Spaces:
Build error
Build error
File size: 9,013 Bytes
d61b9c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
'''
Implementation of ViTSTR based on timm VisionTransformer.
TODO:
1) distilled deit backbone
2) base deit backbone
Copyright 2021 Rowel Atienza
'''
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import torch
import torch.nn as nn
import logging
import torch.utils.model_zoo as model_zoo
from copy import deepcopy
from functools import partial
from timm.models.vision_transformer import VisionTransformer, _cfg
from timm.models.registry import register_model
from timm.models import create_model
_logger = logging.getLogger(__name__)
__all__ = [
'vitstr_tiny_patch16_224',
'vitstr_small_patch16_224',
'vitstr_base_patch16_224',
#'vitstr_tiny_distilled_patch16_224',
#'vitstr_small_distilled_patch16_224',
#'vitstr_base_distilled_patch16_224',
]
def create_vitstr(num_tokens, model=None, checkpoint_path=''):
vitstr = create_model(
model,
pretrained=True,
num_classes=num_tokens,
checkpoint_path=checkpoint_path)
# might need to run to get zero init head for transfer learning
vitstr.reset_classifier(num_classes=num_tokens)
return vitstr
class ViTSTR(VisionTransformer):
'''
ViTSTR is basically a ViT that uses DeiT weights.
Modified head to support a sequence of characters prediction for STR.
'''
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def reset_classifier(self, num_classes):
self.num_classes = num_classes
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
def patch_embed_func(self):
return self.patch_embed
def forward_features(self, x):
B = x.shape[0]
# print("prevx shape: ", x.shape) ### (1, 224, 224)
x = self.patch_embed(x)
# print("new x shape: ", x.shape) ### (1, 196, 768)
# patchsize is 16X16 so there are 14X14 grids=196.
# 768 - embedding size
# self.cls_token shape: torch.Size([1, 1, 768])
cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
x = torch.cat((cls_tokens, x), dim=1)
# self.pos_embed shape: torch.Size([1, 197, 768])]
x = x + self.pos_embed
# + self.pos_embed shape: torch.Size([1, 197, 768])
x = self.pos_drop(x)
for blk in self.blocks:
x = blk(x)
# blocks shape: torch.Size([1, 197, 768]) ALLL
x = self.norm(x)
# norm shape: torch.Size([1, 197, 768])
return x
def forward(self, x, seqlen=25):
x = self.forward_features(x)
x = x[:, :seqlen]
# seqlen shape: torch.Size([1, 25, 768])
# batch, seqlen, embsize
b, s, e = x.size()
x = x.reshape(b*s, e)
# reshaped shape: torch.Size([25, 768])
x = self.head(x).view(b, s, self.num_classes)
return x
def load_pretrained(model, cfg=None, num_classes=1000, in_chans=1, filter_fn=None, strict=True):
'''
Loads a pretrained checkpoint
From an older version of timm
'''
if cfg is None:
cfg = getattr(model, 'default_cfg')
if cfg is None or 'url' not in cfg or not cfg['url']:
_logger.warning("Pretrained model URL is invalid, using random initialization.")
return
state_dict = model_zoo.load_url(cfg['url'], progress=True, map_location='cpu')
if "model" in state_dict.keys():
state_dict = state_dict["model"]
if filter_fn is not None:
state_dict = filter_fn(state_dict)
if in_chans == 1:
conv1_name = cfg['first_conv']
_logger.info('Converting first conv (%s) pretrained weights from 3 to 1 channel' % conv1_name)
key = conv1_name + '.weight'
if key in state_dict.keys():
_logger.info('(%s) key found in state_dict' % key)
conv1_weight = state_dict[conv1_name + '.weight']
else:
_logger.info('(%s) key NOT found in state_dict' % key)
return
# Some weights are in torch.half, ensure it's float for sum on CPU
conv1_type = conv1_weight.dtype
conv1_weight = conv1_weight.float()
O, I, J, K = conv1_weight.shape
if I > 3:
assert conv1_weight.shape[1] % 3 == 0
# For models with space2depth stems
conv1_weight = conv1_weight.reshape(O, I // 3, 3, J, K)
conv1_weight = conv1_weight.sum(dim=2, keepdim=False)
else:
conv1_weight = conv1_weight.sum(dim=1, keepdim=True)
conv1_weight = conv1_weight.to(conv1_type)
state_dict[conv1_name + '.weight'] = conv1_weight
classifier_name = cfg['classifier']
if num_classes == 1000 and cfg['num_classes'] == 1001:
# special case for imagenet trained models with extra background class in pretrained weights
classifier_weight = state_dict[classifier_name + '.weight']
state_dict[classifier_name + '.weight'] = classifier_weight[1:]
classifier_bias = state_dict[classifier_name + '.bias']
state_dict[classifier_name + '.bias'] = classifier_bias[1:]
elif num_classes != cfg['num_classes']:
# completely discard fully connected for all other differences between pretrained and created model
del state_dict[classifier_name + '.weight']
del state_dict[classifier_name + '.bias']
strict = False
print("Loading pre-trained vision transformer weights from %s ..." % cfg['url'])
model.load_state_dict(state_dict, strict=strict)
def _conv_filter(state_dict, patch_size=16):
""" convert patch embedding weight from manual patchify + linear proj to conv"""
out_dict = {}
for k, v in state_dict.items():
if 'patch_embed.proj.weight' in k:
v = v.reshape((v.shape[0], 3, patch_size, patch_size))
out_dict[k] = v
return out_dict
@register_model
def vitstr_tiny_patch16_224(pretrained=False, **kwargs):
kwargs['in_chans'] = 1
model = ViTSTR(
patch_size=16, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, qkv_bias=True, **kwargs)
model.default_cfg = _cfg(
#url='https://github.com/roatienza/public/releases/download/v0.1-deit-tiny/deit_tiny_patch16_224-a1311bcf.pth'
url='https://dl.fbaipublicfiles.com/deit/deit_tiny_patch16_224-a1311bcf.pth'
)
if pretrained:
load_pretrained(
model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 1), filter_fn=_conv_filter)
return model
@register_model
def vitstr_small_patch16_224(pretrained=False, **kwargs):
kwargs['in_chans'] = 1
model = ViTSTR(
patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True, **kwargs)
model.default_cfg = _cfg(
#url="https://github.com/roatienza/public/releases/download/v0.1-deit-small/deit_small_patch16_224-cd65a155.pth"
url="https://dl.fbaipublicfiles.com/deit/deit_small_patch16_224-cd65a155.pth"
)
if pretrained:
load_pretrained(
model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 1), filter_fn=_conv_filter)
return model
@register_model
def vitstr_base_patch16_224(pretrained=False, **kwargs):
kwargs['in_chans'] = 1
model = ViTSTR(
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, **kwargs)
model.default_cfg = _cfg(
#url='https://github.com/roatienza/public/releases/download/v0.1-deit-base/deit_base_patch16_224-b5f2ef4d.pth'
url='https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth'
)
if pretrained:
load_pretrained(
model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 1), filter_fn=_conv_filter)
return model
# below is work in progress
@register_model
def vitstr_tiny_distilled_patch16_224(pretrained=False, **kwargs):
kwargs['in_chans'] = 1
#kwargs['distilled'] = True
model = ViTSTR(
patch_size=16, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, qkv_bias=True, **kwargs)
model.default_cfg = _cfg(
url='https://dl.fbaipublicfiles.com/deit/deit_tiny_distilled_patch16_224-b40b3cf7.pth'
)
if pretrained:
load_pretrained(
model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 1), filter_fn=_conv_filter)
return model
@register_model
def vitstr_small_distilled_patch16_224(pretrained=False, **kwargs):
kwargs['in_chans'] = 1
kwargs['distilled'] = True
model = ViTSTR(
patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True, **kwargs)
model.default_cfg = _cfg(
url="https://dl.fbaipublicfiles.com/deit/deit_small_distilled_patch16_224-649709d9.pth"
)
if pretrained:
load_pretrained(
model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 1), filter_fn=_conv_filter)
return model
|