File size: 48,748 Bytes
d61b9c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
import os
import time
import string
import argparse
import re
import sys
import random
import pickle

import torch
import torch.backends.cudnn as cudnn
import torch.utils.data
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
from skimage.color import gray2rgb
from nltk.metrics.distance import edit_distance
import cv2

from utils import CTCLabelConverter, AttnLabelConverter, Averager
from dataset_trba import hierarchical_dataset, AlignCollate
from model_trba import Model, SuperPixler, CastNumpy, STRScore
# import hiddenlayer as hl
from lime import lime_image
from lime.wrappers.scikit_image import SegmentationAlgorithm
import matplotlib.pyplot as plt
import random
from captum._utils.models.linear_model import SkLearnLinearModel, SkLearnRidge
import statistics
import settings
import sys
import copy
from captum_test import acquire_average_auc, saveAttrData
from captum_improve_vitstr import rankedAttributionsBySegm
from matplotlib import pyplot as plt
from captum.attr._utils.visualization import visualize_image_attr

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

from captum.attr import (
    GradientShap,
    DeepLift,
    DeepLiftShap,
    IntegratedGradients,
    LayerConductance,
    NeuronConductance,
    NoiseTunnel,
    Saliency,
    InputXGradient,
    GuidedBackprop,
    Deconvolution,
    GuidedGradCam,
    FeatureAblation,
    ShapleyValueSampling,
    Lime,
    KernelShap
)

from captum.metrics import (
    infidelity,
    sensitivity_max
)

def getPredAndConf(opt, model, scoring, image, converter, labels):
    batch_size = image.size(0)
    length_for_pred = torch.IntTensor([opt.batch_max_length] * batch_size).to(device)
    text_for_pred = torch.LongTensor(batch_size, opt.batch_max_length + 1).fill_(0).to(device)
    text_for_loss, length_for_loss = converter.encode(labels, batch_max_length=opt.batch_max_length)
    if 'CTC' in opt.Prediction:
        preds = model(image, text_for_pred)

        confScore = scoring(preds)
        confScore = confScore.detach().cpu().numpy()

        # Calculate evaluation loss for CTC deocder.
        preds_size = torch.IntTensor([preds.size(1)] * batch_size)

        # Select max probabilty (greedy decoding) then decode index to character
        if opt.baiduCTC:
            _, preds_index = preds.max(2)
            preds_index = preds_index.view(-1)
        else:
            _, preds_index = preds.max(2)
        preds_str = converter.decode(preds_index.data, preds_size.data)[0]
    else:
        preds = model(image, text_for_pred, is_train=False)

        confScore = scoring(preds)
        confScore = confScore.detach().cpu().numpy()

        preds = preds[:, :text_for_loss.shape[1] - 1, :]
        target = text_for_loss[:, 1:]  # without [GO] Symbol
        # cost = criterion(preds.contiguous().view(-1, preds.shape[-1]), target.contiguous().view(-1))

        # select max probabilty (greedy decoding) then decode index to character
        _, preds_index = preds.max(2)
        preds_str = converter.decode(preds_index, length_for_pred)

        ### Remove all chars after '[s]'
        preds_str = preds_str[0]
        preds_str = preds_str[:preds_str.find('[s]')]
        # pred = pred[:pred_EOS]
    return preds_str, confScore

### Output and save segmentations only for one dataset only
def outputSegmOnly(opt):
    ### targetDataset - one dataset only, SVTP-645, CUTE80-288images
    targetDataset = "CUTE80" # ['IIIT5k_3000', 'SVT', 'IC03_867', 'IC13_1015', 'IC15_2077', 'SVTP', 'CUTE80']
    targetHeight = 32
    targetWidth = 100
    segmRootDir = "/home/uclpc1/Documents/STR/datasets/segmen"\
    "tations/{}X{}/{}/".format(targetHeight, targetWidth, targetDataset)

    if not os.path.exists(segmRootDir):
        os.makedirs(segmRootDir)

    opt.eval = True
    ### Only IIIT5k_3000
    eval_data_list = [targetDataset]
    target_output_orig = opt.outputOrigDir

    ### Taken from LIME
    segmentation_fn = SegmentationAlgorithm('quickshift', kernel_size=4,
                                            max_dist=200, ratio=0.2,
                                            random_seed=random.randint(0, 1000))
    for eval_data in eval_data_list:
        eval_data_path = os.path.join(opt.eval_data, eval_data)
        AlignCollate_evaluation = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD)
        eval_data, eval_data_log = hierarchical_dataset(root=eval_data_path, opt=opt, targetDir=target_output_orig)
        evaluation_loader = torch.utils.data.DataLoader(
            eval_data, batch_size=1,
            shuffle=False,
            num_workers=int(opt.workers),
            collate_fn=AlignCollate_evaluation, pin_memory=True)
        for i, (image_tensors, labels) in enumerate(evaluation_loader):
            image_tensors = ((image_tensors + 1.0) / 2.0) * 255.0
            imgDataDict = {}
            img_numpy = image_tensors.cpu().detach().numpy()[0] ### Need to set batch size to 1 only
            if img_numpy.shape[0] == 1:
                img_numpy = gray2rgb(img_numpy[0])
            # print("img_numpy shape: ", img_numpy.shape) # (32,100,3)
            segmOutput = segmentation_fn(img_numpy)
            # print("segmOutput unique: ", len(np.unique(segmOutput)))
            imgDataDict['segdata'] = segmOutput
            imgDataDict['label'] = labels[0]
            outputPickleFile = segmRootDir + "{}.pkl".format(i)
            with open(outputPickleFile, 'wb') as f:
                pickle.dump(imgDataDict, f)

### Returns the mean for each segmentation having shape as the same as the input
### This function can only one attribution image at a time
def averageSegmentsOut(attr, segments):
    averagedInput = torch.clone(attr)
    sortedDict = {}
    for x in np.unique(segments):
        segmentMean = torch.mean(attr[segments == x][:])
        sortedDict[x] = float(segmentMean.detach().cpu().numpy())
        averagedInput[segments == x] = segmentMean
    return averagedInput, sortedDict

def acquireSelectivityHit(origImg, attributions, segmentations, model, converter, labels, scoring):
    # print("segmentations unique len: ", np.unique(segmentations))
    aveSegmentations, sortedDict = averageSegmentsOut(attributions[0,0], segmentations)
    sortedKeys = [k for k, v in sorted(sortedDict.items(), key=lambda item: item[1])]
    sortedKeys = sortedKeys[::-1] ### A list that should contain largest to smallest score
    # print("sortedDict: ", sortedDict) # {0: -5.51e-06, 1: -1.469e-05, 2: -3.06e-05,...}
    # print("aveSegmentations unique len: ", np.unique(aveSegmentations))
    # print("aveSegmentations device: ", aveSegmentations.device) # cuda:0
    # print("aveSegmentations shape: ", aveSegmentations.shape) # (224,224)
    # print("aveSegmentations: ", aveSegmentations)

    n_correct = []
    confidenceList = [] # First index is one feature removed, second index two features removed, and so on...
    clonedImg = torch.clone(origImg)
    gt = str(labels[0])
    for totalSegToHide in range(0, len(sortedKeys)):
        ### Acquire LIME prediction result
        currentSegmentToHide = sortedKeys[totalSegToHide]
        clonedImg[0,0][segmentations == currentSegmentToHide] = 0.0
        pred, confScore = getPredAndConf(opt, model, scoring, clonedImg, converter, np.array([gt]))
        # To evaluate 'case sensitive model' with alphanumeric and case insensitve setting.
        if opt.sensitive and opt.data_filtering_off:
            pred = pred.lower()
            gt = gt.lower()
            alphanumeric_case_insensitve = '0123456789abcdefghijklmnopqrstuvwxyz'
            out_of_alphanumeric_case_insensitve = f'[^{alphanumeric_case_insensitve}]'
            pred = re.sub(out_of_alphanumeric_case_insensitve, '', pred)
            gt = re.sub(out_of_alphanumeric_case_insensitve, '', gt)
        if pred == gt:
            n_correct.append(1)
        else:
            n_correct.append(0)
        confScore = confScore[0][0]*100
        confidenceList.append(confScore)
    return n_correct, confidenceList

def main(opt):
    # 'IIIT5k_3000', 'SVT', 'IC03_860', 'IC03_867', 'IC13_857', 'IC13_1015', 'IC15_1811', 'IC15_2077', 'SVTP', 'CUTE80'
    datasetName = settings.TARGET_DATASET
    custom_segm_dataroot = "{}/{}X{}/{}/".format(settings.SEGM_DIR, opt.imgH, opt.imgW, datasetName)
    outputSelectivityPkl = "strexp_ave_{}_{}.pkl".format(settings.MODEL, datasetName)
    outputDir = "./attributionImgs/{}/{}/".format(settings.MODEL, datasetName)
    attrOutputDir = "./attributionData/{}/{}/".format(settings.MODEL, datasetName)
    acquireSelectivity = True
    acquireInfidelity = False
    acquireSensitivity = False ### GPU error
    imgHeight = 32
    imgWidth = 100
    if not os.path.exists(outputDir):
        os.makedirs(outputDir)
    if not os.path.exists(attrOutputDir):
        os.makedirs(attrOutputDir)

    """ model configuration """
    if 'CTC' in opt.Prediction:
        converter = CTCLabelConverter(opt.character)
    else:
        converter = AttnLabelConverter(opt.character)
    opt.num_class = len(converter.character)

    if opt.rgb:
        opt.input_channel = 3
    model_obj = Model(opt, device)
    print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial, opt.input_channel, opt.output_channel,
          opt.hidden_size, opt.num_class, opt.batch_max_length, opt.Transformation, opt.FeatureExtraction,
          opt.SequenceModeling, opt.Prediction)
    model = torch.nn.DataParallel(model_obj).to(device)

    # load model
    print('loading pretrained model from %s' % opt.saved_model)
    model.load_state_dict(torch.load(opt.saved_model, map_location=device))
    opt.exp_name = '_'.join(opt.saved_model.split('/')[1:])

    modelCopy = copy.deepcopy(model)
    scoring_singlechar = STRScore(opt=opt, converter=converter, device=device, enableSingleCharAttrAve=True)
    super_pixel_model_singlechar = torch.nn.Sequential(
        # super_pixler,
        # numpy2torch_converter,
        modelCopy,
        scoring_singlechar
    ).to(device)
    modelCopy.train()
    scoring_singlechar.train()
    super_pixel_model_singlechar.train()

    scoring = STRScore(opt=opt, converter=converter, device=device)
    super_pixel_model = torch.nn.Sequential(
        model,
        scoring
    )
    model.train()
    scoring.train()
    super_pixel_model.train()

    """ keep evaluation model and result logs """
    os.makedirs(f'./result/{opt.exp_name}', exist_ok=True)
    os.system(f'cp {opt.saved_model} ./result/{opt.exp_name}/')

    """ setup loss """
    if 'CTC' in opt.Prediction:
        criterion = torch.nn.CTCLoss(zero_infinity=True).to(device)
    else:
        criterion = torch.nn.CrossEntropyLoss(ignore_index=0).to(device)  # ignore [GO] token = ignore index 0

    """Output shap values"""
    """ evaluation with 10 benchmark evaluation datasets """
    # The evaluation datasets, dataset order is same with Table 1 in our paper.
    # eval_data_list = ['IIIT5k_3000', 'IC03_860', 'IC03_867', 'IC15_1811']
    target_output_orig = opt.outputOrigDir
    # eval_data_list = ['IIIT5k_3000', 'SVT', 'IC03_860', 'IC03_867', 'IC13_857',
    #                       'IC13_1015', 'IC15_1811', 'IC15_2077', 'SVTP', 'CUTE80']
    # eval_data_list = ['IIIT5k_3000']
    eval_data_list = [datasetName]
    # # To easily compute the total accuracy of our paper.
    # eval_data_list = ['IIIT5k_3000', 'SVT', 'IC03_867',
    #                   'IC13_1015', 'IC15_2077', 'SVTP', 'CUTE80']

    list_accuracy = []
    total_forward_time = 0
    total_evaluation_data_number = 0
    total_correct_number = 0
    log = open(f'./result/{opt.exp_name}/log_all_evaluation.txt', 'a')
    dashed_line = '-' * 80
    print(dashed_line)
    log.write(dashed_line + '\n')

    selectivity_eval_results = []
    imageData = []
    targetText = "all"
    middleMaskThreshold = 5
    testImgCount = 0
    imgResultDir = str(opt.Transformation) + "-" + str(opt.FeatureExtraction) + "-" + str(opt.SequenceModeling) + "-" + str(opt.Prediction) + "-" + str(opt.scorer)

    # define a perturbation function for the input (used for calculating infidelity)
    def perturb_fn(modelInputs):
        noise = torch.tensor(np.random.normal(0, 0.003, modelInputs.shape)).float()
        noise = noise.to(device)
        return noise, modelInputs - noise

    if opt.blackbg:
        shapImgLs = np.zeros(shape=(1, 1, 32, 100)).astype(np.float32)
        trainList = np.array(shapImgLs)
        background = torch.from_numpy(trainList).to(device)
    if imgResultDir != "":
        if not os.path.exists(imgResultDir):
            os.makedirs(imgResultDir)
    for eval_data in eval_data_list:
        eval_data_path = os.path.join(opt.eval_data, eval_data)
        AlignCollate_evaluation = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD)
        eval_data, eval_data_log = hierarchical_dataset(root=eval_data_path, opt=opt, targetDir=target_output_orig)
        evaluation_loader = torch.utils.data.DataLoader(
            eval_data, batch_size=1,
            shuffle=False,
            num_workers=int(opt.workers),
            collate_fn=AlignCollate_evaluation, pin_memory=True)
        # image_tensors, labels = next(iter(evaluation_loader)) ### Iterate one batch only
        for i, (orig_img_tensors, labels) in enumerate(evaluation_loader):
            # img_rgb *= 255.0
            # img_rgb = img_rgb.astype('int')
            # print("img_rgb max: ", img_rgb.max()) ### 255
            # img_rgb = np.asarray(orig_img_tensors)
            # segmentations = segmentation_fn(img_rgb)
            # print("segmentations shape: ", segmentations.shape) # (224, 224)
            # print("segmentations min: ", segmentations.min()) 0
            # print("Unique: ", len(np.unique(segmentations))) # (70)
            # print("target: ", target) tensor([[ 0, 29, 26, 25, 12
            results_dict = {}
            pklFilename = custom_segm_dataroot + "{}.pkl".format(i)
            with open(pklFilename, 'rb') as f:
                pklData = pickle.load(f)
            segmDataNP = pklData["segdata"]
            # print("segmDataNP unique: ", len(np.unique(segmDataNP)))
            assert pklData["label"] == labels[0]
            segmTensor = torch.from_numpy(segmDataNP).unsqueeze(0).unsqueeze(0)
            # print("segmTensor min: ", segmTensor.min()) # 0 starting segmentation
            segmTensor = segmTensor.to(device)
            # print("segmTensor shape: ", segmTensor.shape)
            # img1 = np.asarray(imgPIL.convert('L'))
            # sys.exit()
            # img1 = img1 / 255.0
            # img1 = torch.from_numpy(img1).unsqueeze(0).unsqueeze(0).type(torch.FloatTensor).to(device)
            img1 = orig_img_tensors.to(device)
            img1.requires_grad = True
            bgImg = torch.zeros(img1.shape).to(device)
            # preds = model(img1, seqlen=converter.batch_max_length)
            target = converter.encode(labels)
            target = target[0][:, 1:]
            charOffset = 0
            input = img1
            origImgNP = torch.clone(orig_img_tensors).detach().cpu().numpy()[0][0] # (1, 1, 224, 224)
            origImgNP = gray2rgb(origImgNP)

            # preds = model(input)
            # preds_prob = F.softmax(preds, dim=2)
            # preds_max_prob, preds_max_idx = preds_prob.max(dim=2)
            # print("preds_max_idx: ", preds_max_idx) tensor([[14, 26, 25, 12

            ### Captum test
            collectedAttributions = []
            for charIdx in range(0, len(labels)):
                scoring_singlechar.setSingleCharOutput(charIdx + charOffset)
                gtClassNum = target[0][charIdx + charOffset]

                ### Shapley Value Sampling
                svs = ShapleyValueSampling(super_pixel_model_singlechar)
                # attr = svs.attribute(input, target=0, n_samples=200) ### Individual pixels, too long to calculate
                attributions = svs.attribute(input, target=gtClassNum, feature_mask=segmTensor)
                collectedAttributions.append(attributions)
            aveAttributions = torch.mean(torch.cat(collectedAttributions,dim=0), dim=0).unsqueeze(0)
            rankedAttr = rankedAttributionsBySegm(aveAttributions, segmDataNP)
            rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
            rankedAttr = gray2rgb(rankedAttr)
            mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
            mplotfig.savefig(outputDir + '{}_shapley_l.png'.format(i))
            mplotfig.clear()
            plt.close(mplotfig)
            saveAttrData(attrOutputDir + f'{i}_shapley_l.pkl', aveAttributions, segmDataNP, origImgNP)
            if acquireSelectivity:
                n_correct, confidenceList = acquireSelectivityHit(img1, aveAttributions, segmDataNP, modelCopy, converter, labels, scoring_singlechar)
                results_dict["shapley_local_acc"] = n_correct
                results_dict["shapley_local_conf"] = confidenceList
            if acquireInfidelity:
                infid = float(infidelity(super_pixel_model_singlechar, perturb_fn, img1, aveAttributions).detach().cpu().numpy())
                results_dict["shapley_local_infid"] = infid
            if acquireSensitivity:
                sens = float(sensitivity_max(svs.attribute, img1, target=0).detach().cpu().numpy())
                results_dict["shapley_local_sens"] = sens

            ### Shapley Value Sampling
            svs = ShapleyValueSampling(super_pixel_model)
            # attr = svs.attribute(input, target=0, n_samples=200) ### Individual pixels, too long to calculate
            attributions = svs.attribute(input, target=0, feature_mask=segmTensor)
            collectedAttributions.append(attributions)
            rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
            rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
            rankedAttr = gray2rgb(rankedAttr)
            mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
            mplotfig.savefig(outputDir + '{}_shapley.png'.format(i))
            mplotfig.clear()
            plt.close(mplotfig)
            saveAttrData(attrOutputDir + f'{i}_shapley.pkl', attributions, segmDataNP, origImgNP)
            if acquireSelectivity:
                n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring)
                results_dict["shapley_acc"] = n_correct
                results_dict["shapley_conf"] = confidenceList
            if acquireInfidelity:
                infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy())
                results_dict["shapley_infid"] = infid
            if acquireSensitivity:
                sens = float(sensitivity_max(svs.attribute, img1, target=0).detach().cpu().numpy())
                results_dict["shapley_sens"] = sens

            ### Global + Local context
            aveAttributions = torch.mean(torch.cat(collectedAttributions,dim=0), dim=0).unsqueeze(0)
            rankedAttr = rankedAttributionsBySegm(aveAttributions, segmDataNP)
            rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
            rankedAttr = gray2rgb(rankedAttr)
            mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
            mplotfig.savefig(outputDir + '{}_shapley_gl.png'.format(i))
            mplotfig.clear()
            plt.close(mplotfig)
            saveAttrData(attrOutputDir + f'{i}_shapley_gl.pkl', aveAttributions, segmDataNP, origImgNP)
            if acquireSelectivity:
                n_correct, confidenceList = acquireSelectivityHit(img1, aveAttributions, segmDataNP, modelCopy, converter, labels, scoring_singlechar)
                results_dict["shapley_global_local_acc"] = n_correct
                results_dict["shapley_global_local_conf"] = confidenceList
            if acquireInfidelity:
                infid = float(infidelity(super_pixel_model_singlechar, perturb_fn, img1, aveAttributions).detach().cpu().numpy())
                results_dict["shapley_global_local_infid"] = infid
            if acquireSensitivity:
                sens = float(sensitivity_max(svs.attribute, img1, target=0).detach().cpu().numpy())
                results_dict["shapley_global_local_sens"] = sens


            # Baselines
            ### Integrated Gradients
            ig = IntegratedGradients(super_pixel_model)
            attributions = ig.attribute(input, target=0)
            rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
            rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
            rankedAttr = gray2rgb(rankedAttr)
            mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
            mplotfig.savefig(outputDir + '{}_intgrad.png'.format(i))
            mplotfig.clear()
            plt.close(mplotfig)
            saveAttrData(attrOutputDir + f'{i}_intgrad.pkl', attributions, segmDataNP, origImgNP)
            if acquireSelectivity:
                n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring)
                results_dict["intgrad_acc"] = n_correct
                results_dict["intgrad_conf"] = confidenceList
            if acquireInfidelity:
                infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy())
                results_dict["intgrad_infid"] = infid
            if acquireSensitivity:
                sens = float(sensitivity_max(ig.attribute, img1, target=0).detach().cpu().numpy())
                results_dict["intgrad_sens"] = sens

            ### Gradient SHAP using zero-background
            gs = GradientShap(super_pixel_model)
            # We define a distribution of baselines and draw `n_samples` from that
            # distribution in order to estimate the expectations of gradients across all baselines
            baseline_dist = torch.zeros((1, 1, imgHeight, imgWidth))
            baseline_dist = baseline_dist.to(device)
            attributions = gs.attribute(input, baselines=baseline_dist, target=0)
            rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
            rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
            rankedAttr = gray2rgb(rankedAttr)
            mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
            mplotfig.savefig(outputDir + '{}_gradshap.png'.format(i))
            mplotfig.clear()
            plt.close(mplotfig)
            saveAttrData(attrOutputDir + f'{i}_gradshap.pkl', attributions, segmDataNP, origImgNP)
            if acquireSelectivity:
                n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring)
                results_dict["gradshap_acc"] = n_correct
                results_dict["gradshap_conf"] = confidenceList
            if acquireInfidelity:
                infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy())
                results_dict["gradshap_infid"] = infid
            if acquireSensitivity:
                sens = float(sensitivity_max(gs.attribute, img1, target=0).detach().cpu().numpy())
                results_dict["gradshap_sens"] = sens

            ### DeepLift using zero-background
            dl = DeepLift(super_pixel_model)
            attributions = dl.attribute(input, target=0)
            rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
            rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
            rankedAttr = gray2rgb(rankedAttr)
            mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
            mplotfig.savefig(outputDir + '{}_deeplift.png'.format(i))
            mplotfig.clear()
            plt.close(mplotfig)
            saveAttrData(attrOutputDir + f'{i}_deeplift.pkl', attributions, segmDataNP, origImgNP)
            if acquireSelectivity:
                n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring)
                results_dict["deeplift_acc"] = n_correct
                results_dict["deeplift_conf"] = confidenceList
            if acquireInfidelity:
                infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy())
                results_dict["deeplift_infid"] = infid
            if acquireSensitivity:
                sens = float(sensitivity_max(dl.attribute, img1, target=0).detach().cpu().numpy())
                results_dict["deeplift_sens"] = sens

            ### Saliency
            saliency = Saliency(super_pixel_model)
            attributions = saliency.attribute(input, target=0) ### target=class0
            rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
            rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
            rankedAttr = gray2rgb(rankedAttr)
            mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
            mplotfig.savefig(outputDir + '{}_saliency.png'.format(i))
            mplotfig.clear()
            plt.close(mplotfig)
            saveAttrData(attrOutputDir + f'{i}_saliency.pkl', attributions, segmDataNP, origImgNP)
            if acquireSelectivity:
                n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring)
                results_dict["saliency_acc"] = n_correct
                results_dict["saliency_conf"] = confidenceList
            if acquireInfidelity:
                infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy())
                results_dict["saliency_infid"] = infid
            if acquireSensitivity:
                sens = float(sensitivity_max(saliency.attribute, img1, target=0).detach().cpu().numpy())
                results_dict["saliency_sens"] = sens

            ### InputXGradient
            input_x_gradient = InputXGradient(super_pixel_model)
            attributions = input_x_gradient.attribute(input, target=0)
            rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
            rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
            rankedAttr = gray2rgb(rankedAttr)
            mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
            mplotfig.savefig(outputDir + '{}_inpxgrad.png'.format(i))
            mplotfig.clear()
            plt.close(mplotfig)
            saveAttrData(attrOutputDir + f'{i}_inpxgrad.pkl', attributions, segmDataNP, origImgNP)
            if acquireSelectivity:
                n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring)
                results_dict["inpxgrad_acc"] = n_correct
                results_dict["inpxgrad_conf"] = confidenceList
            if acquireInfidelity:
                infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy())
                results_dict["inpxgrad_infid"] = infid
            if acquireSensitivity:
                sens = float(sensitivity_max(input_x_gradient.attribute, img1, target=0).detach().cpu().numpy())
                results_dict["inpxgrad_sens"] = sens

            ## GuidedBackprop
            gbp = GuidedBackprop(super_pixel_model)
            attributions = gbp.attribute(input, target=0)
            rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
            rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
            rankedAttr = gray2rgb(rankedAttr)
            mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
            mplotfig.savefig(outputDir + '{}_guidedbp.png'.format(i))
            mplotfig.clear()
            plt.close(mplotfig)
            saveAttrData(attrOutputDir + f'{i}_guidedbp.pkl', attributions, segmDataNP, origImgNP)
            if acquireSelectivity:
                n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring)
                results_dict["guidedbp_acc"] = n_correct
                results_dict["guidedbp_conf"] = confidenceList
            if acquireInfidelity:
                infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy())
                results_dict["guidedbp_infid"] = infid
            if acquireSensitivity:
                sens = float(sensitivity_max(gbp.attribute, img1, target=0).detach().cpu().numpy())
                results_dict["guidedbp_sens"] = sens
            #
            # ## Deconvolution
            deconv = Deconvolution(super_pixel_model)
            attributions = deconv.attribute(input, target=0)
            rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
            rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
            rankedAttr = gray2rgb(rankedAttr)
            mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
            mplotfig.savefig(outputDir + '{}_deconv.png'.format(i))
            mplotfig.clear()
            plt.close(mplotfig)
            saveAttrData(attrOutputDir + f'{i}_deconv.pkl', attributions, segmDataNP, origImgNP)
            if acquireSelectivity:
                n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring)
                results_dict["deconv_acc"] = n_correct
                results_dict["deconv_conf"] = confidenceList
            if acquireInfidelity:
                infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy())
                results_dict["deconv_infid"] = infid
            if acquireSensitivity:
                sens = float(sensitivity_max(deconv.attribute, img1, target=0).detach().cpu().numpy())
                results_dict["deconv_sens"] = sens

            ### Feature ablator
            ablator = FeatureAblation(super_pixel_model)
            attributions = ablator.attribute(input, target=0, feature_mask=segmTensor)
            rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
            rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
            rankedAttr = gray2rgb(rankedAttr)
            mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
            mplotfig.savefig(outputDir + '{}_featablt.png'.format(i))
            mplotfig.clear()
            plt.close(mplotfig)
            saveAttrData(attrOutputDir + f'{i}_featablt.pkl', attributions, segmDataNP, origImgNP)
            if acquireSelectivity:
                n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring)
                results_dict["featablt_acc"] = n_correct
                results_dict["featablt_conf"] = confidenceList
            if acquireInfidelity:
                infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy())
                results_dict["featablt_infid"] = infid
            if acquireSensitivity:
                sens = float(sensitivity_max(ablator.attribute, img1, target=0).detach().cpu().numpy())
                results_dict["featablt_sens"] = sens

            ## LIME
            interpretable_model = SkLearnRidge(alpha=1, fit_intercept=True) ### This is the default used by LIME
            lime = Lime(super_pixel_model, interpretable_model=interpretable_model)
            attributions = lime.attribute(input, target=0, feature_mask=segmTensor)
            rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
            rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
            rankedAttr = gray2rgb(rankedAttr)
            mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
            mplotfig.savefig(outputDir + '{}_lime.png'.format(i))
            mplotfig.clear()
            plt.close(mplotfig)
            saveAttrData(attrOutputDir + f'{i}_lime.pkl', attributions, segmDataNP, origImgNP)
            if acquireSelectivity:
                n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring)
                results_dict["lime_acc"] = n_correct
                results_dict["lime_conf"] = confidenceList
            if acquireInfidelity:
                infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy())
                results_dict["lime_infid"] = infid
            if acquireSensitivity:
                sens = float(sensitivity_max(lime.attribute, img1, target=0).detach().cpu().numpy())
                results_dict["lime_sens"] = sens

            ### KernelSHAP
            ks = KernelShap(super_pixel_model)
            attributions = ks.attribute(input, target=0, feature_mask=segmTensor)
            rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
            rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
            rankedAttr = gray2rgb(rankedAttr)
            mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
            mplotfig.savefig(outputDir + '{}_kernelshap.png'.format(i))
            mplotfig.clear()
            plt.close(mplotfig)
            saveAttrData(attrOutputDir + f'{i}_kernelshap.pkl', attributions, segmDataNP, origImgNP)
            if acquireSelectivity:
                n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring)
                results_dict["kernelshap_acc"] = n_correct
                results_dict["kernelshap_conf"] = confidenceList
            if acquireInfidelity:
                infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy())
                results_dict["kernelshap_infid"] = infid
            if acquireSensitivity:
                sens = float(sensitivity_max(ks.attribute, img1, target=0).detach().cpu().numpy())
                results_dict["kernelshap_sens"] = sens

            selectivity_eval_results.append(results_dict)

            with open(outputSelectivityPkl, 'wb') as f:
                pickle.dump(selectivity_eval_results, f)

            testImgCount += 1
            print("testImgCount: ", testImgCount)

def outputOrigImagesOnly(opt):
    datasetName = "CUTE80" # ['IIIT5k_3000', 'SVT', 'IC03_867', 'IC13_1015', 'IC15_2077', 'SVTP', 'CUTE80']
    opt.outputOrigDir = "./datasetOrigImgs/{}/".format(datasetName)
    opt.output_orig = True
    opt.corruption_num = 0
    opt.apply_corruptions = False
    opt.min_imgnum = 0
    opt.max_imgnum = 1000

    target_output_orig = opt.outputOrigDir
    if not os.path.exists(target_output_orig):
        os.makedirs(target_output_orig)

    """ model configuration """
    if 'CTC' in opt.Prediction:
        converter = CTCLabelConverter(opt.character)
    else:
        converter = AttnLabelConverter(opt.character)
    opt.num_class = len(converter.character)

    if opt.rgb:
        opt.input_channel = 3
    model_obj = Model(opt, device)
    print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial, opt.input_channel, opt.output_channel,
          opt.hidden_size, opt.num_class, opt.batch_max_length, opt.Transformation, opt.FeatureExtraction,
          opt.SequenceModeling, opt.Prediction)
    model = torch.nn.DataParallel(model_obj).to(device)

    # load model
    print('loading pretrained model from %s' % opt.saved_model)
    model.load_state_dict(torch.load(opt.saved_model, map_location=device))
    opt.exp_name = '_'.join(opt.saved_model.split('/')[1:])
    scoring = STRScore(opt=opt, converter=converter, device=device)
    ###

    super_pixel_model = torch.nn.Sequential(
        model,
        scoring
    )
    model.train()
    scoring.train()
    super_pixel_model.train()
    # print(model)

    """ keep evaluation model and result logs """
    os.makedirs(f'./result/{opt.exp_name}', exist_ok=True)
    os.system(f'cp {opt.saved_model} ./result/{opt.exp_name}/')

    """ setup loss """
    if 'CTC' in opt.Prediction:
        criterion = torch.nn.CTCLoss(zero_infinity=True).to(device)
    else:
        criterion = torch.nn.CrossEntropyLoss(ignore_index=0).to(device)  # ignore [GO] token = ignore index 0

    """Output shap values"""
    """ evaluation with 10 benchmark evaluation datasets """
    # The evaluation datasets, dataset order is same with Table 1 in our paper.
    # eval_data_list = ['IIIT5k_3000', 'IC03_860', 'IC03_867', 'IC15_1811']
    # eval_data_list = ['IIIT5k_3000', 'SVT', 'IC03_860', 'IC03_867', 'IC13_857',
    #                       'IC13_1015', 'IC15_1811', 'IC15_2077', 'SVTP', 'CUTE80']
    # eval_data_list = ['IIIT5k_3000']
    eval_data_list = [datasetName]
    # # To easily compute the total accuracy of our paper.
    # eval_data_list = ['IIIT5k_3000', 'SVT', 'IC03_867',
    #                   'IC13_1015', 'IC15_2077', 'SVTP', 'CUTE80']

    list_accuracy = []
    total_forward_time = 0
    total_evaluation_data_number = 0
    total_correct_number = 0
    log = open(f'./result/{opt.exp_name}/log_all_evaluation.txt', 'a')
    dashed_line = '-' * 80
    print(dashed_line)
    log.write(dashed_line + '\n')

    selectivity_eval_results = []
    imageData = []
    targetText = "all"
    middleMaskThreshold = 5
    testImgCount = 0
    imgResultDir = str(opt.Transformation) + "-" + str(opt.FeatureExtraction) + "-" + str(opt.SequenceModeling) + "-" + str(opt.Prediction) + "-" + str(opt.scorer)

    if opt.blackbg:
        shapImgLs = np.zeros(shape=(1, 1, 32, 100)).astype(np.float32)
        trainList = np.array(shapImgLs)
        background = torch.from_numpy(trainList).to(device)
    if imgResultDir != "":
        if not os.path.exists(imgResultDir):
            os.makedirs(imgResultDir)
    for eval_data in eval_data_list:
        eval_data_path = os.path.join(opt.eval_data, eval_data)
        AlignCollate_evaluation = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD)
        eval_data, eval_data_log = hierarchical_dataset(root=eval_data_path, opt=opt, targetDir=target_output_orig)
        evaluation_loader = torch.utils.data.DataLoader(
            eval_data, batch_size=1,
            shuffle=False,
            num_workers=int(opt.workers),
            collate_fn=AlignCollate_evaluation, pin_memory=True)
        # image_tensors, labels = next(iter(evaluation_loader)) ### Iterate one batch only
        for i, (orig_img_tensors, labels) in enumerate(evaluation_loader):
            testImgCount += 1
            print("testImgCount: ", testImgCount)

### Use to check if the model predicted the image or not. Output a pickle file with the image index.
def modelDatasetPredOnly(opt):
    ### targetDataset - one dataset only, CUTE80 has 288 samples
    targetDataset = "CUTE80" # ['IIIT5k_3000', 'SVT', 'IC03_867', 'IC13_1015', 'IC15_2077', 'SVTP', 'CUTE80']
    outputSelectivityPkl = "metrics_predictonly_results_{}.pkl".format(targetDataset)
    start_time = time.time()

    """ model configuration """
    if 'CTC' in opt.Prediction:
        converter = CTCLabelConverter(opt.character)
    else:
        converter = AttnLabelConverter(opt.character)
    opt.num_class = len(converter.character)

    if opt.rgb:
        opt.input_channel = 3
    model_obj = Model(opt, device)
    print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial, opt.input_channel, opt.output_channel,
          opt.hidden_size, opt.num_class, opt.batch_max_length, opt.Transformation, opt.FeatureExtraction,
          opt.SequenceModeling, opt.Prediction)
    model = torch.nn.DataParallel(model_obj).to(device)

    # load model
    print('loading pretrained model from %s' % opt.saved_model)
    model.load_state_dict(torch.load(opt.saved_model, map_location=device))
    opt.exp_name = '_'.join(opt.saved_model.split('/')[1:])
    scoring = STRScore(opt=opt, converter=converter, device=device)
    ###

    super_pixel_model = torch.nn.Sequential(
        model,
        scoring
    )
    model.train()
    scoring.train()
    super_pixel_model.train()

    if opt.blackbg:
        shapImgLs = np.zeros(shape=(1, 1, 224, 224)).astype(np.float32)
        trainList = np.array(shapImgLs)
        background = torch.from_numpy(trainList).to(device)

    opt.eval = True
    eval_data_list = [targetDataset]

    testImgCount = 0
    list_accuracy = []
    total_forward_time = 0
    total_evaluation_data_number = 0
    total_correct_number = 0
    log = open(f'./result/{opt.exp_name}/log_all_evaluation.txt', 'a')
    dashed_line = '-' * 80
    print(dashed_line)
    log.write(dashed_line + '\n')
    target_output_orig = opt.outputOrigDir
    predOutput = []
    for eval_data in eval_data_list:
        eval_data_path = os.path.join(opt.eval_data, eval_data)
        AlignCollate_evaluation = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD)
        eval_data, eval_data_log = hierarchical_dataset(root=eval_data_path, opt=opt, targetDir=target_output_orig)
        evaluation_loader = torch.utils.data.DataLoader(
            eval_data, batch_size=1,
            shuffle=False,
            num_workers=int(opt.workers),
            collate_fn=AlignCollate_evaluation, pin_memory=True)
        testImgCount = 0
        for i, (orig_img_tensors, labels) in enumerate(evaluation_loader):
            image = orig_img_tensors.to(device)
            batch_size = 1
            length_for_pred = torch.IntTensor([opt.batch_max_length] * batch_size).to(device)
            text_for_pred = torch.LongTensor(batch_size, opt.batch_max_length + 1).fill_(0).to(device)
            text_for_loss, length_for_loss = converter.encode(labels, batch_max_length=opt.batch_max_length)
            if 'CTC' in opt.Prediction:
                preds = model(image, text_for_pred)

                confScore = scoring(preds)
                confScore = confScore.detach().cpu().numpy()

                # Calculate evaluation loss for CTC deocder.
                preds_size = torch.IntTensor([preds.size(1)] * batch_size)

                # Select max probabilty (greedy decoding) then decode index to character
                if opt.baiduCTC:
                    _, preds_index = preds.max(2)
                    preds_index = preds_index.view(-1)
                else:
                    _, preds_index = preds.max(2)
                preds_str = converter.decode(preds_index.data, preds_size.data)[0]
            else:
                preds = model(image, text_for_pred, is_train=False)

                confScore = scoring(preds)
                confScore = confScore.detach().cpu().numpy()

                preds = preds[:, :text_for_loss.shape[1] - 1, :]
                target = text_for_loss[:, 1:]  # without [GO] Symbol
                # cost = criterion(preds.contiguous().view(-1, preds.shape[-1]), target.contiguous().view(-1))

                # select max probabilty (greedy decoding) then decode index to character
                _, preds_index = preds.max(2)
                preds_str = converter.decode(preds_index, length_for_pred)

                ### Remove all chars after '[s]'
                preds_str = preds_str[0]
                preds_str = preds_str[:preds_str.find('[s]')]
            # print("preds_str: ", preds_str) # lowercased prediction
            # print("labels: ", labels[0]) # gt already in lowercased
            if preds_str==labels[0]: predOutput.append(1)
            else: predOutput.append(0)

            with open(outputSelectivityPkl, 'wb') as f:
                pickle.dump(predOutput, f)

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--eval_data', required=True, help='path to evaluation dataset')
    parser.add_argument('--benchmark_all_eval', action='store_true', help='evaluate 10 benchmark evaluation datasets')
    parser.add_argument('--workers', type=int, help='number of data loading workers', default=4)
    parser.add_argument('--batch_size', type=int, default=192, help='input batch size')
    parser.add_argument('--saved_model', required=True, help="path to saved_model to evaluation")
    """ Data processing """
    parser.add_argument('--batch_max_length', type=int, default=25, help='maximum-label-length')
    parser.add_argument('--imgH', type=int, default=32, help='the height of the input image')
    parser.add_argument('--imgW', type=int, default=100, help='the width of the input image')
    parser.add_argument('--superHeight', type=int, default=5, help='the height of the superpixel')
    parser.add_argument('--superWidth', type=int, default=2, help='the width of the superpixel')
    parser.add_argument('--min_imgnum', type=int, default=0, help='set this to skip for loop index of specific image number')
    parser.add_argument('--max_imgnum', type=int, default=2, help='set this to skip for loop index of specific image number')
    parser.add_argument('--severity', type=int, default=1, help='severity level if apply corruptions')
    parser.add_argument('--scorer', type=str, default='cumprod', help='See STRScore: cumprod | mean')
    parser.add_argument('--corruption_num', type=int, default=0, help='corruption to apply')
    parser.add_argument('--confidence_mode', type=int, default=0, help='0-sum of argmax; 1-edit distance')
    parser.add_argument('--outputOrigDir', type=str, default="output_orig/", help='output directory to save original \
    images. This will be automatically created. Needs --output_orig too.')
    parser.add_argument('--output_orig', action='store_true', help='if true, output first original rgb  image of each batch')
    parser.add_argument('--compare_corrupt', action='store_true', help='set to true to output results across corruptions')
    parser.add_argument('--is_shap', action='store_true', help='no need to call in command line')
    parser.add_argument('--blackbg', action='store_true', help='if True, background color for covering features will be black(0)')
    parser.add_argument('--rgb', action='store_true', help='use rgb input')
    parser.add_argument('--character', type=str, default='0123456789abcdefghijklmnopqrstuvwxyz', help='character label')
    parser.add_argument('--sensitive', action='store_true', help='for sensitive character mode')
    parser.add_argument('--PAD', action='store_true', help='whether to keep ratio then pad for image resize')
    parser.add_argument('--data_filtering_off', action='store_true', help='for data_filtering_off mode')
    parser.add_argument('--apply_corruptions', action='store_true', help='apply corruptions to images')
    parser.add_argument('--output_feat_maps', action='store_true', help='toggle this to output images of featmaps')
    parser.add_argument('--baiduCTC', action='store_true', help='for data_filtering_off mode')
    """ Model Architecture """
    parser.add_argument('--Transformation', type=str, required=True, help='Transformation stage. None|TPS')
    parser.add_argument('--FeatureExtraction', type=str, required=True, help='FeatureExtraction stage. VGG|RCNN|ResNet')
    parser.add_argument('--SequenceModeling', type=str, required=True, help='SequenceModeling stage. None|BiLSTM')
    parser.add_argument('--Prediction', type=str, required=True, help='Prediction stage. CTC|Attn')
    parser.add_argument('--num_fiducial', type=int, default=20, help='number of fiducial points of TPS-STN')
    parser.add_argument('--input_channel', type=int, default=1, help='the number of input channel of Feature extractor')
    parser.add_argument('--output_channel', type=int, default=512,
                        help='the number of output channel of Feature extractor')
    parser.add_argument('--hidden_size', type=int, default=256, help='the size of the LSTM hidden state')

    opt = parser.parse_args()

    """ vocab / character number configuration """
    if opt.sensitive:
        opt.character = string.printable[:-6]  # same with ASTER setting (use 94 char).

    cudnn.benchmark = True
    cudnn.deterministic = True
    opt.num_gpu = torch.cuda.device_count()

    # acquire_average_auc(opt)
    main(opt)
    # outputOrigImagesOnly(opt)