Spaces:
Build error
Build error
File size: 34,318 Bytes
d61b9c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 |
#!/usr/bin/env python3
import threading
import typing
import warnings
from collections import defaultdict
from typing import Any, Callable, cast, Dict, List, Optional, Tuple, Union
import torch
from captum._utils.common import (
_reduce_list,
_run_forward,
_sort_key_list,
_verify_select_neuron,
)
from captum._utils.sample_gradient import SampleGradientWrapper
from captum._utils.typing import (
Literal,
ModuleOrModuleList,
TargetType,
TensorOrTupleOfTensorsGeneric,
)
from torch import device, Tensor
from torch.nn import Module
def apply_gradient_requirements(
inputs: Tuple[Tensor, ...], warn: bool = True
) -> List[bool]:
"""
Iterates through tuple on input tensors and sets requires_grad to be true on
each Tensor, and ensures all grads are set to zero. To ensure that the input
is returned to its initial state, a list of flags representing whether or not
a tensor originally required grad is returned.
"""
assert isinstance(
inputs, tuple
), "Inputs should be wrapped in a tuple prior to preparing for gradients"
grad_required = []
for index, input in enumerate(inputs):
assert isinstance(input, torch.Tensor), "Given input is not a torch.Tensor"
grad_required.append(input.requires_grad)
inputs_dtype = input.dtype
# Note: torch 1.2 doesn't support is_complex for dtype that's why we check
# on the existance of is_complex method.
if not inputs_dtype.is_floating_point and not (
hasattr(inputs_dtype, "is_complex") and inputs_dtype.is_complex
):
if warn:
warnings.warn(
"""Input Tensor %d has a dtype of %s.
Gradients cannot be activated
for these data types."""
% (index, str(inputs_dtype))
)
elif not input.requires_grad:
if warn:
warnings.warn(
"Input Tensor %d did not already require gradients, "
"required_grads has been set automatically." % index
)
input.requires_grad_()
return grad_required
def undo_gradient_requirements(
inputs: Tuple[Tensor, ...], grad_required: List[bool]
) -> None:
"""
Iterates through list of tensors, zeros each gradient, and sets required
grad to false if the corresponding index in grad_required is False.
This method is used to undo the effects of prepare_gradient_inputs, making
grads not required for any input tensor that did not initially require
gradients.
"""
assert isinstance(
inputs, tuple
), "Inputs should be wrapped in a tuple prior to preparing for gradients."
assert len(inputs) == len(
grad_required
), "Input tuple length should match gradient mask."
for index, input in enumerate(inputs):
assert isinstance(input, torch.Tensor), "Given input is not a torch.Tensor"
if not grad_required[index]:
input.requires_grad_(False)
def compute_gradients(
forward_fn: Callable,
inputs: Union[Tensor, Tuple[Tensor, ...]],
target_ind: TargetType = None,
additional_forward_args: Any = None,
) -> Tuple[Tensor, ...]:
r"""
Computes gradients of the output with respect to inputs for an
arbitrary forward function.
Args:
forward_fn: forward function. This can be for example model's
forward function.
input: Input at which gradients are evaluated,
will be passed to forward_fn.
target_ind: Index of the target class for which gradients
must be computed (classification only).
additional_forward_args: Additional input arguments that forward
function requires. It takes an empty tuple (no additional
arguments) if no additional arguments are required
"""
with torch.autograd.set_grad_enabled(True):
# runs forward pass
outputs = _run_forward(forward_fn, inputs, target_ind, additional_forward_args)
assert outputs[0].numel() == 1, (
"Target not provided when necessary, cannot"
" take gradient with respect to multiple outputs."
)
# torch.unbind(forward_out) is a list of scalar tensor tuples and
# contains batch_size * #steps elements
grads = torch.autograd.grad(torch.unbind(outputs), inputs)
return grads
def _neuron_gradients(
inputs: Union[Tensor, Tuple[Tensor, ...]],
saved_layer: Dict[device, Tuple[Tensor, ...]],
key_list: List[device],
gradient_neuron_selector: Union[int, Tuple[Union[int, slice], ...], Callable],
) -> Tuple[Tensor, ...]:
with torch.autograd.set_grad_enabled(True):
gradient_tensors = []
for key in key_list:
current_out_tensor = _verify_select_neuron(
saved_layer[key], gradient_neuron_selector
)
gradient_tensors.append(
torch.autograd.grad(
torch.unbind(current_out_tensor)
if current_out_tensor.numel() > 1
else current_out_tensor,
inputs,
)
)
_total_gradients = _reduce_list(gradient_tensors, sum)
return _total_gradients
@typing.overload
def _forward_layer_eval(
forward_fn: Callable,
inputs: Union[Tensor, Tuple[Tensor, ...]],
layer: Module,
additional_forward_args: Any = None,
device_ids: Union[None, List[int]] = None,
attribute_to_layer_input: bool = False,
grad_enabled: bool = False,
) -> Tuple[Tensor, ...]:
...
@typing.overload
def _forward_layer_eval(
forward_fn: Callable,
inputs: Union[Tensor, Tuple[Tensor, ...]],
layer: List[Module],
additional_forward_args: Any = None,
device_ids: Union[None, List[int]] = None,
attribute_to_layer_input: bool = False,
grad_enabled: bool = False,
) -> List[Tuple[Tensor, ...]]:
...
def _forward_layer_eval(
forward_fn: Callable,
inputs: Union[Tensor, Tuple[Tensor, ...]],
layer: ModuleOrModuleList,
additional_forward_args: Any = None,
device_ids: Union[None, List[int]] = None,
attribute_to_layer_input: bool = False,
grad_enabled: bool = False,
) -> Union[Tuple[Tensor, ...], List[Tuple[Tensor, ...]]]:
return _forward_layer_eval_with_neuron_grads(
forward_fn,
inputs,
layer,
additional_forward_args=additional_forward_args,
gradient_neuron_selector=None,
grad_enabled=grad_enabled,
device_ids=device_ids,
attribute_to_layer_input=attribute_to_layer_input,
)
@typing.overload
def _forward_layer_distributed_eval(
forward_fn: Callable,
inputs: Any,
layer: ModuleOrModuleList,
target_ind: TargetType = None,
additional_forward_args: Any = None,
attribute_to_layer_input: bool = False,
forward_hook_with_return: Literal[False] = False,
require_layer_grads: bool = False,
) -> Dict[Module, Dict[device, Tuple[Tensor, ...]]]:
...
@typing.overload
def _forward_layer_distributed_eval(
forward_fn: Callable,
inputs: Any,
layer: ModuleOrModuleList,
target_ind: TargetType = None,
additional_forward_args: Any = None,
attribute_to_layer_input: bool = False,
*,
forward_hook_with_return: Literal[True],
require_layer_grads: bool = False,
) -> Tuple[Dict[Module, Dict[device, Tuple[Tensor, ...]]], Tensor]:
...
def _forward_layer_distributed_eval(
forward_fn: Callable,
inputs: Any,
layer: ModuleOrModuleList,
target_ind: TargetType = None,
additional_forward_args: Any = None,
attribute_to_layer_input: bool = False,
forward_hook_with_return: bool = False,
require_layer_grads: bool = False,
) -> Union[
Tuple[Dict[Module, Dict[device, Tuple[Tensor, ...]]], Tensor],
Dict[Module, Dict[device, Tuple[Tensor, ...]]],
]:
r"""
A helper function that allows to set a hook on model's `layer`, run the forward
pass and returns intermediate layer results, stored in a dictionary,
and optionally also the output of the forward function. The keys in the
dictionary are the device ids and the values are corresponding intermediate layer
results, either the inputs or the outputs of the layer depending on whether we set
`attribute_to_layer_input` to True or False.
This is especially useful when we execute forward pass in a distributed setting,
using `DataParallel`s for example.
"""
saved_layer: Dict[Module, Dict[device, Tuple[Tensor, ...]]] = defaultdict(dict)
lock = threading.Lock()
all_layers: List[Module] = [layer] if isinstance(layer, Module) else layer
# Set a forward hook on specified module and run forward pass to
# get layer output tensor(s).
# For DataParallel models, each partition adds entry to dictionary
# with key as device and value as corresponding Tensor.
def hook_wrapper(original_module):
def forward_hook(module, inp, out=None):
eval_tsrs = inp if attribute_to_layer_input else out
is_eval_tuple = isinstance(eval_tsrs, tuple)
if not is_eval_tuple:
eval_tsrs = (eval_tsrs,)
if require_layer_grads:
apply_gradient_requirements(eval_tsrs, warn=False)
with lock:
nonlocal saved_layer
# Note that cloning behaviour of `eval_tsr` is different
# when `forward_hook_with_return` is set to True. This is because
# otherwise `backward()` on the last output layer won't execute.
if forward_hook_with_return:
saved_layer[original_module][eval_tsrs[0].device] = eval_tsrs
eval_tsrs_to_return = tuple(
eval_tsr.clone() for eval_tsr in eval_tsrs
)
if not is_eval_tuple:
eval_tsrs_to_return = eval_tsrs_to_return[0]
return eval_tsrs_to_return
else:
saved_layer[original_module][eval_tsrs[0].device] = tuple(
eval_tsr.clone() for eval_tsr in eval_tsrs
)
return forward_hook
all_hooks = []
try:
for single_layer in all_layers:
if attribute_to_layer_input:
all_hooks.append(
single_layer.register_forward_pre_hook(hook_wrapper(single_layer))
)
else:
all_hooks.append(
single_layer.register_forward_hook(hook_wrapper(single_layer))
)
output = _run_forward(
forward_fn,
inputs,
target=target_ind,
additional_forward_args=additional_forward_args,
)
finally:
for hook in all_hooks:
hook.remove()
if len(saved_layer) == 0:
raise AssertionError("Forward hook did not obtain any outputs for given layer")
if forward_hook_with_return:
return saved_layer, output
return saved_layer
def _gather_distributed_tensors(
saved_layer: Dict[device, Tuple[Tensor, ...]],
device_ids: Union[None, List[int]] = None,
key_list: Union[None, List[device]] = None,
) -> Tuple[Tensor, ...]:
r"""
A helper function to concatenate intermediate layer results stored on
different devices in `saved_layer`. `saved_layer` is a dictionary that
contains `device_id` as a key and intermediate layer results (either
the input or the output of the layer) stored on the device corresponding to
the key.
`key_list` is a list of devices in appropriate ordering for concatenation
and if not provided, keys are sorted based on device ids.
If only one key exists (standard model), key list simply has one element.
"""
if key_list is None:
key_list = _sort_key_list(list(saved_layer.keys()), device_ids)
return _reduce_list([saved_layer[device_id] for device_id in key_list])
def _extract_device_ids(
forward_fn: Callable,
saved_layer: Dict[Module, Dict[device, Tuple[Tensor, ...]]],
device_ids: Union[None, List[int]],
) -> Union[None, List[int]]:
r"""
A helper function to extract device_ids from `forward_function` in case it is
provided as part of a `DataParallel` model or if is accessible from
`forward_fn`.
In case input device_ids is not None, this function returns that value.
"""
# Multiple devices / keys implies a DataParallel model, so we look for
# device IDs if given or available from forward function
# (DataParallel model object).
if (
max(len(saved_layer[single_layer]) for single_layer in saved_layer) > 1
and device_ids is None
):
if (
hasattr(forward_fn, "device_ids")
and cast(Any, forward_fn).device_ids is not None
):
device_ids = cast(Any, forward_fn).device_ids
else:
raise AssertionError(
"Layer tensors are saved on multiple devices, however unable to access"
" device ID list from the `forward_fn`. Device ID list must be"
" accessible from `forward_fn`. For example, they can be retrieved"
" if `forward_fn` is a model of type `DataParallel`. It is used"
" for identifying device batch ordering."
)
return device_ids
@typing.overload
def _forward_layer_eval_with_neuron_grads(
forward_fn: Callable,
inputs: Union[Tensor, Tuple[Tensor, ...]],
layer: Module,
additional_forward_args: Any = None,
*,
gradient_neuron_selector: Union[int, Tuple[Union[int, slice], ...], Callable],
grad_enabled: bool = False,
device_ids: Union[None, List[int]] = None,
attribute_to_layer_input: bool = False,
) -> Tuple[Tuple[Tensor, ...], Tuple[Tensor, ...]]:
...
@typing.overload
def _forward_layer_eval_with_neuron_grads(
forward_fn: Callable,
inputs: Union[Tensor, Tuple[Tensor, ...]],
layer: Module,
additional_forward_args: Any = None,
gradient_neuron_selector: None = None,
grad_enabled: bool = False,
device_ids: Union[None, List[int]] = None,
attribute_to_layer_input: bool = False,
) -> Tuple[Tensor, ...]:
...
@typing.overload
def _forward_layer_eval_with_neuron_grads(
forward_fn: Callable,
inputs: Union[Tensor, Tuple[Tensor, ...]],
layer: List[Module],
additional_forward_args: Any = None,
gradient_neuron_selector: None = None,
grad_enabled: bool = False,
device_ids: Union[None, List[int]] = None,
attribute_to_layer_input: bool = False,
) -> List[Tuple[Tensor, ...]]:
...
def _forward_layer_eval_with_neuron_grads(
forward_fn: Callable,
inputs: Union[Tensor, Tuple[Tensor, ...]],
layer: ModuleOrModuleList,
additional_forward_args: Any = None,
gradient_neuron_selector: Union[
None, int, Tuple[Union[int, slice], ...], Callable
] = None,
grad_enabled: bool = False,
device_ids: Union[None, List[int]] = None,
attribute_to_layer_input: bool = False,
) -> Union[
Tuple[Tuple[Tensor, ...], Tuple[Tensor, ...]],
Tuple[Tensor, ...],
List[Tuple[Tensor, ...]],
]:
"""
This method computes forward evaluation for a particular layer using a
forward hook. If a gradient_neuron_selector is provided, then gradients with
respect to that neuron in the layer output are also returned.
These functionalities are combined due to the behavior of DataParallel models
with hooks, in which hooks are executed once per device. We need to internally
combine the separated tensors from devices by concatenating based on device_ids.
Any necessary gradients must be taken with respect to each independent batched
tensor, so the gradients are computed and combined appropriately.
More information regarding the behavior of forward hooks with DataParallel models
can be found in the PyTorch data parallel documentation. We maintain the separate
evals in a dictionary protected by a lock, analogous to the gather implementation
for the core PyTorch DataParallel implementation.
"""
grad_enabled = True if gradient_neuron_selector is not None else grad_enabled
with torch.autograd.set_grad_enabled(grad_enabled):
saved_layer = _forward_layer_distributed_eval(
forward_fn,
inputs,
layer,
additional_forward_args=additional_forward_args,
attribute_to_layer_input=attribute_to_layer_input,
)
device_ids = _extract_device_ids(forward_fn, saved_layer, device_ids)
# Identifies correct device ordering based on device ids.
# key_list is a list of devices in appropriate ordering for concatenation.
# If only one key exists (standard model), key list simply has one element.
key_list = _sort_key_list(list(next(iter(saved_layer.values())).keys()), device_ids)
if gradient_neuron_selector is not None:
assert isinstance(
layer, Module
), "Cannot compute neuron gradients for multiple layers simultaneously!"
inp_grads = _neuron_gradients(
inputs, saved_layer[layer], key_list, gradient_neuron_selector
)
return (
_gather_distributed_tensors(saved_layer[layer], key_list=key_list),
inp_grads,
)
else:
if isinstance(layer, Module):
return _gather_distributed_tensors(saved_layer[layer], key_list=key_list)
else:
return [
_gather_distributed_tensors(saved_layer[curr_layer], key_list=key_list)
for curr_layer in layer
]
@typing.overload
def compute_layer_gradients_and_eval(
forward_fn: Callable,
layer: Module,
inputs: Union[Tensor, Tuple[Tensor, ...]],
target_ind: TargetType = None,
additional_forward_args: Any = None,
*,
gradient_neuron_selector: Union[int, Tuple[Union[int, slice], ...], Callable],
device_ids: Union[None, List[int]] = None,
attribute_to_layer_input: bool = False,
output_fn: Union[None, Callable] = None,
) -> Tuple[Tuple[Tensor, ...], Tuple[Tensor, ...], Tuple[Tensor, ...]]:
...
@typing.overload
def compute_layer_gradients_and_eval(
forward_fn: Callable,
layer: List[Module],
inputs: Union[Tensor, Tuple[Tensor, ...]],
target_ind: TargetType = None,
additional_forward_args: Any = None,
gradient_neuron_selector: None = None,
device_ids: Union[None, List[int]] = None,
attribute_to_layer_input: bool = False,
output_fn: Union[None, Callable] = None,
) -> Tuple[List[Tuple[Tensor, ...]], List[Tuple[Tensor, ...]]]:
...
@typing.overload
def compute_layer_gradients_and_eval(
forward_fn: Callable,
layer: Module,
inputs: Union[Tensor, Tuple[Tensor, ...]],
target_ind: TargetType = None,
additional_forward_args: Any = None,
gradient_neuron_selector: None = None,
device_ids: Union[None, List[int]] = None,
attribute_to_layer_input: bool = False,
output_fn: Union[None, Callable] = None,
) -> Tuple[Tuple[Tensor, ...], Tuple[Tensor, ...]]:
...
def compute_layer_gradients_and_eval(
forward_fn: Callable,
layer: ModuleOrModuleList,
inputs: Union[Tensor, Tuple[Tensor, ...]],
target_ind: TargetType = None,
additional_forward_args: Any = None,
gradient_neuron_selector: Union[
None, int, Tuple[Union[int, slice], ...], Callable
] = None,
device_ids: Union[None, List[int]] = None,
attribute_to_layer_input: bool = False,
output_fn: Union[None, Callable] = None,
) -> Union[
Tuple[Tuple[Tensor, ...], Tuple[Tensor, ...]],
Tuple[Tuple[Tensor, ...], Tuple[Tensor, ...], Tuple[Tensor, ...]],
Tuple[List[Tuple[Tensor, ...]], List[Tuple[Tensor, ...]]],
]:
r"""
Computes gradients of the output with respect to a given layer as well
as the output evaluation of the layer for an arbitrary forward function
and given input.
For data parallel models, hooks are executed once per device ,so we
need to internally combine the separated tensors from devices by
concatenating based on device_ids. Any necessary gradients must be taken
with respect to each independent batched tensor, so the gradients are
computed and combined appropriately.
More information regarding the behavior of forward hooks with DataParallel
models can be found in the PyTorch data parallel documentation. We maintain
the separate inputs in a dictionary protected by a lock, analogous to the
gather implementation for the core PyTorch DataParallel implementation.
NOTE: To properly handle inplace operations, a clone of the layer output
is stored. This structure inhibits execution of a backward hook on the last
module for the layer output when computing the gradient with respect to
the input, since we store an intermediate clone, as
opposed to the true module output. If backward module hooks are necessary
for the final module when computing input gradients, utilize
_forward_layer_eval_with_neuron_grads instead.
Args:
forward_fn: forward function. This can be for example model's
forward function.
layer: Layer for which gradients / output will be evaluated.
inputs: Input at which gradients are evaluated,
will be passed to forward_fn.
target_ind: Index of the target class for which gradients
must be computed (classification only).
output_fn: An optional function that is applied to the layer inputs or
outputs depending whether the `attribute_to_layer_input` is
set to `True` or `False`
args: Additional input arguments that forward function requires.
It takes an empty tuple (no additional arguments) if no
additional arguments are required
Returns:
2-element tuple of **gradients**, **evals**:
- **gradients**:
Gradients of output with respect to target layer output.
- **evals**:
Target layer output for given input.
"""
with torch.autograd.set_grad_enabled(True):
# saved_layer is a dictionary mapping device to a tuple of
# layer evaluations on that device.
saved_layer, output = _forward_layer_distributed_eval(
forward_fn,
inputs,
layer,
target_ind=target_ind,
additional_forward_args=additional_forward_args,
attribute_to_layer_input=attribute_to_layer_input,
forward_hook_with_return=True,
require_layer_grads=True,
)
assert output[0].numel() == 1, (
"Target not provided when necessary, cannot"
" take gradient with respect to multiple outputs."
)
device_ids = _extract_device_ids(forward_fn, saved_layer, device_ids)
# Identifies correct device ordering based on device ids.
# key_list is a list of devices in appropriate ordering for concatenation.
# If only one key exists (standard model), key list simply has one element.
key_list = _sort_key_list(
list(next(iter(saved_layer.values())).keys()), device_ids
)
all_outputs: Union[Tuple[Tensor, ...], List[Tuple[Tensor, ...]]]
if isinstance(layer, Module):
all_outputs = _reduce_list(
[
saved_layer[layer][device_id]
if output_fn is None
else output_fn(saved_layer[layer][device_id])
for device_id in key_list
]
)
else:
all_outputs = [
_reduce_list(
[
saved_layer[single_layer][device_id]
if output_fn is None
else output_fn(saved_layer[single_layer][device_id])
for device_id in key_list
]
)
for single_layer in layer
]
all_layers: List[Module] = [layer] if isinstance(layer, Module) else layer
grad_inputs = tuple(
layer_tensor
for single_layer in all_layers
for device_id in key_list
for layer_tensor in saved_layer[single_layer][device_id]
)
saved_grads = torch.autograd.grad(torch.unbind(output), grad_inputs)
offset = 0
all_grads: List[Tuple[Tensor, ...]] = []
for single_layer in all_layers:
num_tensors = len(next(iter(saved_layer[single_layer].values())))
curr_saved_grads = [
saved_grads[i : i + num_tensors]
for i in range(
offset, offset + len(key_list) * num_tensors, num_tensors
)
]
offset += len(key_list) * num_tensors
if output_fn is not None:
curr_saved_grads = [
output_fn(curr_saved_grad) for curr_saved_grad in curr_saved_grads
]
all_grads.append(_reduce_list(curr_saved_grads))
layer_grads: Union[Tuple[Tensor, ...], List[Tuple[Tensor, ...]]]
layer_grads = all_grads
if isinstance(layer, Module):
layer_grads = all_grads[0]
if gradient_neuron_selector is not None:
assert isinstance(
layer, Module
), "Cannot compute neuron gradients for multiple layers simultaneously!"
inp_grads = _neuron_gradients(
inputs, saved_layer[layer], key_list, gradient_neuron_selector
)
return (
cast(Tuple[Tensor, ...], layer_grads),
cast(Tuple[Tensor, ...], all_outputs),
inp_grads,
)
return layer_grads, all_outputs # type: ignore
def construct_neuron_grad_fn(
layer: Module,
neuron_selector: Union[int, Tuple[Union[int, slice], ...], Callable],
device_ids: Union[None, List[int]] = None,
attribute_to_neuron_input: bool = False,
) -> Callable:
def grad_fn(
forward_fn: Callable,
inputs: TensorOrTupleOfTensorsGeneric,
target_ind: TargetType = None,
additional_forward_args: Any = None,
) -> Tuple[Tensor, ...]:
_, grads = _forward_layer_eval_with_neuron_grads(
forward_fn,
inputs,
layer,
additional_forward_args,
gradient_neuron_selector=neuron_selector,
device_ids=device_ids,
attribute_to_layer_input=attribute_to_neuron_input,
)
return grads
return grad_fn
def _compute_jacobian_wrt_params(
model: Module,
inputs: Tuple[Any, ...],
labels: Optional[Tensor] = None,
loss_fn: Optional[Union[Module, Callable]] = None,
) -> Tuple[Tensor, ...]:
r"""
Computes the Jacobian of a batch of test examples given a model, and optional
loss function and target labels. This method is equivalent to calculating the
gradient for every individual example in the minibatch.
Args:
model (torch.nn.Module): The trainable model providing the forward pass
inputs (tuple of Any): The minibatch for which the forward pass is computed.
It is unpacked before passing to `model`, so it must be a tuple. The
individual elements of `inputs` can be anything.
labels (Tensor or None): Labels for input if computing a loss function.
loss_fn (torch.nn.Module or Callable or None): The loss function. If a library
defined loss function is provided, it would be expected to be a
torch.nn.Module. If a custom loss is provided, it can be either type,
but must behave as a library loss function would if `reduction='none'`.
Returns:
grads (Tuple of Tensor): Returns the Jacobian for the minibatch as a
tuple of gradients corresponding to the tuple of trainable parameters
returned by `model.parameters()`. Each object grads[i] references to the
gradients for the parameters in the i-th trainable layer of the model.
Each grads[i] object is a tensor with the gradients for the `inputs`
batch. For example, grads[i][j] would reference the gradients for the
parameters of the i-th layer, for the j-th member of the minibatch.
"""
with torch.autograd.set_grad_enabled(True):
out = model(*inputs)
assert out.dim() != 0, "Please ensure model output has at least one dimension."
if labels is not None and loss_fn is not None:
loss = loss_fn(out, labels)
if hasattr(loss_fn, "reduction"):
msg0 = "Please ensure loss_fn.reduction is set to `none`"
assert loss_fn.reduction == "none", msg0 # type: ignore
else:
msg1 = (
"Loss function is applying a reduction. Please ensure "
f"Output shape: {out.shape} and Loss shape: {loss.shape} "
"are matching."
)
assert loss.dim() != 0, msg1
assert out.shape[0] == loss.shape[0], msg1
out = loss
grads_list = [
torch.autograd.grad(
outputs=out[i],
inputs=model.parameters(), # type: ignore
grad_outputs=torch.ones_like(out[i]),
retain_graph=True,
)
for i in range(out.shape[0])
]
grads = tuple([torch.stack(x) for x in zip(*grads_list)])
return tuple(grads)
def _compute_jacobian_wrt_params_with_sample_wise_trick(
model: Module,
inputs: Tuple[Any, ...],
labels: Optional[Tensor] = None,
loss_fn: Optional[Union[Module, Callable]] = None,
reduction_type: Optional[str] = "sum",
) -> Tuple[Any, ...]:
r"""
Computes the Jacobian of a batch of test examples given a model, and optional
loss function and target labels. This method uses sample-wise gradients per
batch trick to fully vectorize the Jacobian calculation. Currently, only
linear and conv2d layers are supported.
User must `add_hooks(model)` before calling this function.
Args:
model (torch.nn.Module): The trainable model providing the forward pass
inputs (tuple of Any): The minibatch for which the forward pass is computed.
It is unpacked before passing to `model`, so it must be a tuple. The
individual elements of `inputs` can be anything.
labels (Tensor or None): Labels for input if computing a loss function.
loss_fn (torch.nn.Module or Callable or None): The loss function. If a library
defined loss function is provided, it would be expected to be a
torch.nn.Module. If a custom loss is provided, it can be either type,
but must behave as a library loss function would if `reduction='sum'` or
`reduction='mean'`.
reduction_type (str): The type of reduction applied. If a loss_fn is passed,
this should match `loss_fn.reduction`. Else if gradients are being
computed on direct model outputs (scores), then 'sum' should be used.
Defaults to 'sum'.
Returns:
grads (Tuple of Tensor): Returns the Jacobian for the minibatch as a
tuple of gradients corresponding to the tuple of trainable parameters
returned by `model.parameters()`. Each object grads[i] references to the
gradients for the parameters in the i-th trainable layer of the model.
Each grads[i] object is a tensor with the gradients for the `inputs`
batch. For example, grads[i][j] would reference the gradients for the
parameters of the i-th layer, for the j-th member of the minibatch.
"""
with torch.autograd.set_grad_enabled(True):
sample_grad_wrapper = SampleGradientWrapper(model)
try:
sample_grad_wrapper.add_hooks()
out = model(*inputs)
assert (
out.dim() != 0
), "Please ensure model output has at least one dimension."
if labels is not None and loss_fn is not None:
loss = loss_fn(out, labels)
# TODO: allow loss_fn to be Callable
if isinstance(loss_fn, Module) and hasattr(loss_fn, "reduction"):
msg0 = (
"Please ensure that loss_fn.reduction is set to `sum` or `mean`"
)
assert loss_fn.reduction != "none", msg0
msg1 = (
f"loss_fn.reduction ({loss_fn.reduction}) does not match"
f"reduction type ({reduction_type}). Please ensure they are"
" matching."
)
assert loss_fn.reduction == reduction_type, msg1
msg2 = (
"Please ensure custom loss function is applying either a "
"sum or mean reduction."
)
assert out.shape != loss.shape, msg2
if reduction_type != "sum" and reduction_type != "mean":
raise ValueError(
f"{reduction_type} is not a valid value for reduction_type. "
"Must be either 'sum' or 'mean'."
)
out = loss
sample_grad_wrapper.compute_param_sample_gradients(
out, loss_mode=reduction_type
)
grads = tuple(
param.sample_grad # type: ignore
for param in model.parameters()
if hasattr(param, "sample_grad")
)
finally:
sample_grad_wrapper.remove_hooks()
return grads
|