_CONTEXT_IPYTHON = "_CONTEXT_IPYTHON"
_CONTEXT_NONE = "_CONTEXT_NONE"
def _get_context():
"""Determine the most specific context that we're in.
Implementation from TensorBoard: https://git.io/JvObD.
Returns:
_CONTEXT_COLAB: If in Colab with an IPython notebook context.
_CONTEXT_IPYTHON: If not in Colab, but we are in an IPython notebook
context (e.g., from running `jupyter notebook` at the command
line).
_CONTEXT_NONE: Otherwise (e.g., by running a Python script at the
command-line or using the `ipython` interactive shell).
"""
# In Colab, the `google.colab` module is available, but the shell
# returned by `IPython.get_ipython` does not have a `get_trait`
# method.
try:
import google.colab # noqa: F401
import IPython
except ImportError:
pass
else:
if IPython.get_ipython() is not None:
# We'll assume that we're in a Colab notebook context.
return _CONTEXT_COLAB
# In an IPython command line shell or Jupyter notebook, we can
# directly query whether we're in a notebook context.
try:
import IPython
except ImportError:
pass
else:
ipython = IPython.get_ipython()
if ipython is not None and ipython.has_trait("kernel"):
return _CONTEXT_IPYTHON
# Otherwise, we're not in a known notebook context.
return _CONTEXT_NONE
VisualizationOutput = namedtuple(
"VisualizationOutput", "feature_outputs actual predicted active_index model_index"
)
Contribution = namedtuple("Contribution", "name percent")
SampleCache = namedtuple("SampleCache", "inputs additional_forward_args label")
class FilterConfig(NamedTuple):
attribution_method: str = IntegratedGradients.get_name()
# issue with mypy github.com/python/mypy/issues/8376
attribution_arguments: Dict[str, Any] = {
arg: config.value # type: ignore
for arg, config in ATTRIBUTION_METHOD_CONFIG[
IntegratedGradients.get_name()
].params.items()
}
prediction: str = "all"
classes: List[str] = []
num_examples: int = 4
class Batch:
def __init__(
self,
inputs: Union[Tensor, Tuple[Tensor, ...]],
labels: Optional[Tensor],
additional_args=None,
) -> None:
r"""
Constructs batch of inputs to be attributed and visualized.
Args:
inputs (tensor or tuple of tensors): Batch of inputs for a model.
These may be either a Tensor or tuple of tensors. Each tensor
must correspond to a feature for AttributionVisualizer, and
the corresponding input transform function of the feature
is applied to each input tensor prior to passing it to the
model. It is assumed that the first dimension of each
input tensor corresponds to the number of examples
(batch size) and is aligned for all input tensors.
labels (tensor): Tensor containing correct labels for input examples.
This must be a 1D tensor with length matching the first
dimension of each input tensor.
additional_args (tuple, optional): If the forward function
requires additional arguments other than the inputs for
which attributions should not be computed, this argument
can be provided. It must be either a single additional
argument of a Tensor or arbitrary (non-tuple) type or a
tuple containing multiple additional arguments including
tensors or any arbitrary python types. These arguments
are provided to ``forward_func`` in order following the
arguments in inputs.
For a tensor, the first dimension of the tensor must
correspond to the number of examples.
"""
self.inputs = inputs
self.labels = labels
self.additional_args = additional_args
class AttributionVisualizer:
def __init__(
self,
models: Union[List[Module], Module],
classes: List[str],
features: Union[List[BaseFeature], BaseFeature],
dataset: Iterable[Batch],
score_func: Optional[Callable] = None,
use_label_for_attr: bool = True,
) -> None:
r"""
Args:
models (torch.nn.module): One or more PyTorch modules (models) for
attribution visualization.
classes (list of string): List of strings corresponding to the names of
classes for classification.
features (list of BaseFeature): List of BaseFeatures, which correspond
to input arguments to the model. Each feature object defines
relevant transformations for converting to model input,
constructing baselines, and visualizing. The length of the
features list should exactly match the number of (tensor)
arguments expected by the given model.
For instance, an image classifier should only provide
a single BaseFeature, while a multimodal classifier may
provide a list of features, each corresponding to a different
tensor input and potentially different modalities.
dataset (iterable of Batch): Defines the dataset to visualize attributions
for. This must be an iterable of batch objects, each of which
may contain multiple input examples.
score_func (callable, optional): This function is applied to the model
output to obtain the score for each class. For instance,
this function could be the softmax or final non-linearity
of the network, applied to the model output. The indices
of the second dimension of the output should correspond
to the class names provided. If None, the model outputs
are taken directly and assumed to correspond to the
class scores.
Default: None
use_label_for_attr (boolean, optional): If true, the class index is passed
to the relevant attribution method. This is necessary in most
cases where there is an output neuron corresponding to each
class. When the model output is a scalar and class index
(e.g. positive, negative) is inferred from the output value,
this argument should be False.
Default: True
"""
if not isinstance(models, List):
models = [models]
if not isinstance(features, List):
features = [features]
self.classes = classes
self.features = features
self.dataset = dataset
self.models = models
self.attribution_calculation = AttributionCalculation(
models, classes, features, score_func, use_label_for_attr
)
self._outputs: List[VisualizationOutput] = []
self._config = FilterConfig(prediction="all", classes=[], num_examples=4)
self._dataset_iter = iter(dataset)
self._dataset_cache: List[Batch] = []
def _calculate_attribution_from_cache(
self, input_index: int, model_index: int, target: Optional[Tensor]
) -> Optional[VisualizationOutput]:
c = self._outputs[input_index][1]
result = self._calculate_vis_output(
c.inputs,
c.additional_forward_args,
c.label,
torch.tensor(target),
model_index,
)
if not result:
return None
return result[0]
def _update_config(self, settings):
self._config = FilterConfig(
attribution_method=settings["attribution_method"],
attribution_arguments=settings["arguments"],
prediction=settings["prediction"],
classes=settings["classes"],
num_examples=4,
)
@log_usage()
def render(self, debug=True):
from captum.insights.attr_vis.widget import CaptumInsights
from IPython.display import display
widget = CaptumInsights(visualizer=self)
display(widget)
if debug:
display(widget.out)
@log_usage()
def serve(self, blocking=False, debug=False, port=None, bind_all=False):
context = _get_context()
if context == _CONTEXT_COLAB:
return self._serve_colab(blocking=blocking, debug=debug, port=port)
else:
return self._serve(
blocking=blocking, debug=debug, port=port, bind_all=bind_all
)
def _serve(self, blocking=False, debug=False, port=None, bind_all=False):
from captum.insights.attr_vis.server import start_server
return start_server(
self, blocking=blocking, debug=debug, _port=port, bind_all=bind_all
)
def _serve_colab(self, blocking=False, debug=False, port=None):
import ipywidgets as widgets
from captum.insights.attr_vis.server import start_server
from IPython.display import display, HTML
# TODO: Output widget only captures beginning of server logs. It seems
# the context manager isn't respected when the web server is run on a
# separate thread. We should fix to display entirety of the logs
out = widgets.Output()
with out:
port = start_server(self, blocking=blocking, debug=debug, _port=port)
shell = """
<div id="root"></div>
<script>
(function() {
document.querySelector("base").href = "http://localhost:%PORT%";
function reloadScriptsAndCSS(root) {
// Referencing TensorBoard's method for reloading scripts,
// we remove and reinsert each script
for (const script of root.querySelectorAll("script")) {
const newScript = document.createElement("script");
newScript.type = script.type;
if (script.src) {
newScript.src = script.src;
}
if (script.textContent) {
newScript.textContent = script.textContent;
}
root.appendChild(newScript);
script.remove();
}
// A similar method is used to reload styles
for (const link of root.querySelectorAll("link")) {
const newLink = document.createElement("link");
newLink.rel = link.rel;
newLink.href = link.href;
document.querySelector("head").appendChild(newLink);
link.remove();
}
}
const root = document.getElementById("root");
fetch(".")
.then(x => x.text())
.then(html => void (root.innerHTML = html))
.then(() => reloadScriptsAndCSS(root));
})();
</script>
""".replace(
"%PORT%", str(port)
)
html = HTML(shell)
display(html)
display(out)
def _predictions_matches_labels(
self, predicted_scores: List[OutputScore], labels: Union[str, List[str]]
) -> bool:
if len(predicted_scores) == 0:
return False
predicted_label = predicted_scores[0].label
if isinstance(labels, List):
return predicted_label in labels
return labels == predicted_label
def _should_keep_prediction(
self, predicted_scores: List[OutputScore], actual_label: Optional[OutputScore]
) -> bool:
# filter by class
if len(self._config.classes) != 0:
if not self._predictions_matches_labels(
predicted_scores, self._config.classes
):
return False
if not actual_label:
return True
# filter by accuracy
label_name = actual_label.label
if self._config.prediction == "all":
pass
elif self._config.prediction == "correct":
if not self._predictions_matches_labels(predicted_scores, label_name):
return False
elif self._config.prediction == "incorrect":
if self._predictions_matches_labels(predicted_scores, label_name):
return False
else:
raise Exception(f"Invalid prediction config: {self._config.prediction}")
return True
def _calculate_vis_output(
self,
inputs,
additional_forward_args,
label,
target=None,
single_model_index=None,
) -> Optional[List[VisualizationOutput]]:
# Use all models, unless the user wants to render data for a particular one
models_used = (
[self.models[single_model_index]]
if single_model_index is not None
else self.models
)
results = []
for model_index, model in enumerate(models_used):
# Get list of model visualizations for each input
actual_label_output = None
if label is not None and len(label) > 0:
label_index = int(label[0])
actual_label_output = OutputScore(
score=100, index=label_index, label=self.classes[label_index]
)
(
predicted_scores,
baselines,
transformed_inputs,
) = self.attribution_calculation.calculate_predicted_scores(
inputs, additional_forward_args, model
)
# Filter based on UI configuration
if actual_label_output is None or not self._should_keep_prediction(
predicted_scores, actual_label_output
):
continue
if target is None:
target = (
predicted_scores[0].index if len(predicted_scores) > 0 else None
)
# attributions are given per input*
# inputs given to the model are described via `self.features`
#
# *an input contains multiple features that represent it
# e.g. all the pixels that describe an image is an input
attrs_per_feature = self.attribution_calculation.calculate_attribution(
baselines,
transformed_inputs,
additional_forward_args,
target,
self._config.attribution_method,
self._config.attribution_arguments,
model,
)
net_contrib = self.attribution_calculation.calculate_net_contrib(
attrs_per_feature
)
# the features per input given
features_per_input = [
feature.visualize(attr, data, contrib)
for feature, attr, data, contrib in zip(
self.features, attrs_per_feature, inputs, net_contrib
)
]
results.append(
VisualizationOutput(
feature_outputs=features_per_input,
actual=actual_label_output,
predicted=predicted_scores,
active_index=target
if target is not None
else actual_label_output.index,
# Even if we only iterated over one model, the index should be fixed
# to show the index the model would have had in the list
model_index=single_model_index
if single_model_index is not None
else model_index,
)
)
return results if results else None
def _get_outputs(self) -> List[Tuple[List[VisualizationOutput], SampleCache]]:
# If we run out of new batches, then we need to
# display data which was already shown before.
# However, since the dataset given to us is a generator,
# we can't reset it to return to the beginning.
# Because of this, we store a small cache of stale
# data, and iterate on it after the main generator
# stops returning new batches.
try:
batch_data = next(self._dataset_iter)
self._dataset_cache.append(batch_data)
if len(self._dataset_cache) > self._config.num_examples:
self._dataset_cache.pop(0)
except StopIteration:
self._dataset_iter = cycle(self._dataset_cache)
batch_data = next(self._dataset_iter)
vis_outputs = []
# Type ignore for issue with passing union to function taking generic
# https://github.com/python/mypy/issues/1533
for (
inputs,
additional_forward_args,
label,
) in _batched_generator( # type: ignore
inputs=batch_data.inputs,
additional_forward_args=batch_data.additional_args,
target_ind=batch_data.labels,
internal_batch_size=1, # should be 1 until we have batch label support
):
output = self._calculate_vis_output(inputs, additional_forward_args, label)
if output is not None:
cache = SampleCache(inputs, additional_forward_args, label)
vis_outputs.append((output, cache))
return vis_outputs
@log_usage()
def visualize(self):
self._outputs = []
while len(self._outputs) < self._config.num_examples:
self._outputs.extend(self._get_outputs())
return [o[0] for o in self._outputs]
def get_insights_config(self):
return {
"classes": self.classes,
"methods": list(ATTRIBUTION_NAMES_TO_METHODS.keys()),
"method_arguments": namedtuple_to_dict(
{k: v.params for (k, v) in ATTRIBUTION_METHOD_CONFIG.items()}
),
"selected_method": self._config.attribution_method,
}
|