Spaces:
Build error
Build error
File size: 48,748 Bytes
d61b9c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 |
import os
import time
import string
import argparse
import re
import sys
import random
import pickle
import torch
import torch.backends.cudnn as cudnn
import torch.utils.data
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
from skimage.color import gray2rgb
from nltk.metrics.distance import edit_distance
import cv2
from utils import CTCLabelConverter, AttnLabelConverter, Averager
from dataset_trba import hierarchical_dataset, AlignCollate
from model_trba import Model, SuperPixler, CastNumpy, STRScore
# import hiddenlayer as hl
from lime import lime_image
from lime.wrappers.scikit_image import SegmentationAlgorithm
import matplotlib.pyplot as plt
import random
from captum._utils.models.linear_model import SkLearnLinearModel, SkLearnRidge
import statistics
import settings
import sys
import copy
from captum_test import acquire_average_auc, saveAttrData
from captum_improve_vitstr import rankedAttributionsBySegm
from matplotlib import pyplot as plt
from captum.attr._utils.visualization import visualize_image_attr
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
from captum.attr import (
GradientShap,
DeepLift,
DeepLiftShap,
IntegratedGradients,
LayerConductance,
NeuronConductance,
NoiseTunnel,
Saliency,
InputXGradient,
GuidedBackprop,
Deconvolution,
GuidedGradCam,
FeatureAblation,
ShapleyValueSampling,
Lime,
KernelShap
)
from captum.metrics import (
infidelity,
sensitivity_max
)
def getPredAndConf(opt, model, scoring, image, converter, labels):
batch_size = image.size(0)
length_for_pred = torch.IntTensor([opt.batch_max_length] * batch_size).to(device)
text_for_pred = torch.LongTensor(batch_size, opt.batch_max_length + 1).fill_(0).to(device)
text_for_loss, length_for_loss = converter.encode(labels, batch_max_length=opt.batch_max_length)
if 'CTC' in opt.Prediction:
preds = model(image, text_for_pred)
confScore = scoring(preds)
confScore = confScore.detach().cpu().numpy()
# Calculate evaluation loss for CTC deocder.
preds_size = torch.IntTensor([preds.size(1)] * batch_size)
# Select max probabilty (greedy decoding) then decode index to character
if opt.baiduCTC:
_, preds_index = preds.max(2)
preds_index = preds_index.view(-1)
else:
_, preds_index = preds.max(2)
preds_str = converter.decode(preds_index.data, preds_size.data)[0]
else:
preds = model(image, text_for_pred, is_train=False)
confScore = scoring(preds)
confScore = confScore.detach().cpu().numpy()
preds = preds[:, :text_for_loss.shape[1] - 1, :]
target = text_for_loss[:, 1:] # without [GO] Symbol
# cost = criterion(preds.contiguous().view(-1, preds.shape[-1]), target.contiguous().view(-1))
# select max probabilty (greedy decoding) then decode index to character
_, preds_index = preds.max(2)
preds_str = converter.decode(preds_index, length_for_pred)
### Remove all chars after '[s]'
preds_str = preds_str[0]
preds_str = preds_str[:preds_str.find('[s]')]
# pred = pred[:pred_EOS]
return preds_str, confScore
### Output and save segmentations only for one dataset only
def outputSegmOnly(opt):
### targetDataset - one dataset only, SVTP-645, CUTE80-288images
targetDataset = "CUTE80" # ['IIIT5k_3000', 'SVT', 'IC03_867', 'IC13_1015', 'IC15_2077', 'SVTP', 'CUTE80']
targetHeight = 32
targetWidth = 100
segmRootDir = "/home/uclpc1/Documents/STR/datasets/segmen"\
"tations/{}X{}/{}/".format(targetHeight, targetWidth, targetDataset)
if not os.path.exists(segmRootDir):
os.makedirs(segmRootDir)
opt.eval = True
### Only IIIT5k_3000
eval_data_list = [targetDataset]
target_output_orig = opt.outputOrigDir
### Taken from LIME
segmentation_fn = SegmentationAlgorithm('quickshift', kernel_size=4,
max_dist=200, ratio=0.2,
random_seed=random.randint(0, 1000))
for eval_data in eval_data_list:
eval_data_path = os.path.join(opt.eval_data, eval_data)
AlignCollate_evaluation = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD)
eval_data, eval_data_log = hierarchical_dataset(root=eval_data_path, opt=opt, targetDir=target_output_orig)
evaluation_loader = torch.utils.data.DataLoader(
eval_data, batch_size=1,
shuffle=False,
num_workers=int(opt.workers),
collate_fn=AlignCollate_evaluation, pin_memory=True)
for i, (image_tensors, labels) in enumerate(evaluation_loader):
image_tensors = ((image_tensors + 1.0) / 2.0) * 255.0
imgDataDict = {}
img_numpy = image_tensors.cpu().detach().numpy()[0] ### Need to set batch size to 1 only
if img_numpy.shape[0] == 1:
img_numpy = gray2rgb(img_numpy[0])
# print("img_numpy shape: ", img_numpy.shape) # (32,100,3)
segmOutput = segmentation_fn(img_numpy)
# print("segmOutput unique: ", len(np.unique(segmOutput)))
imgDataDict['segdata'] = segmOutput
imgDataDict['label'] = labels[0]
outputPickleFile = segmRootDir + "{}.pkl".format(i)
with open(outputPickleFile, 'wb') as f:
pickle.dump(imgDataDict, f)
### Returns the mean for each segmentation having shape as the same as the input
### This function can only one attribution image at a time
def averageSegmentsOut(attr, segments):
averagedInput = torch.clone(attr)
sortedDict = {}
for x in np.unique(segments):
segmentMean = torch.mean(attr[segments == x][:])
sortedDict[x] = float(segmentMean.detach().cpu().numpy())
averagedInput[segments == x] = segmentMean
return averagedInput, sortedDict
def acquireSelectivityHit(origImg, attributions, segmentations, model, converter, labels, scoring):
# print("segmentations unique len: ", np.unique(segmentations))
aveSegmentations, sortedDict = averageSegmentsOut(attributions[0,0], segmentations)
sortedKeys = [k for k, v in sorted(sortedDict.items(), key=lambda item: item[1])]
sortedKeys = sortedKeys[::-1] ### A list that should contain largest to smallest score
# print("sortedDict: ", sortedDict) # {0: -5.51e-06, 1: -1.469e-05, 2: -3.06e-05,...}
# print("aveSegmentations unique len: ", np.unique(aveSegmentations))
# print("aveSegmentations device: ", aveSegmentations.device) # cuda:0
# print("aveSegmentations shape: ", aveSegmentations.shape) # (224,224)
# print("aveSegmentations: ", aveSegmentations)
n_correct = []
confidenceList = [] # First index is one feature removed, second index two features removed, and so on...
clonedImg = torch.clone(origImg)
gt = str(labels[0])
for totalSegToHide in range(0, len(sortedKeys)):
### Acquire LIME prediction result
currentSegmentToHide = sortedKeys[totalSegToHide]
clonedImg[0,0][segmentations == currentSegmentToHide] = 0.0
pred, confScore = getPredAndConf(opt, model, scoring, clonedImg, converter, np.array([gt]))
# To evaluate 'case sensitive model' with alphanumeric and case insensitve setting.
if opt.sensitive and opt.data_filtering_off:
pred = pred.lower()
gt = gt.lower()
alphanumeric_case_insensitve = '0123456789abcdefghijklmnopqrstuvwxyz'
out_of_alphanumeric_case_insensitve = f'[^{alphanumeric_case_insensitve}]'
pred = re.sub(out_of_alphanumeric_case_insensitve, '', pred)
gt = re.sub(out_of_alphanumeric_case_insensitve, '', gt)
if pred == gt:
n_correct.append(1)
else:
n_correct.append(0)
confScore = confScore[0][0]*100
confidenceList.append(confScore)
return n_correct, confidenceList
def main(opt):
# 'IIIT5k_3000', 'SVT', 'IC03_860', 'IC03_867', 'IC13_857', 'IC13_1015', 'IC15_1811', 'IC15_2077', 'SVTP', 'CUTE80'
datasetName = settings.TARGET_DATASET
custom_segm_dataroot = "{}/{}X{}/{}/".format(settings.SEGM_DIR, opt.imgH, opt.imgW, datasetName)
outputSelectivityPkl = "strexp_ave_{}_{}.pkl".format(settings.MODEL, datasetName)
outputDir = "./attributionImgs/{}/{}/".format(settings.MODEL, datasetName)
attrOutputDir = "./attributionData/{}/{}/".format(settings.MODEL, datasetName)
acquireSelectivity = True
acquireInfidelity = False
acquireSensitivity = False ### GPU error
imgHeight = 32
imgWidth = 100
if not os.path.exists(outputDir):
os.makedirs(outputDir)
if not os.path.exists(attrOutputDir):
os.makedirs(attrOutputDir)
""" model configuration """
if 'CTC' in opt.Prediction:
converter = CTCLabelConverter(opt.character)
else:
converter = AttnLabelConverter(opt.character)
opt.num_class = len(converter.character)
if opt.rgb:
opt.input_channel = 3
model_obj = Model(opt, device)
print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial, opt.input_channel, opt.output_channel,
opt.hidden_size, opt.num_class, opt.batch_max_length, opt.Transformation, opt.FeatureExtraction,
opt.SequenceModeling, opt.Prediction)
model = torch.nn.DataParallel(model_obj).to(device)
# load model
print('loading pretrained model from %s' % opt.saved_model)
model.load_state_dict(torch.load(opt.saved_model, map_location=device))
opt.exp_name = '_'.join(opt.saved_model.split('/')[1:])
modelCopy = copy.deepcopy(model)
scoring_singlechar = STRScore(opt=opt, converter=converter, device=device, enableSingleCharAttrAve=True)
super_pixel_model_singlechar = torch.nn.Sequential(
# super_pixler,
# numpy2torch_converter,
modelCopy,
scoring_singlechar
).to(device)
modelCopy.train()
scoring_singlechar.train()
super_pixel_model_singlechar.train()
scoring = STRScore(opt=opt, converter=converter, device=device)
super_pixel_model = torch.nn.Sequential(
model,
scoring
)
model.train()
scoring.train()
super_pixel_model.train()
""" keep evaluation model and result logs """
os.makedirs(f'./result/{opt.exp_name}', exist_ok=True)
os.system(f'cp {opt.saved_model} ./result/{opt.exp_name}/')
""" setup loss """
if 'CTC' in opt.Prediction:
criterion = torch.nn.CTCLoss(zero_infinity=True).to(device)
else:
criterion = torch.nn.CrossEntropyLoss(ignore_index=0).to(device) # ignore [GO] token = ignore index 0
"""Output shap values"""
""" evaluation with 10 benchmark evaluation datasets """
# The evaluation datasets, dataset order is same with Table 1 in our paper.
# eval_data_list = ['IIIT5k_3000', 'IC03_860', 'IC03_867', 'IC15_1811']
target_output_orig = opt.outputOrigDir
# eval_data_list = ['IIIT5k_3000', 'SVT', 'IC03_860', 'IC03_867', 'IC13_857',
# 'IC13_1015', 'IC15_1811', 'IC15_2077', 'SVTP', 'CUTE80']
# eval_data_list = ['IIIT5k_3000']
eval_data_list = [datasetName]
# # To easily compute the total accuracy of our paper.
# eval_data_list = ['IIIT5k_3000', 'SVT', 'IC03_867',
# 'IC13_1015', 'IC15_2077', 'SVTP', 'CUTE80']
list_accuracy = []
total_forward_time = 0
total_evaluation_data_number = 0
total_correct_number = 0
log = open(f'./result/{opt.exp_name}/log_all_evaluation.txt', 'a')
dashed_line = '-' * 80
print(dashed_line)
log.write(dashed_line + '\n')
selectivity_eval_results = []
imageData = []
targetText = "all"
middleMaskThreshold = 5
testImgCount = 0
imgResultDir = str(opt.Transformation) + "-" + str(opt.FeatureExtraction) + "-" + str(opt.SequenceModeling) + "-" + str(opt.Prediction) + "-" + str(opt.scorer)
# define a perturbation function for the input (used for calculating infidelity)
def perturb_fn(modelInputs):
noise = torch.tensor(np.random.normal(0, 0.003, modelInputs.shape)).float()
noise = noise.to(device)
return noise, modelInputs - noise
if opt.blackbg:
shapImgLs = np.zeros(shape=(1, 1, 32, 100)).astype(np.float32)
trainList = np.array(shapImgLs)
background = torch.from_numpy(trainList).to(device)
if imgResultDir != "":
if not os.path.exists(imgResultDir):
os.makedirs(imgResultDir)
for eval_data in eval_data_list:
eval_data_path = os.path.join(opt.eval_data, eval_data)
AlignCollate_evaluation = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD)
eval_data, eval_data_log = hierarchical_dataset(root=eval_data_path, opt=opt, targetDir=target_output_orig)
evaluation_loader = torch.utils.data.DataLoader(
eval_data, batch_size=1,
shuffle=False,
num_workers=int(opt.workers),
collate_fn=AlignCollate_evaluation, pin_memory=True)
# image_tensors, labels = next(iter(evaluation_loader)) ### Iterate one batch only
for i, (orig_img_tensors, labels) in enumerate(evaluation_loader):
# img_rgb *= 255.0
# img_rgb = img_rgb.astype('int')
# print("img_rgb max: ", img_rgb.max()) ### 255
# img_rgb = np.asarray(orig_img_tensors)
# segmentations = segmentation_fn(img_rgb)
# print("segmentations shape: ", segmentations.shape) # (224, 224)
# print("segmentations min: ", segmentations.min()) 0
# print("Unique: ", len(np.unique(segmentations))) # (70)
# print("target: ", target) tensor([[ 0, 29, 26, 25, 12
results_dict = {}
pklFilename = custom_segm_dataroot + "{}.pkl".format(i)
with open(pklFilename, 'rb') as f:
pklData = pickle.load(f)
segmDataNP = pklData["segdata"]
# print("segmDataNP unique: ", len(np.unique(segmDataNP)))
assert pklData["label"] == labels[0]
segmTensor = torch.from_numpy(segmDataNP).unsqueeze(0).unsqueeze(0)
# print("segmTensor min: ", segmTensor.min()) # 0 starting segmentation
segmTensor = segmTensor.to(device)
# print("segmTensor shape: ", segmTensor.shape)
# img1 = np.asarray(imgPIL.convert('L'))
# sys.exit()
# img1 = img1 / 255.0
# img1 = torch.from_numpy(img1).unsqueeze(0).unsqueeze(0).type(torch.FloatTensor).to(device)
img1 = orig_img_tensors.to(device)
img1.requires_grad = True
bgImg = torch.zeros(img1.shape).to(device)
# preds = model(img1, seqlen=converter.batch_max_length)
target = converter.encode(labels)
target = target[0][:, 1:]
charOffset = 0
input = img1
origImgNP = torch.clone(orig_img_tensors).detach().cpu().numpy()[0][0] # (1, 1, 224, 224)
origImgNP = gray2rgb(origImgNP)
# preds = model(input)
# preds_prob = F.softmax(preds, dim=2)
# preds_max_prob, preds_max_idx = preds_prob.max(dim=2)
# print("preds_max_idx: ", preds_max_idx) tensor([[14, 26, 25, 12
### Captum test
collectedAttributions = []
for charIdx in range(0, len(labels)):
scoring_singlechar.setSingleCharOutput(charIdx + charOffset)
gtClassNum = target[0][charIdx + charOffset]
### Shapley Value Sampling
svs = ShapleyValueSampling(super_pixel_model_singlechar)
# attr = svs.attribute(input, target=0, n_samples=200) ### Individual pixels, too long to calculate
attributions = svs.attribute(input, target=gtClassNum, feature_mask=segmTensor)
collectedAttributions.append(attributions)
aveAttributions = torch.mean(torch.cat(collectedAttributions,dim=0), dim=0).unsqueeze(0)
rankedAttr = rankedAttributionsBySegm(aveAttributions, segmDataNP)
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
rankedAttr = gray2rgb(rankedAttr)
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
mplotfig.savefig(outputDir + '{}_shapley_l.png'.format(i))
mplotfig.clear()
plt.close(mplotfig)
saveAttrData(attrOutputDir + f'{i}_shapley_l.pkl', aveAttributions, segmDataNP, origImgNP)
if acquireSelectivity:
n_correct, confidenceList = acquireSelectivityHit(img1, aveAttributions, segmDataNP, modelCopy, converter, labels, scoring_singlechar)
results_dict["shapley_local_acc"] = n_correct
results_dict["shapley_local_conf"] = confidenceList
if acquireInfidelity:
infid = float(infidelity(super_pixel_model_singlechar, perturb_fn, img1, aveAttributions).detach().cpu().numpy())
results_dict["shapley_local_infid"] = infid
if acquireSensitivity:
sens = float(sensitivity_max(svs.attribute, img1, target=0).detach().cpu().numpy())
results_dict["shapley_local_sens"] = sens
### Shapley Value Sampling
svs = ShapleyValueSampling(super_pixel_model)
# attr = svs.attribute(input, target=0, n_samples=200) ### Individual pixels, too long to calculate
attributions = svs.attribute(input, target=0, feature_mask=segmTensor)
collectedAttributions.append(attributions)
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
rankedAttr = gray2rgb(rankedAttr)
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
mplotfig.savefig(outputDir + '{}_shapley.png'.format(i))
mplotfig.clear()
plt.close(mplotfig)
saveAttrData(attrOutputDir + f'{i}_shapley.pkl', attributions, segmDataNP, origImgNP)
if acquireSelectivity:
n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring)
results_dict["shapley_acc"] = n_correct
results_dict["shapley_conf"] = confidenceList
if acquireInfidelity:
infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy())
results_dict["shapley_infid"] = infid
if acquireSensitivity:
sens = float(sensitivity_max(svs.attribute, img1, target=0).detach().cpu().numpy())
results_dict["shapley_sens"] = sens
### Global + Local context
aveAttributions = torch.mean(torch.cat(collectedAttributions,dim=0), dim=0).unsqueeze(0)
rankedAttr = rankedAttributionsBySegm(aveAttributions, segmDataNP)
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
rankedAttr = gray2rgb(rankedAttr)
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
mplotfig.savefig(outputDir + '{}_shapley_gl.png'.format(i))
mplotfig.clear()
plt.close(mplotfig)
saveAttrData(attrOutputDir + f'{i}_shapley_gl.pkl', aveAttributions, segmDataNP, origImgNP)
if acquireSelectivity:
n_correct, confidenceList = acquireSelectivityHit(img1, aveAttributions, segmDataNP, modelCopy, converter, labels, scoring_singlechar)
results_dict["shapley_global_local_acc"] = n_correct
results_dict["shapley_global_local_conf"] = confidenceList
if acquireInfidelity:
infid = float(infidelity(super_pixel_model_singlechar, perturb_fn, img1, aveAttributions).detach().cpu().numpy())
results_dict["shapley_global_local_infid"] = infid
if acquireSensitivity:
sens = float(sensitivity_max(svs.attribute, img1, target=0).detach().cpu().numpy())
results_dict["shapley_global_local_sens"] = sens
# Baselines
### Integrated Gradients
ig = IntegratedGradients(super_pixel_model)
attributions = ig.attribute(input, target=0)
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
rankedAttr = gray2rgb(rankedAttr)
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
mplotfig.savefig(outputDir + '{}_intgrad.png'.format(i))
mplotfig.clear()
plt.close(mplotfig)
saveAttrData(attrOutputDir + f'{i}_intgrad.pkl', attributions, segmDataNP, origImgNP)
if acquireSelectivity:
n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring)
results_dict["intgrad_acc"] = n_correct
results_dict["intgrad_conf"] = confidenceList
if acquireInfidelity:
infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy())
results_dict["intgrad_infid"] = infid
if acquireSensitivity:
sens = float(sensitivity_max(ig.attribute, img1, target=0).detach().cpu().numpy())
results_dict["intgrad_sens"] = sens
### Gradient SHAP using zero-background
gs = GradientShap(super_pixel_model)
# We define a distribution of baselines and draw `n_samples` from that
# distribution in order to estimate the expectations of gradients across all baselines
baseline_dist = torch.zeros((1, 1, imgHeight, imgWidth))
baseline_dist = baseline_dist.to(device)
attributions = gs.attribute(input, baselines=baseline_dist, target=0)
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
rankedAttr = gray2rgb(rankedAttr)
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
mplotfig.savefig(outputDir + '{}_gradshap.png'.format(i))
mplotfig.clear()
plt.close(mplotfig)
saveAttrData(attrOutputDir + f'{i}_gradshap.pkl', attributions, segmDataNP, origImgNP)
if acquireSelectivity:
n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring)
results_dict["gradshap_acc"] = n_correct
results_dict["gradshap_conf"] = confidenceList
if acquireInfidelity:
infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy())
results_dict["gradshap_infid"] = infid
if acquireSensitivity:
sens = float(sensitivity_max(gs.attribute, img1, target=0).detach().cpu().numpy())
results_dict["gradshap_sens"] = sens
### DeepLift using zero-background
dl = DeepLift(super_pixel_model)
attributions = dl.attribute(input, target=0)
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
rankedAttr = gray2rgb(rankedAttr)
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
mplotfig.savefig(outputDir + '{}_deeplift.png'.format(i))
mplotfig.clear()
plt.close(mplotfig)
saveAttrData(attrOutputDir + f'{i}_deeplift.pkl', attributions, segmDataNP, origImgNP)
if acquireSelectivity:
n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring)
results_dict["deeplift_acc"] = n_correct
results_dict["deeplift_conf"] = confidenceList
if acquireInfidelity:
infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy())
results_dict["deeplift_infid"] = infid
if acquireSensitivity:
sens = float(sensitivity_max(dl.attribute, img1, target=0).detach().cpu().numpy())
results_dict["deeplift_sens"] = sens
### Saliency
saliency = Saliency(super_pixel_model)
attributions = saliency.attribute(input, target=0) ### target=class0
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
rankedAttr = gray2rgb(rankedAttr)
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
mplotfig.savefig(outputDir + '{}_saliency.png'.format(i))
mplotfig.clear()
plt.close(mplotfig)
saveAttrData(attrOutputDir + f'{i}_saliency.pkl', attributions, segmDataNP, origImgNP)
if acquireSelectivity:
n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring)
results_dict["saliency_acc"] = n_correct
results_dict["saliency_conf"] = confidenceList
if acquireInfidelity:
infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy())
results_dict["saliency_infid"] = infid
if acquireSensitivity:
sens = float(sensitivity_max(saliency.attribute, img1, target=0).detach().cpu().numpy())
results_dict["saliency_sens"] = sens
### InputXGradient
input_x_gradient = InputXGradient(super_pixel_model)
attributions = input_x_gradient.attribute(input, target=0)
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
rankedAttr = gray2rgb(rankedAttr)
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
mplotfig.savefig(outputDir + '{}_inpxgrad.png'.format(i))
mplotfig.clear()
plt.close(mplotfig)
saveAttrData(attrOutputDir + f'{i}_inpxgrad.pkl', attributions, segmDataNP, origImgNP)
if acquireSelectivity:
n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring)
results_dict["inpxgrad_acc"] = n_correct
results_dict["inpxgrad_conf"] = confidenceList
if acquireInfidelity:
infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy())
results_dict["inpxgrad_infid"] = infid
if acquireSensitivity:
sens = float(sensitivity_max(input_x_gradient.attribute, img1, target=0).detach().cpu().numpy())
results_dict["inpxgrad_sens"] = sens
## GuidedBackprop
gbp = GuidedBackprop(super_pixel_model)
attributions = gbp.attribute(input, target=0)
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
rankedAttr = gray2rgb(rankedAttr)
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
mplotfig.savefig(outputDir + '{}_guidedbp.png'.format(i))
mplotfig.clear()
plt.close(mplotfig)
saveAttrData(attrOutputDir + f'{i}_guidedbp.pkl', attributions, segmDataNP, origImgNP)
if acquireSelectivity:
n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring)
results_dict["guidedbp_acc"] = n_correct
results_dict["guidedbp_conf"] = confidenceList
if acquireInfidelity:
infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy())
results_dict["guidedbp_infid"] = infid
if acquireSensitivity:
sens = float(sensitivity_max(gbp.attribute, img1, target=0).detach().cpu().numpy())
results_dict["guidedbp_sens"] = sens
#
# ## Deconvolution
deconv = Deconvolution(super_pixel_model)
attributions = deconv.attribute(input, target=0)
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
rankedAttr = gray2rgb(rankedAttr)
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
mplotfig.savefig(outputDir + '{}_deconv.png'.format(i))
mplotfig.clear()
plt.close(mplotfig)
saveAttrData(attrOutputDir + f'{i}_deconv.pkl', attributions, segmDataNP, origImgNP)
if acquireSelectivity:
n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring)
results_dict["deconv_acc"] = n_correct
results_dict["deconv_conf"] = confidenceList
if acquireInfidelity:
infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy())
results_dict["deconv_infid"] = infid
if acquireSensitivity:
sens = float(sensitivity_max(deconv.attribute, img1, target=0).detach().cpu().numpy())
results_dict["deconv_sens"] = sens
### Feature ablator
ablator = FeatureAblation(super_pixel_model)
attributions = ablator.attribute(input, target=0, feature_mask=segmTensor)
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
rankedAttr = gray2rgb(rankedAttr)
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
mplotfig.savefig(outputDir + '{}_featablt.png'.format(i))
mplotfig.clear()
plt.close(mplotfig)
saveAttrData(attrOutputDir + f'{i}_featablt.pkl', attributions, segmDataNP, origImgNP)
if acquireSelectivity:
n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring)
results_dict["featablt_acc"] = n_correct
results_dict["featablt_conf"] = confidenceList
if acquireInfidelity:
infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy())
results_dict["featablt_infid"] = infid
if acquireSensitivity:
sens = float(sensitivity_max(ablator.attribute, img1, target=0).detach().cpu().numpy())
results_dict["featablt_sens"] = sens
## LIME
interpretable_model = SkLearnRidge(alpha=1, fit_intercept=True) ### This is the default used by LIME
lime = Lime(super_pixel_model, interpretable_model=interpretable_model)
attributions = lime.attribute(input, target=0, feature_mask=segmTensor)
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
rankedAttr = gray2rgb(rankedAttr)
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
mplotfig.savefig(outputDir + '{}_lime.png'.format(i))
mplotfig.clear()
plt.close(mplotfig)
saveAttrData(attrOutputDir + f'{i}_lime.pkl', attributions, segmDataNP, origImgNP)
if acquireSelectivity:
n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring)
results_dict["lime_acc"] = n_correct
results_dict["lime_conf"] = confidenceList
if acquireInfidelity:
infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy())
results_dict["lime_infid"] = infid
if acquireSensitivity:
sens = float(sensitivity_max(lime.attribute, img1, target=0).detach().cpu().numpy())
results_dict["lime_sens"] = sens
### KernelSHAP
ks = KernelShap(super_pixel_model)
attributions = ks.attribute(input, target=0, feature_mask=segmTensor)
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
rankedAttr = gray2rgb(rankedAttr)
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
mplotfig.savefig(outputDir + '{}_kernelshap.png'.format(i))
mplotfig.clear()
plt.close(mplotfig)
saveAttrData(attrOutputDir + f'{i}_kernelshap.pkl', attributions, segmDataNP, origImgNP)
if acquireSelectivity:
n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring)
results_dict["kernelshap_acc"] = n_correct
results_dict["kernelshap_conf"] = confidenceList
if acquireInfidelity:
infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy())
results_dict["kernelshap_infid"] = infid
if acquireSensitivity:
sens = float(sensitivity_max(ks.attribute, img1, target=0).detach().cpu().numpy())
results_dict["kernelshap_sens"] = sens
selectivity_eval_results.append(results_dict)
with open(outputSelectivityPkl, 'wb') as f:
pickle.dump(selectivity_eval_results, f)
testImgCount += 1
print("testImgCount: ", testImgCount)
def outputOrigImagesOnly(opt):
datasetName = "CUTE80" # ['IIIT5k_3000', 'SVT', 'IC03_867', 'IC13_1015', 'IC15_2077', 'SVTP', 'CUTE80']
opt.outputOrigDir = "./datasetOrigImgs/{}/".format(datasetName)
opt.output_orig = True
opt.corruption_num = 0
opt.apply_corruptions = False
opt.min_imgnum = 0
opt.max_imgnum = 1000
target_output_orig = opt.outputOrigDir
if not os.path.exists(target_output_orig):
os.makedirs(target_output_orig)
""" model configuration """
if 'CTC' in opt.Prediction:
converter = CTCLabelConverter(opt.character)
else:
converter = AttnLabelConverter(opt.character)
opt.num_class = len(converter.character)
if opt.rgb:
opt.input_channel = 3
model_obj = Model(opt, device)
print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial, opt.input_channel, opt.output_channel,
opt.hidden_size, opt.num_class, opt.batch_max_length, opt.Transformation, opt.FeatureExtraction,
opt.SequenceModeling, opt.Prediction)
model = torch.nn.DataParallel(model_obj).to(device)
# load model
print('loading pretrained model from %s' % opt.saved_model)
model.load_state_dict(torch.load(opt.saved_model, map_location=device))
opt.exp_name = '_'.join(opt.saved_model.split('/')[1:])
scoring = STRScore(opt=opt, converter=converter, device=device)
###
super_pixel_model = torch.nn.Sequential(
model,
scoring
)
model.train()
scoring.train()
super_pixel_model.train()
# print(model)
""" keep evaluation model and result logs """
os.makedirs(f'./result/{opt.exp_name}', exist_ok=True)
os.system(f'cp {opt.saved_model} ./result/{opt.exp_name}/')
""" setup loss """
if 'CTC' in opt.Prediction:
criterion = torch.nn.CTCLoss(zero_infinity=True).to(device)
else:
criterion = torch.nn.CrossEntropyLoss(ignore_index=0).to(device) # ignore [GO] token = ignore index 0
"""Output shap values"""
""" evaluation with 10 benchmark evaluation datasets """
# The evaluation datasets, dataset order is same with Table 1 in our paper.
# eval_data_list = ['IIIT5k_3000', 'IC03_860', 'IC03_867', 'IC15_1811']
# eval_data_list = ['IIIT5k_3000', 'SVT', 'IC03_860', 'IC03_867', 'IC13_857',
# 'IC13_1015', 'IC15_1811', 'IC15_2077', 'SVTP', 'CUTE80']
# eval_data_list = ['IIIT5k_3000']
eval_data_list = [datasetName]
# # To easily compute the total accuracy of our paper.
# eval_data_list = ['IIIT5k_3000', 'SVT', 'IC03_867',
# 'IC13_1015', 'IC15_2077', 'SVTP', 'CUTE80']
list_accuracy = []
total_forward_time = 0
total_evaluation_data_number = 0
total_correct_number = 0
log = open(f'./result/{opt.exp_name}/log_all_evaluation.txt', 'a')
dashed_line = '-' * 80
print(dashed_line)
log.write(dashed_line + '\n')
selectivity_eval_results = []
imageData = []
targetText = "all"
middleMaskThreshold = 5
testImgCount = 0
imgResultDir = str(opt.Transformation) + "-" + str(opt.FeatureExtraction) + "-" + str(opt.SequenceModeling) + "-" + str(opt.Prediction) + "-" + str(opt.scorer)
if opt.blackbg:
shapImgLs = np.zeros(shape=(1, 1, 32, 100)).astype(np.float32)
trainList = np.array(shapImgLs)
background = torch.from_numpy(trainList).to(device)
if imgResultDir != "":
if not os.path.exists(imgResultDir):
os.makedirs(imgResultDir)
for eval_data in eval_data_list:
eval_data_path = os.path.join(opt.eval_data, eval_data)
AlignCollate_evaluation = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD)
eval_data, eval_data_log = hierarchical_dataset(root=eval_data_path, opt=opt, targetDir=target_output_orig)
evaluation_loader = torch.utils.data.DataLoader(
eval_data, batch_size=1,
shuffle=False,
num_workers=int(opt.workers),
collate_fn=AlignCollate_evaluation, pin_memory=True)
# image_tensors, labels = next(iter(evaluation_loader)) ### Iterate one batch only
for i, (orig_img_tensors, labels) in enumerate(evaluation_loader):
testImgCount += 1
print("testImgCount: ", testImgCount)
### Use to check if the model predicted the image or not. Output a pickle file with the image index.
def modelDatasetPredOnly(opt):
### targetDataset - one dataset only, CUTE80 has 288 samples
targetDataset = "CUTE80" # ['IIIT5k_3000', 'SVT', 'IC03_867', 'IC13_1015', 'IC15_2077', 'SVTP', 'CUTE80']
outputSelectivityPkl = "metrics_predictonly_results_{}.pkl".format(targetDataset)
start_time = time.time()
""" model configuration """
if 'CTC' in opt.Prediction:
converter = CTCLabelConverter(opt.character)
else:
converter = AttnLabelConverter(opt.character)
opt.num_class = len(converter.character)
if opt.rgb:
opt.input_channel = 3
model_obj = Model(opt, device)
print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial, opt.input_channel, opt.output_channel,
opt.hidden_size, opt.num_class, opt.batch_max_length, opt.Transformation, opt.FeatureExtraction,
opt.SequenceModeling, opt.Prediction)
model = torch.nn.DataParallel(model_obj).to(device)
# load model
print('loading pretrained model from %s' % opt.saved_model)
model.load_state_dict(torch.load(opt.saved_model, map_location=device))
opt.exp_name = '_'.join(opt.saved_model.split('/')[1:])
scoring = STRScore(opt=opt, converter=converter, device=device)
###
super_pixel_model = torch.nn.Sequential(
model,
scoring
)
model.train()
scoring.train()
super_pixel_model.train()
if opt.blackbg:
shapImgLs = np.zeros(shape=(1, 1, 224, 224)).astype(np.float32)
trainList = np.array(shapImgLs)
background = torch.from_numpy(trainList).to(device)
opt.eval = True
eval_data_list = [targetDataset]
testImgCount = 0
list_accuracy = []
total_forward_time = 0
total_evaluation_data_number = 0
total_correct_number = 0
log = open(f'./result/{opt.exp_name}/log_all_evaluation.txt', 'a')
dashed_line = '-' * 80
print(dashed_line)
log.write(dashed_line + '\n')
target_output_orig = opt.outputOrigDir
predOutput = []
for eval_data in eval_data_list:
eval_data_path = os.path.join(opt.eval_data, eval_data)
AlignCollate_evaluation = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD)
eval_data, eval_data_log = hierarchical_dataset(root=eval_data_path, opt=opt, targetDir=target_output_orig)
evaluation_loader = torch.utils.data.DataLoader(
eval_data, batch_size=1,
shuffle=False,
num_workers=int(opt.workers),
collate_fn=AlignCollate_evaluation, pin_memory=True)
testImgCount = 0
for i, (orig_img_tensors, labels) in enumerate(evaluation_loader):
image = orig_img_tensors.to(device)
batch_size = 1
length_for_pred = torch.IntTensor([opt.batch_max_length] * batch_size).to(device)
text_for_pred = torch.LongTensor(batch_size, opt.batch_max_length + 1).fill_(0).to(device)
text_for_loss, length_for_loss = converter.encode(labels, batch_max_length=opt.batch_max_length)
if 'CTC' in opt.Prediction:
preds = model(image, text_for_pred)
confScore = scoring(preds)
confScore = confScore.detach().cpu().numpy()
# Calculate evaluation loss for CTC deocder.
preds_size = torch.IntTensor([preds.size(1)] * batch_size)
# Select max probabilty (greedy decoding) then decode index to character
if opt.baiduCTC:
_, preds_index = preds.max(2)
preds_index = preds_index.view(-1)
else:
_, preds_index = preds.max(2)
preds_str = converter.decode(preds_index.data, preds_size.data)[0]
else:
preds = model(image, text_for_pred, is_train=False)
confScore = scoring(preds)
confScore = confScore.detach().cpu().numpy()
preds = preds[:, :text_for_loss.shape[1] - 1, :]
target = text_for_loss[:, 1:] # without [GO] Symbol
# cost = criterion(preds.contiguous().view(-1, preds.shape[-1]), target.contiguous().view(-1))
# select max probabilty (greedy decoding) then decode index to character
_, preds_index = preds.max(2)
preds_str = converter.decode(preds_index, length_for_pred)
### Remove all chars after '[s]'
preds_str = preds_str[0]
preds_str = preds_str[:preds_str.find('[s]')]
# print("preds_str: ", preds_str) # lowercased prediction
# print("labels: ", labels[0]) # gt already in lowercased
if preds_str==labels[0]: predOutput.append(1)
else: predOutput.append(0)
with open(outputSelectivityPkl, 'wb') as f:
pickle.dump(predOutput, f)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--eval_data', required=True, help='path to evaluation dataset')
parser.add_argument('--benchmark_all_eval', action='store_true', help='evaluate 10 benchmark evaluation datasets')
parser.add_argument('--workers', type=int, help='number of data loading workers', default=4)
parser.add_argument('--batch_size', type=int, default=192, help='input batch size')
parser.add_argument('--saved_model', required=True, help="path to saved_model to evaluation")
""" Data processing """
parser.add_argument('--batch_max_length', type=int, default=25, help='maximum-label-length')
parser.add_argument('--imgH', type=int, default=32, help='the height of the input image')
parser.add_argument('--imgW', type=int, default=100, help='the width of the input image')
parser.add_argument('--superHeight', type=int, default=5, help='the height of the superpixel')
parser.add_argument('--superWidth', type=int, default=2, help='the width of the superpixel')
parser.add_argument('--min_imgnum', type=int, default=0, help='set this to skip for loop index of specific image number')
parser.add_argument('--max_imgnum', type=int, default=2, help='set this to skip for loop index of specific image number')
parser.add_argument('--severity', type=int, default=1, help='severity level if apply corruptions')
parser.add_argument('--scorer', type=str, default='cumprod', help='See STRScore: cumprod | mean')
parser.add_argument('--corruption_num', type=int, default=0, help='corruption to apply')
parser.add_argument('--confidence_mode', type=int, default=0, help='0-sum of argmax; 1-edit distance')
parser.add_argument('--outputOrigDir', type=str, default="output_orig/", help='output directory to save original \
images. This will be automatically created. Needs --output_orig too.')
parser.add_argument('--output_orig', action='store_true', help='if true, output first original rgb image of each batch')
parser.add_argument('--compare_corrupt', action='store_true', help='set to true to output results across corruptions')
parser.add_argument('--is_shap', action='store_true', help='no need to call in command line')
parser.add_argument('--blackbg', action='store_true', help='if True, background color for covering features will be black(0)')
parser.add_argument('--rgb', action='store_true', help='use rgb input')
parser.add_argument('--character', type=str, default='0123456789abcdefghijklmnopqrstuvwxyz', help='character label')
parser.add_argument('--sensitive', action='store_true', help='for sensitive character mode')
parser.add_argument('--PAD', action='store_true', help='whether to keep ratio then pad for image resize')
parser.add_argument('--data_filtering_off', action='store_true', help='for data_filtering_off mode')
parser.add_argument('--apply_corruptions', action='store_true', help='apply corruptions to images')
parser.add_argument('--output_feat_maps', action='store_true', help='toggle this to output images of featmaps')
parser.add_argument('--baiduCTC', action='store_true', help='for data_filtering_off mode')
""" Model Architecture """
parser.add_argument('--Transformation', type=str, required=True, help='Transformation stage. None|TPS')
parser.add_argument('--FeatureExtraction', type=str, required=True, help='FeatureExtraction stage. VGG|RCNN|ResNet')
parser.add_argument('--SequenceModeling', type=str, required=True, help='SequenceModeling stage. None|BiLSTM')
parser.add_argument('--Prediction', type=str, required=True, help='Prediction stage. CTC|Attn')
parser.add_argument('--num_fiducial', type=int, default=20, help='number of fiducial points of TPS-STN')
parser.add_argument('--input_channel', type=int, default=1, help='the number of input channel of Feature extractor')
parser.add_argument('--output_channel', type=int, default=512,
help='the number of output channel of Feature extractor')
parser.add_argument('--hidden_size', type=int, default=256, help='the size of the LSTM hidden state')
opt = parser.parse_args()
""" vocab / character number configuration """
if opt.sensitive:
opt.character = string.printable[:-6] # same with ASTER setting (use 94 char).
cudnn.benchmark = True
cudnn.deterministic = True
opt.num_gpu = torch.cuda.device_count()
# acquire_average_auc(opt)
main(opt)
# outputOrigImagesOnly(opt)
|