File size: 3,743 Bytes
d61b9c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import torch
import torch.nn as nn
import torchvision

import sys
import math

# from config import get_args
# global_args = get_args(sys.argv[1:])


def conv3x3(in_planes, out_planes, stride=1):
  """3x3 convolution with padding"""
  return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                   padding=1, bias=False)


def conv1x1(in_planes, out_planes, stride=1):
  """1x1 convolution"""
  return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)


def get_sinusoid_encoding(n_position, feat_dim, wave_length=10000):
  # [n_position]
  positions = torch.arange(0, n_position)#.cuda()
  # [feat_dim]
  dim_range = torch.arange(0, feat_dim)#.cuda()
  dim_range = torch.pow(wave_length, 2 * (dim_range // 2) / feat_dim)
  # [n_position, feat_dim]
  angles = positions.unsqueeze(1) / dim_range.unsqueeze(0)
  angles = angles.float()
  angles[:, 0::2] = torch.sin(angles[:, 0::2])
  angles[:, 1::2] = torch.cos(angles[:, 1::2])
  return angles


class AsterBlock(nn.Module):

  def __init__(self, inplanes, planes, stride=1, downsample=None):
    super(AsterBlock, self).__init__()
    self.conv1 = conv1x1(inplanes, planes, stride)
    self.bn1 = nn.BatchNorm2d(planes)
    self.relu = nn.ReLU(inplace=True)
    self.conv2 = conv3x3(planes, planes)
    self.bn2 = nn.BatchNorm2d(planes)
    self.downsample = downsample
    self.stride = stride

  def forward(self, x):
    residual = x
    out = self.conv1(x)
    out = self.bn1(out)
    out = self.relu(out)
    out = self.conv2(out)
    out = self.bn2(out)

    if self.downsample is not None:
      residual = self.downsample(x)
    out += residual
    out = self.relu(out)
    return out


class ResNet_ASTER(nn.Module):
  """For aster or crnn
     borrowed from: https://github.com/ayumiymk/aster.pytorch
  """
  def __init__(self, in_channels=1, out_channel=512, n_group=1):
    super(ResNet_ASTER, self).__init__()
    self.n_group = n_group

    in_channels = in_channels
    self.layer0 = nn.Sequential(
        nn.Conv2d(in_channels, 32, kernel_size=(3, 3), stride=1, padding=1, bias=False),
        nn.BatchNorm2d(32),
        nn.ReLU(inplace=True))

    self.inplanes = 32
    self.layer1 = self._make_layer(32,  3, [2, 2]) # [16, 50]
    self.layer2 = self._make_layer(64,  4, [2, 2]) # [8, 25]
    self.layer3 = self._make_layer(128, 6, [2, 2]) # [4, 25]
    self.layer4 = self._make_layer(256, 6, [1, ]) # [2, 25]
    self.layer5 = self._make_layer(out_channel, 3, [1, 1]) # [1, 25]

    for m in self.modules():
      if isinstance(m, nn.Conv2d):
        nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
      elif isinstance(m, nn.BatchNorm2d):
        nn.init.constant_(m.weight, 1)
        nn.init.constant_(m.bias, 0)

  def _make_layer(self, planes, blocks, stride):
    downsample = None
    if stride != [1, 1] or self.inplanes != planes:
      downsample = nn.Sequential(
          conv1x1(self.inplanes, planes, stride),
          nn.BatchNorm2d(planes))

    layers = []
    layers.append(AsterBlock(self.inplanes, planes, stride, downsample))
    self.inplanes = planes
    for _ in range(1, blocks):
      layers.append(AsterBlock(self.inplanes, planes))
    return nn.Sequential(*layers)

  def forward(self, x):

    x0 = self.layer0(x)
    x1 = self.layer1(x0)
    x2 = self.layer2(x1)
    x3 = self.layer3(x2)
    x4 = self.layer4(x3)
    x5 = self.layer5(x4)

    return x5


def numel(model):
    return sum(p.numel() for p in model.parameters())

if __name__ == "__main__":
  x = torch.randn(3, 1, 64, 256)
  net = ResNet_ASTER()
  encoder_feat = net(x)
  print(encoder_feat.size())            # 3*512*h/4*w/4

  num_params = numel(net)
  print(f'Number of parameters: {num_params}')