Spaces:
Build error
Build error
File size: 22,495 Bytes
d61b9c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 |
#!/usr/bin/env python3
import typing
from enum import Enum
from functools import reduce
from inspect import signature
from typing import Any, Callable, cast, Dict, List, overload, Tuple, Union
import numpy as np
import torch
from captum._utils.typing import (
BaselineType,
Literal,
TargetType,
TensorOrTupleOfTensorsGeneric,
TupleOrTensorOrBoolGeneric,
)
from torch import device, Tensor
from torch.nn import Module
class ExpansionTypes(Enum):
repeat = 1
repeat_interleave = 2
def safe_div(
numerator: Tensor,
denom: Union[Tensor, int, float],
default_denom: Union[Tensor, int, float] = 1.0,
) -> Tensor:
r"""
A simple utility function to perform `numerator / denom`
if the statement is undefined => result will be `numerator / default_denorm`
"""
if isinstance(denom, (int, float)):
return numerator / (denom if denom != 0 else default_denom)
# convert default_denom to tensor if it is float
if not torch.is_tensor(default_denom):
default_denom = torch.tensor(
default_denom, dtype=denom.dtype, device=denom.device
)
return numerator / torch.where(denom != 0, denom, default_denom)
@typing.overload
def _is_tuple(inputs: Tensor) -> Literal[False]:
...
@typing.overload
def _is_tuple(inputs: Tuple[Tensor, ...]) -> Literal[True]:
...
def _is_tuple(inputs: Union[Tensor, Tuple[Tensor, ...]]) -> bool:
return isinstance(inputs, tuple)
def _validate_target(num_samples: int, target: TargetType) -> None:
if isinstance(target, list) or (
isinstance(target, torch.Tensor) and torch.numel(target) > 1
):
assert num_samples == len(target), (
"The number of samples provied in the"
"input {} does not match with the number of targets. {}".format(
num_samples, len(target)
)
)
def _validate_input(
inputs: Tuple[Tensor, ...],
baselines: Tuple[Union[Tensor, int, float], ...],
draw_baseline_from_distrib: bool = False,
) -> None:
assert len(inputs) == len(baselines), (
"Input and baseline must have the same "
"dimensions, baseline has {} features whereas input has {}.".format(
len(baselines), len(inputs)
)
)
for input, baseline in zip(inputs, baselines):
if draw_baseline_from_distrib:
assert (
isinstance(baseline, (int, float))
or input.shape[1:] == baseline.shape[1:]
), (
"The samples in input and baseline batches must have"
" the same shape or the baseline corresponding to the"
" input tensor must be a scalar."
" Found baseline: {} and input: {} ".format(baseline, input)
)
else:
assert (
isinstance(baseline, (int, float))
or input.shape == baseline.shape
or baseline.shape[0] == 1
), (
"Baseline can be provided as a tensor for just one input and"
" broadcasted to the batch or input and baseline must have the"
" same shape or the baseline corresponding to each input tensor"
" must be a scalar. Found baseline: {} and input: {}".format(
baseline, input
)
)
def _zeros(inputs: Tuple[Tensor, ...]) -> Tuple[int, ...]:
r"""
Takes a tuple of tensors as input and returns a tuple that has the same
length as `inputs` with each element as the integer 0.
"""
return tuple(0 if input.dtype is not torch.bool else False for input in inputs)
def _format_baseline(
baselines: BaselineType, inputs: Tuple[Tensor, ...]
) -> Tuple[Union[Tensor, int, float], ...]:
if baselines is None:
return _zeros(inputs)
if not isinstance(baselines, tuple):
baselines = (baselines,)
for baseline in baselines:
assert isinstance(
baseline, (torch.Tensor, int, float)
), "baseline input argument must be either a torch.Tensor or a number \
however {} detected".format(
type(baseline)
)
return baselines
@overload
def _format_tensor_into_tuples(inputs: None) -> None:
...
@overload
def _format_tensor_into_tuples(
inputs: Union[Tensor, Tuple[Tensor, ...]]
) -> Tuple[Tensor, ...]:
...
def _format_tensor_into_tuples(
inputs: Union[None, Tensor, Tuple[Tensor, ...]]
) -> Union[None, Tuple[Tensor, ...]]:
if inputs is None:
return None
if not isinstance(inputs, tuple):
assert isinstance(
inputs, torch.Tensor
), "`inputs` must have type " "torch.Tensor but {} found: ".format(type(inputs))
inputs = (inputs,)
return inputs
def _format_inputs(inputs: Any, unpack_inputs: bool = True) -> Any:
return (
inputs
if (isinstance(inputs, tuple) or isinstance(inputs, list)) and unpack_inputs
else (inputs,)
)
def _format_float_or_tensor_into_tuples(
inputs: Union[float, Tensor, Tuple[Union[float, Tensor], ...]]
) -> Tuple[Union[float, Tensor], ...]:
if not isinstance(inputs, tuple):
assert isinstance(
inputs, (torch.Tensor, float)
), "`inputs` must have type float or torch.Tensor but {} found: ".format(
type(inputs)
)
inputs = (inputs,)
return inputs
@overload
def _format_additional_forward_args(additional_forward_args: None) -> None:
...
@overload
def _format_additional_forward_args(
additional_forward_args: Union[Tensor, Tuple]
) -> Tuple:
...
@overload
def _format_additional_forward_args(additional_forward_args: Any) -> Union[None, Tuple]:
...
def _format_additional_forward_args(additional_forward_args: Any) -> Union[None, Tuple]:
if additional_forward_args is not None and not isinstance(
additional_forward_args, tuple
):
additional_forward_args = (additional_forward_args,)
return additional_forward_args
def _expand_additional_forward_args(
additional_forward_args: Any,
n_steps: int,
expansion_type: ExpansionTypes = ExpansionTypes.repeat,
) -> Union[None, Tuple]:
def _expand_tensor_forward_arg(
additional_forward_arg: Tensor,
n_steps: int,
expansion_type: ExpansionTypes = ExpansionTypes.repeat,
) -> Tensor:
if len(additional_forward_arg.size()) == 0:
return additional_forward_arg
if expansion_type == ExpansionTypes.repeat:
return torch.cat([additional_forward_arg] * n_steps, dim=0)
elif expansion_type == ExpansionTypes.repeat_interleave:
return additional_forward_arg.repeat_interleave(n_steps, dim=0)
else:
raise NotImplementedError(
"Currently only `repeat` and `repeat_interleave`"
" expansion_types are supported"
)
if additional_forward_args is None:
return None
return tuple(
_expand_tensor_forward_arg(additional_forward_arg, n_steps, expansion_type)
if isinstance(additional_forward_arg, torch.Tensor)
else additional_forward_arg
for additional_forward_arg in additional_forward_args
)
def _expand_target(
target: TargetType,
n_steps: int,
expansion_type: ExpansionTypes = ExpansionTypes.repeat,
) -> TargetType:
if isinstance(target, list):
if expansion_type == ExpansionTypes.repeat:
return target * n_steps
elif expansion_type == ExpansionTypes.repeat_interleave:
expanded_target = []
for i in target:
expanded_target.extend([i] * n_steps)
return cast(Union[List[Tuple[int, ...]], List[int]], expanded_target)
else:
raise NotImplementedError(
"Currently only `repeat` and `repeat_interleave`"
" expansion_types are supported"
)
elif isinstance(target, torch.Tensor) and torch.numel(target) > 1:
if expansion_type == ExpansionTypes.repeat:
return torch.cat([target] * n_steps, dim=0)
elif expansion_type == ExpansionTypes.repeat_interleave:
return target.repeat_interleave(n_steps, dim=0)
else:
raise NotImplementedError(
"Currently only `repeat` and `repeat_interleave`"
" expansion_types are supported"
)
return target
def _expand_feature_mask(
feature_mask: Union[Tensor, Tuple[Tensor, ...]], n_samples: int
):
is_feature_mask_tuple = _is_tuple(feature_mask)
feature_mask = _format_tensor_into_tuples(feature_mask)
feature_mask_new = tuple(
feature_mask_elem.repeat_interleave(n_samples, dim=0)
if feature_mask_elem.size(0) > 1
else feature_mask_elem
for feature_mask_elem in feature_mask
)
return _format_output(is_feature_mask_tuple, feature_mask_new)
def _expand_and_update_baselines(
inputs: Tuple[Tensor, ...],
n_samples: int,
kwargs: dict,
draw_baseline_from_distrib: bool = False,
):
def get_random_baseline_indices(bsz, baseline):
num_ref_samples = baseline.shape[0]
return np.random.choice(num_ref_samples, n_samples * bsz).tolist()
# expand baselines to match the sizes of input
if "baselines" not in kwargs:
return
baselines = kwargs["baselines"]
baselines = _format_baseline(baselines, inputs)
_validate_input(
inputs, baselines, draw_baseline_from_distrib=draw_baseline_from_distrib
)
if draw_baseline_from_distrib:
bsz = inputs[0].shape[0]
baselines = tuple(
baseline[get_random_baseline_indices(bsz, baseline)]
if isinstance(baseline, torch.Tensor)
else baseline
for baseline in baselines
)
else:
baselines = tuple(
baseline.repeat_interleave(n_samples, dim=0)
if isinstance(baseline, torch.Tensor)
and baseline.shape[0] == input.shape[0]
and baseline.shape[0] > 1
else baseline
for input, baseline in zip(inputs, baselines)
)
# update kwargs with expanded baseline
kwargs["baselines"] = baselines
def _expand_and_update_additional_forward_args(n_samples: int, kwargs: dict):
if "additional_forward_args" not in kwargs:
return
additional_forward_args = kwargs["additional_forward_args"]
additional_forward_args = _format_additional_forward_args(additional_forward_args)
if additional_forward_args is None:
return
additional_forward_args = _expand_additional_forward_args(
additional_forward_args,
n_samples,
expansion_type=ExpansionTypes.repeat_interleave,
)
# update kwargs with expanded baseline
kwargs["additional_forward_args"] = additional_forward_args
def _expand_and_update_target(n_samples: int, kwargs: dict):
if "target" not in kwargs:
return
target = kwargs["target"]
target = _expand_target(
target, n_samples, expansion_type=ExpansionTypes.repeat_interleave
)
# update kwargs with expanded baseline
kwargs["target"] = target
def _expand_and_update_feature_mask(n_samples: int, kwargs: dict):
if "feature_mask" not in kwargs:
return
feature_mask = kwargs["feature_mask"]
if feature_mask is None:
return
feature_mask = _expand_feature_mask(feature_mask, n_samples)
kwargs["feature_mask"] = feature_mask
@typing.overload
def _format_output(
is_inputs_tuple: Literal[True], output: Tuple[Tensor, ...]
) -> Tuple[Tensor, ...]:
...
@typing.overload
def _format_output(
is_inputs_tuple: Literal[False], output: Tuple[Tensor, ...]
) -> Tensor:
...
@typing.overload
def _format_output(
is_inputs_tuple: bool, output: Tuple[Tensor, ...]
) -> Union[Tensor, Tuple[Tensor, ...]]:
...
def _format_output(
is_inputs_tuple: bool, output: Tuple[Tensor, ...]
) -> Union[Tensor, Tuple[Tensor, ...]]:
r"""
In case input is a tensor and the output is returned in form of a
tuple we take the first element of the output's tuple to match the
same shape signatues of the inputs
"""
assert isinstance(output, tuple), "Output must be in shape of a tuple"
assert is_inputs_tuple or len(output) == 1, (
"The input is a single tensor however the output isn't."
"The number of output tensors is: {}".format(len(output))
)
return output if is_inputs_tuple else output[0]
@typing.overload
def _format_outputs(
is_multiple_inputs: Literal[False], outputs: List[Tuple[Tensor, ...]]
) -> Union[Tensor, Tuple[Tensor, ...]]:
...
@typing.overload
def _format_outputs(
is_multiple_inputs: Literal[True], outputs: List[Tuple[Tensor, ...]]
) -> List[Union[Tensor, Tuple[Tensor, ...]]]:
...
@typing.overload
def _format_outputs(
is_multiple_inputs: bool, outputs: List[Tuple[Tensor, ...]]
) -> Union[Tensor, Tuple[Tensor, ...], List[Union[Tensor, Tuple[Tensor, ...]]]]:
...
def _format_outputs(
is_multiple_inputs: bool, outputs: List[Tuple[Tensor, ...]]
) -> Union[Tensor, Tuple[Tensor, ...], List[Union[Tensor, Tuple[Tensor, ...]]]]:
assert isinstance(outputs, list), "Outputs must be a list"
assert is_multiple_inputs or len(outputs) == 1, (
"outputs should contain multiple inputs or have a single output"
f"however the number of outputs is: {len(outputs)}"
)
return (
[_format_output(len(output) > 1, output) for output in outputs]
if is_multiple_inputs
else _format_output(len(outputs[0]) > 1, outputs[0])
)
def _run_forward(
forward_func: Callable,
inputs: Any,
target: TargetType = None,
additional_forward_args: Any = None,
) -> Tensor:
forward_func_args = signature(forward_func).parameters
if len(forward_func_args) == 0:
output = forward_func()
return output if target is None else _select_targets(output, target)
# make everything a tuple so that it is easy to unpack without
# using if-statements
inputs = _format_inputs(inputs)
additional_forward_args = _format_additional_forward_args(additional_forward_args)
output = forward_func(
*(*inputs, *additional_forward_args)
if additional_forward_args is not None
else inputs
)
return _select_targets(output, target)
def _select_targets(output: Tensor, target: TargetType) -> Tensor:
if target is None:
return output
num_examples = output.shape[0]
dims = len(output.shape)
device = output.device
if isinstance(target, (int, tuple)):
return _verify_select_column(output, target)
elif isinstance(target, torch.Tensor):
if torch.numel(target) == 1 and isinstance(target.item(), int):
return _verify_select_column(output, cast(int, target.item()))
elif len(target.shape) == 1 and torch.numel(target) == num_examples:
assert dims == 2, "Output must be 2D to select tensor of targets."
return torch.gather(output, 1, target.reshape(len(output), 1))
else:
raise AssertionError(
"Tensor target dimension %r is not valid. %r"
% (target.shape, output.shape)
)
elif isinstance(target, list):
assert len(target) == num_examples, "Target list length does not match output!"
if isinstance(target[0], int):
assert dims == 2, "Output must be 2D to select tensor of targets."
return torch.gather(
output, 1, torch.tensor(target, device=device).reshape(len(output), 1)
)
elif isinstance(target[0], tuple):
return torch.stack(
[
output[(i,) + cast(Tuple, targ_elem)]
for i, targ_elem in enumerate(target)
]
)
else:
raise AssertionError("Target element type in list is not valid.")
else:
raise AssertionError("Target type %r is not valid." % target)
def _contains_slice(target: Union[int, Tuple[Union[int, slice], ...]]) -> bool:
if isinstance(target, tuple):
for index in target:
if isinstance(index, slice):
return True
return False
return isinstance(target, slice)
def _verify_select_column(
output: Tensor, target: Union[int, Tuple[Union[int, slice], ...]]
) -> Tensor:
target = (target,) if isinstance(target, int) else target
assert (
len(target) <= len(output.shape) - 1
), "Cannot choose target column with output shape %r." % (output.shape,)
return output[(slice(None), *target)]
def _verify_select_neuron(
layer_output: Tuple[Tensor, ...],
selector: Union[int, Tuple[Union[int, slice], ...], Callable],
) -> Tensor:
if callable(selector):
return selector(layer_output if len(layer_output) > 1 else layer_output[0])
assert len(layer_output) == 1, (
"Cannot select neuron index from layer with multiple tensors,"
"consider providing a neuron selector function instead."
)
selected_neurons = _verify_select_column(layer_output[0], selector)
if _contains_slice(selector):
return selected_neurons.reshape(selected_neurons.shape[0], -1).sum(1)
return selected_neurons
def _extract_device(
module: Module,
hook_inputs: Union[None, Tensor, Tuple[Tensor, ...]],
hook_outputs: Union[None, Tensor, Tuple[Tensor, ...]],
) -> device:
params = list(module.parameters())
if (
(hook_inputs is None or len(hook_inputs) == 0)
and (hook_outputs is None or len(hook_outputs) == 0)
and len(params) == 0
):
raise RuntimeError(
"""Unable to extract device information for the module
{}. Both inputs and outputs to the forward hook and
`module.parameters()` are empty.
The reason that the inputs to the forward hook are empty
could be due to the fact that the arguments to that
module {} are all named and are passed as named
variables to its forward function.
""".format(
module, module
)
)
if hook_inputs is not None and len(hook_inputs) > 0:
return hook_inputs[0].device
if hook_outputs is not None and len(hook_outputs) > 0:
return hook_outputs[0].device
return params[0].device
def _reduce_list(
val_list: List[TupleOrTensorOrBoolGeneric],
red_func: Callable[[List], Any] = torch.cat,
) -> TupleOrTensorOrBoolGeneric:
"""
Applies reduction function to given list. If each element in the list is
a Tensor, applies reduction function to all elements of the list, and returns
the output Tensor / value. If each element is a boolean, apply any method (or).
If each element is a tuple, applies reduction
function to corresponding elements of each tuple in the list, and returns
tuple of reduction function outputs with length matching the length of tuple
val_list[0]. It is assumed that all tuples in the list have the same length
and red_func can be applied to all elements in each corresponding position.
"""
assert len(val_list) > 0, "Cannot reduce empty list!"
if isinstance(val_list[0], torch.Tensor):
first_device = val_list[0].device
return red_func([elem.to(first_device) for elem in val_list])
elif isinstance(val_list[0], bool):
return any(val_list)
elif isinstance(val_list[0], tuple):
final_out = []
for i in range(len(val_list[0])):
final_out.append(
_reduce_list([val_elem[i] for val_elem in val_list], red_func)
)
else:
raise AssertionError(
"Elements to be reduced can only be"
"either Tensors or tuples containing Tensors."
)
return tuple(final_out)
def _sort_key_list(
keys: List[device], device_ids: Union[None, List[int]] = None
) -> List[device]:
"""
Sorts list of torch devices (keys) by given index list, device_ids. If keys
contains only one device, then the list is returned unchanged. If keys
contains a device for which the id is not contained in device_ids, then
an error is returned. This method is used to identify the order of DataParallel
batched devices, given the device ID ordering.
"""
if len(keys) == 1:
return keys
id_dict: Dict[int, device] = {}
assert device_ids is not None, "Device IDs must be provided with multiple devices."
for key in keys:
if key.index in id_dict:
raise AssertionError("Duplicate CUDA Device ID identified in device list.")
id_dict[key.index] = key
out_list = [
id_dict[device_id]
for device_id in filter(lambda device_id: device_id in id_dict, device_ids)
]
assert len(out_list) == len(keys), "Given Device ID List does not match"
"devices with computed tensors."
return out_list
def _flatten_tensor_or_tuple(inp: TensorOrTupleOfTensorsGeneric) -> Tensor:
if isinstance(inp, Tensor):
return inp.flatten()
return torch.cat([single_inp.flatten() for single_inp in inp])
def _get_module_from_name(model: Module, layer_name: str) -> Any:
r"""
Returns the module (layer) object, given its (string) name
in the model.
Args:
name (str): Module or nested modules name string in self.model
Returns:
The module (layer) in self.model.
"""
return reduce(getattr, layer_name.split("."), model)
def _register_backward_hook(
module: Module, hook: Callable, attr_obj: Any
) -> torch.utils.hooks.RemovableHandle:
# Special case for supporting output attributions for neuron methods
# This can be removed after deprecation of neuron output attributions
# for NeuronDeepLift, NeuronDeconvolution, and NeuronGuidedBackprop
# in v0.6.0
if (
hasattr(attr_obj, "skip_new_hook_layer")
and attr_obj.skip_new_hook_layer == module
):
return module.register_backward_hook(hook)
if torch.__version__ >= "1.9":
# Only supported for torch >= 1.9
return module.register_full_backward_hook(hook)
else:
# Fallback for previous versions of PyTorch
return module.register_backward_hook(hook)
|