Spaces:
Build error
Build error
File size: 12,218 Bytes
d61b9c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
from typing import Callable, cast, List, Optional
import torch.nn as nn
from captum._utils.models.model import Model
from torch import Tensor
from torch.utils.data import DataLoader
class LinearModel(nn.Module, Model):
SUPPORTED_NORMS: List[Optional[str]] = [None, "batch_norm", "layer_norm"]
def __init__(self, train_fn: Callable, **kwargs) -> None:
r"""
Constructs a linear model with a training function and additional
construction arguments that will be sent to
`self._construct_model_params` after a `self.fit` is called. Please note
that this assumes the `self.train_fn` will call
`self._construct_model_params`.
Please note that this is an experimental feature.
Args:
train_fn (callable)
The function to train with. See
`captum._utils.models.linear_model.train.sgd_train_linear_model`
and
`captum._utils.models.linear_model.train.sklearn_train_linear_model`
for examples
kwargs
Any additional keyword arguments to send to
`self._construct_model_params` once a `self.fit` is called.
"""
super().__init__()
self.norm: Optional[nn.Module] = None
self.linear: Optional[nn.Linear] = None
self.train_fn = train_fn
self.construct_kwargs = kwargs
def _construct_model_params(
self,
in_features: Optional[int] = None,
out_features: Optional[int] = None,
norm_type: Optional[str] = None,
affine_norm: bool = False,
bias: bool = True,
weight_values: Optional[Tensor] = None,
bias_value: Optional[Tensor] = None,
classes: Optional[Tensor] = None,
):
r"""
Lazily initializes a linear model. This will be called for you in a
train method.
Args:
in_features (int):
The number of input features
output_features (int):
The number of output features.
norm_type (str, optional):
The type of normalization that can occur. Please assign this
to one of `PyTorchLinearModel.SUPPORTED_NORMS`.
affine_norm (bool):
Whether or not to learn an affine transformation of the
normalization parameters used.
bias (bool):
Whether to add a bias term. Not needed if normalized input.
weight_values (tensor, optional):
The values to initialize the linear model with. This must be a
1D or 2D tensor, and of the form `(num_outputs, num_features)` or
`(num_features,)`. Additionally, if this is provided you need not
to provide `in_features` or `out_features`.
bias_value (tensor, optional):
The bias value to initialize the model with.
classes (tensor, optional):
The list of prediction classes supported by the model in case it
performs classificaton. In case of regression it is set to None.
Default: None
"""
if norm_type not in LinearModel.SUPPORTED_NORMS:
raise ValueError(
f"{norm_type} not supported. Please use {LinearModel.SUPPORTED_NORMS}"
)
if weight_values is not None:
in_features = weight_values.shape[-1]
out_features = (
1 if len(weight_values.shape) == 1 else weight_values.shape[0]
)
if in_features is None or out_features is None:
raise ValueError(
"Please provide `in_features` and `out_features` or `weight_values`"
)
if norm_type == "batch_norm":
self.norm = nn.BatchNorm1d(in_features, eps=1e-8, affine=affine_norm)
elif norm_type == "layer_norm":
self.norm = nn.LayerNorm(
in_features, eps=1e-8, elementwise_affine=affine_norm
)
else:
self.norm = None
self.linear = nn.Linear(in_features, out_features, bias=bias)
if weight_values is not None:
self.linear.weight.data = weight_values
if bias_value is not None:
if not bias:
raise ValueError("`bias_value` is not None and bias is False")
self.linear.bias.data = bias_value
if classes is not None:
self.linear.classes = classes
def fit(self, train_data: DataLoader, **kwargs):
r"""
Calls `self.train_fn`
"""
return self.train_fn(
self,
dataloader=train_data,
construct_kwargs=self.construct_kwargs,
**kwargs,
)
def forward(self, x: Tensor) -> Tensor:
assert self.linear is not None
if self.norm is not None:
x = self.norm(x)
return self.linear(x)
def representation(self) -> Tensor:
r"""
Returns a tensor which describes the hyper-plane input space. This does
not include the bias. For bias/intercept, please use `self.bias`
"""
assert self.linear is not None
return self.linear.weight.detach()
def bias(self) -> Optional[Tensor]:
r"""
Returns the bias of the linear model
"""
if self.linear is None or self.linear.bias is None:
return None
return self.linear.bias.detach()
def classes(self) -> Optional[Tensor]:
if self.linear is None or self.linear.classes is None:
return None
return cast(Tensor, self.linear.classes).detach()
class SGDLinearModel(LinearModel):
def __init__(self, **kwargs) -> None:
r"""
Factory class. Construct a a `LinearModel` with the
`sgd_train_linear_model` as the train method
Args:
kwargs
Arguments send to `self._construct_model_params` after
`self.fit` is called. Please refer to that method for parameter
documentation.
"""
# avoid cycles
from captum._utils.models.linear_model.train import sgd_train_linear_model
super().__init__(train_fn=sgd_train_linear_model, **kwargs)
class SGDLasso(SGDLinearModel):
def __init__(self, **kwargs) -> None:
r"""
Factory class to train a `LinearModel` with SGD
(`sgd_train_linear_model`) whilst setting appropriate parameters to
optimize for ridge regression loss. This optimizes L2 loss + alpha * L1
regularization.
Please note that with SGD it is not guaranteed that weights will
converge to 0.
"""
super().__init__(**kwargs)
def fit(self, train_data: DataLoader, **kwargs):
# avoid cycles
from captum._utils.models.linear_model.train import l2_loss
return super().fit(train_data=train_data, loss_fn=l2_loss, reg_term=1, **kwargs)
class SGDRidge(SGDLinearModel):
def __init__(self, **kwargs) -> None:
r"""
Factory class to train a `LinearModel` with SGD
(`sgd_train_linear_model`) whilst setting appropriate parameters to
optimize for ridge regression loss. This optimizes L2 loss + alpha *
L2 regularization.
"""
super().__init__(**kwargs)
def fit(self, train_data: DataLoader, **kwargs):
# avoid cycles
from captum._utils.models.linear_model.train import l2_loss
return super().fit(train_data=train_data, loss_fn=l2_loss, reg_term=2, **kwargs)
class SGDLinearRegression(SGDLinearModel):
def __init__(self, **kwargs) -> None:
r"""
Factory class to train a `LinearModel` with SGD
(`sgd_train_linear_model`). For linear regression this assigns the loss
to L2 and no regularization.
"""
super().__init__(**kwargs)
def fit(self, train_data: DataLoader, **kwargs):
# avoid cycles
from captum._utils.models.linear_model.train import l2_loss
return super().fit(
train_data=train_data, loss_fn=l2_loss, reg_term=None, **kwargs
)
class SkLearnLinearModel(LinearModel):
def __init__(self, sklearn_module: str, **kwargs) -> None:
r"""
Factory class to construct a `LinearModel` with sklearn training method.
Please note that this assumes:
0. You have sklearn and numpy installed
1. The dataset can fit into memory
SkLearn support does introduce some slight overhead as we convert the
tensors to numpy and then convert the resulting trained model to a
`LinearModel` object. However, this conversion should be negligible.
Args:
sklearn_module
The module under sklearn to construct and use for training, e.g.
use "svm.LinearSVC" for an SVM or "linear_model.Lasso" for Lasso.
There are factory classes defined for you for common use cases,
such as `SkLearnLasso`.
kwargs
The kwargs to pass to the construction of the sklearn model
"""
# avoid cycles
from captum._utils.models.linear_model.train import sklearn_train_linear_model
super().__init__(train_fn=sklearn_train_linear_model, **kwargs)
self.sklearn_module = sklearn_module
def fit(self, train_data: DataLoader, **kwargs):
r"""
Args:
train_data
Train data to use
kwargs
Arguments to feed to `.fit` method for sklearn
"""
return super().fit(
train_data=train_data, sklearn_trainer=self.sklearn_module, **kwargs
)
class SkLearnLasso(SkLearnLinearModel):
def __init__(self, **kwargs) -> None:
r"""
Factory class. Trains a `LinearModel` model with
`sklearn.linear_model.Lasso`. You will need sklearn version >= 0.23 to
support sample weights.
"""
super().__init__(sklearn_module="linear_model.Lasso", **kwargs)
def fit(self, train_data: DataLoader, **kwargs):
return super().fit(train_data=train_data, **kwargs)
class SkLearnRidge(SkLearnLinearModel):
def __init__(self, **kwargs) -> None:
r"""
Factory class. Trains a model with `sklearn.linear_model.Ridge`.
Any arguments provided to the sklearn constructor can be provided
as kwargs here.
"""
super().__init__(sklearn_module="linear_model.Ridge", **kwargs)
def fit(self, train_data: DataLoader, **kwargs):
return super().fit(train_data=train_data, **kwargs)
class SkLearnLinearRegression(SkLearnLinearModel):
def __init__(self, **kwargs) -> None:
r"""
Factory class. Trains a model with `sklearn.linear_model.LinearRegression`.
Any arguments provided to the sklearn constructor can be provided
as kwargs here.
"""
super().__init__(sklearn_module="linear_model.LinearRegression", **kwargs)
def fit(self, train_data: DataLoader, **kwargs):
return super().fit(train_data=train_data, **kwargs)
class SkLearnLogisticRegression(SkLearnLinearModel):
def __init__(self, **kwargs) -> None:
r"""
Factory class. Trains a model with `sklearn.linear_model.LogisticRegression`.
Any arguments provided to the sklearn constructor can be provided
as kwargs here.
"""
super().__init__(sklearn_module="linear_model.LogisticRegression", **kwargs)
def fit(self, train_data: DataLoader, **kwargs):
return super().fit(train_data=train_data, **kwargs)
class SkLearnSGDClassifier(SkLearnLinearModel):
def __init__(self, **kwargs) -> None:
r"""
Factory class. Trains a model with `sklearn.linear_model.SGDClassifier(`.
Any arguments provided to the sklearn constructor can be provided
as kwargs here.
"""
super().__init__(sklearn_module="linear_model.SGDClassifier", **kwargs)
def fit(self, train_data: DataLoader, **kwargs):
return super().fit(train_data=train_data, **kwargs)
|