Spaces:
Build error
Build error
File size: 39,980 Bytes
d61b9c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 |
import os
import sys
import re
import six
import math
import lmdb
import torch
import copy
import random
import pickle
from augmentation.weather import Fog, Snow, Frost
from augmentation.warp import Curve, Distort, Stretch
from augmentation.geometry import Rotate, Perspective, Shrink, TranslateX, TranslateY
from augmentation.pattern import VGrid, HGrid, Grid, RectGrid, EllipseGrid
from augmentation.noise import GaussianNoise, ShotNoise, ImpulseNoise, SpeckleNoise
from augmentation.blur import GaussianBlur, DefocusBlur, MotionBlur, GlassBlur, ZoomBlur
from augmentation.camera import Contrast, Brightness, JpegCompression, Pixelate
from augmentation.weather import Fog, Snow, Frost, Rain, Shadow
from augmentation.process import Posterize, Solarize, Invert, Equalize, AutoContrast, Sharpness, Color
from natsort import natsorted
from PIL import Image
import PIL.ImageOps
import numpy as np
from torch.utils.data import Dataset, ConcatDataset, Subset
from torch._utils import _accumulate
import torchvision.transforms as transforms
import torchvision.transforms.functional as TF
import random
class Batch_Balanced_Dataset(object):
def __init__(self, opt):
"""
Modulate the data ratio in the batch.
For example, when select_data is "MJ-ST" and batch_ratio is "0.5-0.5",
the 50% of the batch is filled with MJ and the other 50% of the batch is filled with ST.
"""
if not os.path.exists(f'./saved_models/{opt.exp_name}/'):
os.makedirs(f'./saved_models/{opt.exp_name}/')
log = open(f'./saved_models/{opt.exp_name}/log_dataset.txt', 'a')
dashed_line = '-' * 80
print(dashed_line)
log.write(dashed_line + '\n')
print(f'dataset_root: {opt.train_data}\nopt.select_data: {opt.select_data}\nopt.batch_ratio: {opt.batch_ratio}')
log.write(f'dataset_root: {opt.train_data}\nopt.select_data: {opt.select_data}\nopt.batch_ratio: {opt.batch_ratio}\n')
assert len(opt.select_data) == len(opt.batch_ratio)
_AlignCollate = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD, opt=opt)
self.data_loader_list = []
self.dataloader_iter_list = []
batch_size_list = []
Total_batch_size = 0
notSelectiveVal = True
if opt.selective_sample_str != '':
notSelectiveVal = False
for selected_d, batch_ratio_d in zip(opt.select_data, opt.batch_ratio):
_batch_size = max(round(opt.batch_size * float(batch_ratio_d)), 1)
print(dashed_line)
log.write(dashed_line + '\n')
_dataset, _dataset_log = hierarchical_dataset(root=opt.train_data, opt=opt, notSelective=notSelectiveVal, select_data=[selected_d])
total_number_dataset = len(_dataset)
log.write(_dataset_log)
"""
The total number of data can be modified with opt.total_data_usage_ratio.
ex) opt.total_data_usage_ratio = 1 indicates 100% usage, and 0.2 indicates 20% usage.
See 4.2 section in our paper.
"""
number_dataset = int(total_number_dataset * float(opt.total_data_usage_ratio))
dataset_split = [number_dataset, total_number_dataset - number_dataset]
indices = range(total_number_dataset)
_dataset, _ = [Subset(_dataset, indices[offset - length:offset])
for offset, length in zip(_accumulate(dataset_split), dataset_split)]
selected_d_log = f'num total samples of {selected_d}: {total_number_dataset} x {opt.total_data_usage_ratio} (total_data_usage_ratio) = {len(_dataset)}\n'
selected_d_log += f'num samples of {selected_d} per batch: {opt.batch_size} x {float(batch_ratio_d)} (batch_ratio) = {_batch_size}'
print(selected_d_log)
log.write(selected_d_log + '\n')
batch_size_list.append(str(_batch_size))
Total_batch_size += _batch_size
_data_loader = torch.utils.data.DataLoader(
_dataset, batch_size=_batch_size,
shuffle=True,
num_workers=int(opt.workers),
collate_fn=_AlignCollate, pin_memory=True)
self.data_loader_list.append(_data_loader)
self.dataloader_iter_list.append(iter(_data_loader))
Total_batch_size_log = f'{dashed_line}\n'
batch_size_sum = '+'.join(batch_size_list)
Total_batch_size_log += f'Total_batch_size: {batch_size_sum} = {Total_batch_size}\n'
Total_batch_size_log += f'{dashed_line}'
opt.batch_size = Total_batch_size
print(Total_batch_size_log)
log.write(Total_batch_size_log + '\n')
log.close()
def get_batch(self):
balanced_batch_images = []
balanced_batch_texts = []
for i, data_loader_iter in enumerate(self.dataloader_iter_list):
try:
image, text = data_loader_iter.next()
balanced_batch_images.append(image)
balanced_batch_texts += text
except StopIteration:
self.dataloader_iter_list[i] = iter(self.data_loader_list[i])
image, text = self.dataloader_iter_list[i].next()
balanced_batch_images.append(image)
balanced_batch_texts += text
except ValueError:
pass
balanced_batch_images = torch.cat(balanced_batch_images, 0)
return balanced_batch_images, balanced_batch_texts
### notSelective - when False, LMDB dataset loader goes to the routine of randomly
### sampling indices to match --selective_sample_str, else it will no execute the code in the while loop
### and just do the normal VITSTR code
def hierarchical_dataset(root, opt, notSelective=True, select_data='/', segmRootDir=None, maxImages=None):
""" select_data='/' contains all sub-directory of root directory """
dataset_list = []
dataset_log = f'dataset_root: {root}\t dataset: {select_data[0]}'
print(dataset_log)
dataset_log += '\n'
for dirpath, dirnames, filenames in os.walk(root+'/'):
if not dirnames:
select_flag = False
for selected_d in select_data:
if selected_d in dirpath:
select_flag = True
break
if select_flag:
if segmRootDir is None:
dataset = LmdbDataset(dirpath, opt, notSelective, maxImages=maxImages)
else:
dataset = LMDBSegmentationDataset(dirpath, opt, notSelective, segmRootDir=segmRootDir, maxImages=maxImages)
sub_dataset_log = f'sub-directory:\t/{os.path.relpath(dirpath, root)}\t num samples: {len(dataset)}'
print(sub_dataset_log)
dataset_log += f'{sub_dataset_log}\n'
dataset_list.append(dataset)
concatenated_dataset = ConcatDataset(dataset_list)
return concatenated_dataset, dataset_log
class ValidDataset(Dataset):
### validPklData - pickle containing mapping of validIdx to original train/test idx
### knnDataRoot - root dir to open pickle file for knn, with forward slash
### knnCount - max number of knn from 0-knnCount, not necessarily the same number as
### inside the pickle knns
### typeSet - if 'train' or 'test'
### offsetStartIdx - start index of dataset to sample (0 to N-1), where N is size of valid test set
### offsetEndIdx - end index of dataset to sample (0 to N-1), where N is size of valid test set
### actual size of this dataset will be offsetStartIdx - offsetEndIdx
def __init__(self, validPklData, lmdbDataset, typeSet, knnDataRoot, knnCount=None, offsetStartIdx=None, offsetEndIdx=None):
self.validPklData = validPklData
self.lmdbDataset = lmdbDataset
self.typeSet = typeSet
self.knnCount = knnCount
self.totalValidImgs = len(validPklData)
self.knnDataRoot = knnDataRoot
### this function is only for the test dataloader, remember to set batch size to one
self.currentIdx = None
self.knnPklData = None
self.offsetStartIdx = None
if offsetStartIdx is not None:
self.totalValidImgs = offsetEndIdx - offsetStartIdx
self.offsetStartIdx = offsetStartIdx
### this function is purposely created for the trainset dataloader
### call this function to load new pickle file for knn for training set
### be sure to call this function before looping over the dataloader again
### This function also applies offsetting for the test index num i
def setCurrentTestNumKNN(self, testValidIdx):
knnPklFile = self.knnDataRoot + "test" + str(testValidIdx + self.offsetStartIdx) + "knn.pkl"
with open(knnPklFile, 'rb') as f:
### this data is a list of indices with index 0 nearest to the textValidIdx
### according to FAISS KNN
self.knnPklData = pickle.load(f)
self.totalValidImgs = self.knnCount
### index should be the same number thrown by __getitem__ function
### this function will only work properly if the batch size of testdataloader is equal to one
def getValidPklIdx(self):
return self.currentIdx
def __len__(self):
return self.totalValidImgs
def __getitem__(self, index):
if self.typeSet == 'train':
data, label = self.lmdbDataset[self.validPklData[self.knnPklData[index]]]
elif self.typeSet == 'test':
if self.offsetStartIdx is not None:
index = index + self.offsetStartIdx
self.currentIdx = index
data, label = self.lmdbDataset[self.validPklData[index]]
else:
assert(False)
return data, label
class NShotDataset(Dataset):
### infPKLFile - the influence file containing the validTrainIdx list
def __init__(self, infPKLData, validTrainPklData, lmdbDataset):
self.infPKLData = infPKLData
self.totalDataImg = len(infPKLData)
self.validTrainPklData = validTrainPklData
self.lmdbDataset = lmdbDataset
def __len__(self):
return self.totalDataImg
def __getitem__(self, index):
data, label = self.lmdbDataset[self.validTrainPklData[self.infPKLData[index]]]
return data, label
class LmdbDataset(Dataset):
def __init__(self, root, opt, notSelective, maxImages=None):
self.root = root
self.opt = opt
if self.opt.eval == False:
self.currentInfluenceLS = copy.deepcopy(self.opt.influence_idx)
random.shuffle(self.currentInfluenceLS)
self.notSelective = notSelective
self.selective_sample_ls = set([])
self.env = lmdb.open(root, max_readers=32, readonly=True, lock=False, readahead=False, meminit=False)
if not self.env:
print('cannot create lmdb from %s' % (root))
sys.exit(0)
with self.env.begin(write=False) as txn:
nSamples = int(txn.get('num-samples'.encode()))
if maxImages is not None:
nSamples = min(nSamples, maxImages)
self.nSamples = nSamples
if self.opt.data_filtering_off:
# for fast check or benchmark evaluation with no filtering
self.filtered_index_list = [index + 1 for index in range(self.nSamples)]
else:
""" Filtering part
If you want to evaluate IC15-2077 & CUTE datasets which have special character labels,
use --data_filtering_off and only evaluate on alphabets and digits.
see https://github.com/clovaai/deep-text-recognition-benchmark/blob/6593928855fb7abb999a99f428b3e4477d4ae356/dataset.py#L190-L192
And if you want to evaluate them with the model trained with --sensitive option,
use --sensitive and --data_filtering_off,
see https://github.com/clovaai/deep-text-recognition-benchmark/blob/dff844874dbe9e0ec8c5a52a7bd08c7f20afe704/test.py#L137-L144
"""
self.filtered_index_list = []
for index in range(self.nSamples):
index += 1 # lmdb starts with 1
label_key = 'label-%09d'.encode() % index
label = txn.get(label_key).decode('utf-8')
if len(label) > self.opt.batch_max_length:
# print(f'The length of the label is longer than max_length: length
# {len(label)}, {label} in dataset {self.root}')
continue
# By default, images containing characters which are not in opt.character are filtered.
# You can add [UNK] token to `opt.character` in utils.py instead of this filtering.
out_of_char = f'[^{self.opt.character}]'
if re.search(out_of_char, label.lower()):
continue
self.filtered_index_list.append(index)
self.nSamples = len(self.filtered_index_list)
def __len__(self):
return self.nSamples
def __getitem__(self, index):
assert index <= len(self), 'index range error'
### Used for influence function training
if self.opt.eval == False:
index = self.currentInfluenceLS.pop(len(self.currentInfluenceLS)-1)
if len(self.currentInfluenceLS) <= 0:
self.currentInfluenceLS = copy.deepcopy(self.opt.influence_idx)
random.shuffle(self.currentInfluenceLS)
while True:
index = self.filtered_index_list[index]
if self.opt.max_selective_list != -1:
if len(self.selective_sample_ls) >= self.opt.max_selective_list:
self.selective_sample_ls.clear()
with self.env.begin(write=False) as txn:
label_key = 'label-%09d'.encode() % index
label = txn.get(label_key).decode('utf-8') ### label - raw utf8 string output
if self.opt.selective_sample_str != '' and not self.notSelective:
if self.opt.ignore_case_sensitivity:
if label.lower() != self.opt.selective_sample_str.lower():
### Reloop
self.selective_sample_ls.add(index)
while True:
index = random.randint(0, len(self)-1)
if index not in self.selective_sample_ls: break
continue
else:
if label != self.opt.selective_sample_str:
### Reloop
self.selective_sample_ls.add(index)
while True:
index = random.randint(0, len(self)-1)
if index not in self.selective_sample_ls: break
continue
img_key = 'image-%09d'.encode() % index
imgbuf = txn.get(img_key)
buf = six.BytesIO()
buf.write(imgbuf)
buf.seek(0)
try:
if self.opt.rgb:
img = Image.open(buf).convert('RGB') # for color image
else:
img = Image.open(buf).convert('L')
except IOError:
print(f'Corrupted image for {index}')
# make dummy image and dummy label for corrupted image.
if self.opt.rgb:
img = Image.new('RGB', (self.opt.imgW, self.opt.imgH))
else:
img = Image.new('L', (self.opt.imgW, self.opt.imgH))
label = '[dummy_label]'
if not self.opt.sensitive:
label = label.lower()
# We only train and evaluate on alphanumerics (or pre-defined character set in train.py)
out_of_char = f'[^{self.opt.character}]'
label = re.sub(out_of_char, '', label)
break
return (img, label)
class RawDataset(Dataset):
def __init__(self, root, opt):
self.opt = opt
self.image_path_list = []
for dirpath, dirnames, filenames in os.walk(root):
for name in filenames:
_, ext = os.path.splitext(name)
ext = ext.lower()
if ext == '.jpg' or ext == '.jpeg' or ext == '.png':
self.image_path_list.append(os.path.join(dirpath, name))
self.image_path_list = natsorted(self.image_path_list)
self.nSamples = len(self.image_path_list)
def __len__(self):
return self.nSamples
def __getitem__(self, index):
try:
if self.opt.rgb:
img = Image.open(self.image_path_list[index]).convert('RGB') # for color image
else:
img = Image.open(self.image_path_list[index]).convert('L')
except IOError:
print(f'Corrupted image for {index}')
# make dummy image and dummy label for corrupted image.
if self.opt.rgb:
img = Image.new('RGB', (self.opt.imgW, self.opt.imgH))
else:
img = Image.new('L', (self.opt.imgW, self.opt.imgH))
return (img, self.image_path_list[index])
def isless(prob=0.5):
return np.random.uniform(0,1) < prob
class DataAugment(object):
'''
Supports with and without data augmentation
'''
def __init__(self, opt):
self.opt = opt
if not opt.eval:
self.process = [Posterize(), Solarize(), Invert(), Equalize(), AutoContrast(), Sharpness(), Color()]
self.camera = [Contrast(), Brightness(), JpegCompression(), Pixelate()]
self.pattern = [VGrid(), HGrid(), Grid(), RectGrid(), EllipseGrid()]
self.noise = [GaussianNoise(), ShotNoise(), ImpulseNoise(), SpeckleNoise()]
self.blur = [GaussianBlur(), DefocusBlur(), MotionBlur(), GlassBlur(), ZoomBlur()]
self.weather = [Fog(), Snow(), Frost(), Rain(), Shadow()]
self.noises = [self.blur, self.noise, self.weather]
self.processes = [self.camera, self.process]
self.warp = [Curve(), Distort(), Stretch()]
self.geometry = [Rotate(), Perspective(), Shrink()]
self.isbaseline_aug = False
# rand augment
if self.opt.isrand_aug:
self.augs = [self.process, self.camera, self.noise, self.blur, self.weather, self.pattern, self.warp, self.geometry]
# semantic augment
elif self.opt.issemantic_aug:
self.geometry = [Rotate(), Perspective(), Shrink()]
self.noise = [GaussianNoise()]
self.blur = [MotionBlur()]
self.augs = [self.noise, self.blur, self.geometry]
self.isbaseline_aug = True
# pp-ocr augment
elif self.opt.islearning_aug:
self.geometry = [Rotate(), Perspective()]
self.noise = [GaussianNoise()]
self.blur = [MotionBlur()]
self.warp = [Distort()]
self.augs = [self.warp, self.noise, self.blur, self.geometry]
self.isbaseline_aug = True
# scatter augment
elif self.opt.isscatter_aug:
self.geometry = [Shrink()]
self.warp = [Distort()]
self.augs = [self.warp, self.geometry]
self.baseline_aug = True
# rotation augment
elif self.opt.isrotation_aug:
self.geometry = [Rotate()]
self.augs = [self.geometry]
self.isbaseline_aug = True
self.scale = False if opt.Transformer else True
def __call__(self, img):
'''
Must call img.copy() if pattern, Rain or Shadow is used
'''
img = img.resize((self.opt.imgW, self.opt.imgH), Image.BICUBIC)
if self.opt.eval or isless(self.opt.intact_prob):
pass
elif self.opt.isshap_aug:
img = self.shap_aug(img)
elif self.opt.isrand_aug or self.isbaseline_aug:
img = self.rand_aug(img)
# individual augment can also be selected
elif self.opt.issel_aug:
img = self.sel_aug(img)
img = transforms.ToTensor()(img)
if self.scale:
img.sub_(0.5).div_(0.5)
return img
def rand_aug(self, img):
augs = np.random.choice(self.augs, self.opt.augs_num, replace=False)
for aug in augs:
index = np.random.randint(0, len(aug))
op = aug[index]
mag = np.random.randint(0, 3) if self.opt.augs_mag is None else self.opt.augs_mag
if type(op).__name__ == "Rain" or type(op).__name__ == "Grid":
img = op(img.copy(), mag=mag)
else:
img = op(img, mag=mag)
return img
def shap_aug(self, img):
weatherProb = 0.094624746
warpProb = 0.204524008
geometryProb = 0.332274202
noiseProb = 0.477033377
cameraProb = 0.57329097
patternProb = 0.743824929
processProb = 0.845809948
blurProb = 0.946237465
noCorruptProb = 1
prob = 1.
iscurve = False
corrProb = random.uniform(0, 1)
if corrProb >= 0 and corrProb < weatherProb:
mag = np.random.randint(self.opt.min_rand, self.opt.max_rand)
index = np.random.randint(0, len(self.weather))
op = self.weather[index]
if type(op).__name__ == "Rain": #or "Grid" in type(op).__name__ :
img = op(img.copy(), mag=mag, prob=prob)
else:
img = op(img, mag=mag, prob=prob)
elif corrProb >= weatherProb and corrProb < warpProb:
mag = np.random.randint(self.opt.min_rand, self.opt.max_rand)
index = np.random.randint(0, len(self.warp))
op = self.warp[index]
if type(op).__name__ == "Curve":
iscurve = True
img = op(img, mag=mag, prob=prob)
elif corrProb >= warpProb and corrProb < geometryProb:
mag = np.random.randint(self.opt.min_rand, self.opt.max_rand)
index = np.random.randint(0, len(self.geometry))
op = self.geometry[index]
if type(op).__name__ == "Rotate":
img = op(img, iscurve=iscurve, mag=mag, prob=prob)
else:
img = op(img, mag=mag, prob=prob)
elif corrProb >= geometryProb and corrProb < noiseProb:
mag = np.random.randint(self.opt.min_rand, self.opt.max_rand)
index = np.random.randint(0, len(self.noise))
op = self.noise[index]
img = op(img, mag=mag, prob=prob)
elif corrProb >= noiseProb and corrProb < cameraProb:
mag = np.random.randint(self.opt.min_rand, self.opt.max_rand)
index = np.random.randint(0, len(self.camera))
op = self.camera[index]
img = op(img, mag=mag, prob=prob)
elif corrProb >= cameraProb and corrProb < patternProb:
mag = np.random.randint(self.opt.min_rand, self.opt.max_rand)
index = np.random.randint(0, len(self.pattern))
op = self.pattern[index]
img = op(img.copy(), mag=mag, prob=prob)
elif corrProb >= patternProb and corrProb < processProb:
mag = np.random.randint(self.opt.min_rand, self.opt.max_rand)
index = np.random.randint(0, len(self.process))
op = self.process[index]
img = op(img, mag=mag, prob=prob)
elif corrProb >= processProb and corrProb < blurProb:
mag = np.random.randint(self.opt.min_rand, self.opt.max_rand)
index = np.random.randint(0, len(self.blur))
op = self.blur[index]
img = op(img, mag=mag, prob=prob)
elif corrProb >= blurProb and corrProb <= noCorruptProb:
pass
return img
def sel_aug(self, img):
prob = 1.
if self.opt.process:
mag = np.random.randint(self.opt.min_rand, self.opt.max_rand)
index = np.random.randint(0, len(self.process))
op = self.process[index]
img = op(img, mag=mag, prob=prob)
if self.opt.noise:
mag = np.random.randint(self.opt.min_rand, self.opt.max_rand)
index = np.random.randint(0, len(self.noise))
op = self.noise[index]
img = op(img, mag=mag, prob=prob)
if self.opt.blur:
mag = np.random.randint(self.opt.min_rand, self.opt.max_rand)
index = np.random.randint(0, len(self.blur))
op = self.blur[index]
img = op(img, mag=mag, prob=prob)
if self.opt.weather:
mag = np.random.randint(self.opt.min_rand, self.opt.max_rand)
index = np.random.randint(0, len(self.weather))
op = self.weather[index]
if type(op).__name__ == "Rain": #or "Grid" in type(op).__name__ :
img = op(img.copy(), mag=mag, prob=prob)
else:
img = op(img, mag=mag, prob=prob)
if self.opt.camera:
mag = np.random.randint(self.opt.min_rand, self.opt.max_rand)
index = np.random.randint(0, len(self.camera))
op = self.camera[index]
img = op(img, mag=mag, prob=prob)
if self.opt.pattern:
mag = np.random.randint(self.opt.min_rand, self.opt.max_rand)
index = np.random.randint(0, len(self.pattern))
op = self.pattern[index]
img = op(img.copy(), mag=mag, prob=prob)
iscurve = False
if self.opt.warp:
mag = np.random.randint(self.opt.min_rand, self.opt.max_rand)
index = np.random.randint(0, len(self.warp))
op = self.warp[index]
if type(op).__name__ == "Curve":
iscurve = True
img = op(img, mag=mag, prob=prob)
if self.opt.geometry:
mag = np.random.randint(self.opt.min_rand, self.opt.max_rand)
index = np.random.randint(0, len(self.geometry))
op = self.geometry[index]
if type(op).__name__ == "Rotate":
img = op(img, iscurve=iscurve, mag=mag, prob=prob)
else:
img = op(img, mag=mag, prob=prob)
return img
class ResizeNormalize(object):
def __init__(self, size, interpolation=Image.BICUBIC):
self.size = size
self.interpolation = interpolation
self.toTensor = transforms.ToTensor()
def __call__(self, img):
img = img.resize(self.size, self.interpolation)
img = self.toTensor(img)
img.sub_(0.5).div_(0.5)
return img
class NormalizePAD(object):
def __init__(self, max_size, PAD_type='right'):
self.toTensor = transforms.ToTensor()
self.max_size = max_size
self.max_width_half = math.floor(max_size[2] / 2)
self.PAD_type = PAD_type
def __call__(self, img):
img = self.toTensor(img)
img.sub_(0.5).div_(0.5)
c, h, w = img.size()
Pad_img = torch.FloatTensor(*self.max_size).fill_(0)
Pad_img[:, :, :w] = img # right pad
if self.max_size[2] != w: # add border Pad
Pad_img[:, :, w:] = img[:, :, w - 1].unsqueeze(2).expand(c, h, self.max_size[2] - w)
return Pad_img
class AlignCollate(object):
def __init__(self, imgH=32, imgW=100, keep_ratio_with_pad=False, opt=None):
self.imgH = imgH
self.imgW = imgW
self.keep_ratio_with_pad = keep_ratio_with_pad
self.opt = opt
def __call__(self, batch):
# print("type batch: ", type(batch))
# print("type batch[0]: ", type(batch[0]))
batch = filter(lambda x: x is not None, batch)
images, labels = zip(*batch)
if self.keep_ratio_with_pad: # same concept with 'Rosetta' paper
resized_max_w = self.imgW
input_channel = 3 if images[0].mode == 'RGB' else 1
transform = NormalizePAD((input_channel, self.imgH, resized_max_w))
resized_images = []
for image in images:
w, h = image.size
ratio = w / float(h)
if math.ceil(self.imgH * ratio) > self.imgW:
resized_w = self.imgW
else:
resized_w = math.ceil(self.imgH * ratio)
resized_image = image.resize((resized_w, self.imgH), Image.BICUBIC)
resized_images.append(transform(resized_image))
# resized_image.save('./image_test/%d_test.jpg' % w)
image_tensors = torch.cat([t.unsqueeze(0) for t in resized_images], 0)
else:
transform = DataAugment(self.opt)
#i = 0
#for image in images:
# transform(image)
# if i == 1:
# exit(0)
# else:
# i = i + 1
image_tensors = [transform(image) for image in images]
image_tensors = torch.cat([t.unsqueeze(0) for t in image_tensors], 0)
#else:
# transform = ResizeNormalize((self.imgW, self.imgH))
# image_tensors = [transform(image) for image in images]
# image_tensors = torch.cat([t.unsqueeze(0) for t in image_tensors], 0)
return image_tensors, labels
class STRCharSegmDataset(Dataset):
### imgRoot - above the ./images folder
### minCharNum - set to 0 to deactivate. If greater than 0, this dataset will only output
### images >= minCharNum
def __init__(self, annotFile, imgRoot, transforms, minCharNum=0,\
charNum=-1, charToQuery=None):
self.transforms = transforms
self.minCharNum = minCharNum
with open(annotFile) as file:
self.lines = file.readlines()
self.filteredLines = []
for lineStr in self.lines:
splitStr = lineStr.split()
gtLabel = splitStr[-1]
if self.minCharNum > 0 and len(gtLabel) >= self.minCharNum:
if charNum != -1 and gtLabel[charNum] == charToQuery:
self.filteredLines.append(lineStr)
self.totalItems = len(self.filteredLines)
self.imgRoot = imgRoot
def __len__(self):
return self.totalItems
def __getitem__(self, index):
lineStr = self.filteredLines[index]
splitStr = lineStr.split()
imgFilename = splitStr[0]
gtLabel = splitStr[-1]
imgPIL = Image.open(os.path.join(self.imgRoot, imgFilename)).convert('L')
imgPIL = self.transforms(imgPIL)
return imgPIL, gtLabel
### Class simplifying the LMDB reader
class MyLMDBReader(Dataset):
### indexMap - pass here the file created that maps indices from
### limitedCharIdx ---> fullLMDBIdx
### Should be of format = "char1_N" assumed to be getting only labels
### where the first char is capital N. char1 is the first char.
### maxImages - set this to a number to reduce dataset size
def __init__(self, root, opt, indexMap=None, charIdx=None, maxImages=None):
self.root = root
self.opt = opt
self.env = lmdb.open(root, max_readers=32, readonly=True, lock=False, readahead=False, meminit=False)
self.indexMapList = None
if indexMap is not None:
with open(indexMap, 'rb') as f:
self.indexMapList = pickle.load(f)[charIdx] ### type list
lesserSize = min(len(self.indexMapList), maxImages)
self.indexMapList = self.indexMapList[:lesserSize]
if not self.env:
print('cannot create lmdb from %s' % (root))
sys.exit(0)
with self.env.begin(write=False) as txn:
self.nSamples = int(txn.get('num-samples'.encode()))
if self.opt.data_filtering_off:
# for fast check or benchmark evaluation with no filtering
self.filtered_index_list = [index + 1 for index in range(self.nSamples)]
else:
""" Filtering part
If you want to evaluate IC15-2077 & CUTE datasets which have special character labels,
use --data_filtering_off and only evaluate on alphabets and digits.
see https://github.com/clovaai/deep-text-recognition-benchmark/blob/6593928855fb7abb999a99f428b3e4477d4ae356/dataset.py#L190-L192
And if you want to evaluate them with the model trained with --sensitive option,
use --sensitive and --data_filtering_off,
see https://github.com/clovaai/deep-text-recognition-benchmark/blob/dff844874dbe9e0ec8c5a52a7bd08c7f20afe704/test.py#L137-L144
"""
self.filtered_index_list = []
for index in range(self.nSamples):
index += 1 # lmdb starts with 1
label_key = 'label-%09d'.encode() % index
label = txn.get(label_key).decode('utf-8')
if len(label) > self.opt.batch_max_length:
# print(f'The length of the label is longer than max_length: length
# {len(label)}, {label} in dataset {self.root}')
continue
# By default, images containing characters which are not in opt.character are filtered.
# You can add [UNK] token to `opt.character` in utils.py instead of this filtering.
out_of_char = f'[^{self.opt.character}]'
if re.search(out_of_char, label.lower()):
continue
self.filtered_index_list.append(index)
self.nSamples = len(self.filtered_index_list)
if self.indexMapList is not None:
self.nSamples = len(self.indexMapList)
def __len__(self):
return self.nSamples
def __getitem__(self, index):
### Acquire mapped index of filtered char only dataset
if self.indexMapList is not None:
index = self.indexMapList[index]
# assert index <= len(self), 'index range error'
while True:
index = self.filtered_index_list[index]
with self.env.begin(write=False) as txn:
label_key = 'label-%09d'.encode() % index
label = txn.get(label_key).decode('utf-8') ### label - raw utf8 string output
img_key = 'image-%09d'.encode() % index
imgbuf = txn.get(img_key)
buf = six.BytesIO()
buf.write(imgbuf)
buf.seek(0)
try:
if self.opt.rgb:
img = Image.open(buf).convert('RGB') # for color image
else:
img = Image.open(buf).convert('L')
except IOError:
print(f'Corrupted image for {index}')
# make dummy image and dummy label for corrupted image.
if self.opt.rgb:
img = Image.new('RGB', (self.opt.imgW, self.opt.imgH))
else:
img = Image.new('L', (self.opt.imgW, self.opt.imgH))
label = '[dummy_label]'
if not self.opt.sensitive:
label = label.lower()
# We only train and evaluate on alphanumerics (or pre-defined character set in train.py)
out_of_char = f'[^{self.opt.character}]'
label = re.sub(out_of_char, '', label)
break
return (img, label)
class LMDBSegmentationDataset(LmdbDataset):
### segmRootDir - if not None,
def __init__(self, root, opt, notSelective, segmRootDir, maxImages=None):
super().__init__(root, opt, notSelective, maxImages=maxImages)
self.segmRootDir = segmRootDir
def __getitem__(self, index):
originalIdx = index
assert index <= len(self), 'index range error'
### Used for influence function training
if self.opt.eval == False:
index = self.currentInfluenceLS.pop(len(self.currentInfluenceLS)-1)
if len(self.currentInfluenceLS) <= 0:
self.currentInfluenceLS = copy.deepcopy(self.opt.influence_idx)
random.shuffle(self.currentInfluenceLS)
while True:
index = self.filtered_index_list[index]
if self.opt.max_selective_list != -1:
if len(self.selective_sample_ls) >= self.opt.max_selective_list:
self.selective_sample_ls.clear()
with self.env.begin(write=False) as txn:
label_key = 'label-%09d'.encode() % index
label = txn.get(label_key).decode('utf-8') ### label - raw utf8 string output
if self.opt.selective_sample_str != '' and not self.notSelective:
if self.opt.ignore_case_sensitivity:
if label.lower() != self.opt.selective_sample_str.lower():
### Reloop
self.selective_sample_ls.add(index)
while True:
index = random.randint(0, len(self)-1)
if index not in self.selective_sample_ls: break
continue
else:
if label != self.opt.selective_sample_str:
### Reloop
self.selective_sample_ls.add(index)
while True:
index = random.randint(0, len(self)-1)
if index not in self.selective_sample_ls: break
continue
img_key = 'image-%09d'.encode() % index
imgbuf = txn.get(img_key)
buf = six.BytesIO()
buf.write(imgbuf)
buf.seek(0)
try:
if self.opt.rgb:
img = Image.open(buf).convert('RGB') # for color image
else:
img = Image.open(buf).convert('L')
except IOError:
print(f'Corrupted image for {index}')
# make dummy image and dummy label for corrupted image.
if self.opt.rgb:
img = Image.new('RGB', (self.opt.imgW, self.opt.imgH))
else:
img = Image.new('L', (self.opt.imgW, self.opt.imgH))
label = '[dummy_label]'
if not self.opt.sensitive:
label = label.lower()
# We only train and evaluate on alphanumerics (or pre-defined character set in train.py)
out_of_char = f'[^{self.opt.character}]'
label = re.sub(out_of_char, '', label)
break
### Acquire segmentations
with open(self.segmRootDir + "{}.pkl".format(originalIdx), 'rb') as f:
segmData = pickle.load(f)
label = (segmData, label)
return (img, label)
def tensor2im(image_tensor, imtype=np.uint8):
image_numpy = image_tensor.cpu().float().numpy()
if image_numpy.shape[0] == 1:
image_numpy = np.tile(image_numpy, (3, 1, 1))
image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0
return image_numpy.astype(imtype)
def save_image(image_numpy, image_path):
image_pil = Image.fromarray(image_numpy)
image_pil.save(image_path)
|